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1 Introduction

The goal of this chapter is to provide an illustrative overview of the state-of-the-art solution

and estimation methods for dynamic stochastic general equilibrium (DSGE) models. DSGE

models use modern macroeconomic theory to explain and predict comovements of aggre-

gate time series over the business cycle. The term DSGE model encompasses a broad class

of macroeconomic models that spans the standard neoclassical growth model discussed in

King, Plosser, and Rebelo (1988) as well as New Keynesian monetary models with numerous

real and nominal frictions that are based on the work of Christiano, Eichenbaum, and Evans

(2005) and Smets and Wouters (2003). A common feature of these models is that decision

rules of economic agents are derived from assumptions about preferences, technologies, and

the prevailing fiscal and monetary policy regime by solving intertemporal optimization prob-

lems. As a consequence, the DSGE model paradigm delivers empirical models with a strong

degree of theoretical coherence that are attractive as a laboratory for policy experiments.

The first part of this chapter discusses model solution techniques, whereas the second part

is devoted to model estimation and evaluation.

2 Solution Methods

DSGE models do not admit, except in a very few cases, a closed-form solution to their

equilibrium dynamics that we can find with “paper and pencil.” Instead, we have to resort

to numerical methods and a computer to find an approximated solution to them.

However, numerical analysis and computer programming are not parts of the standard

curriculum for economists either at the undergraduate or the graduate level. This educa-

tional gap has brought three problems. First, many macroeconomists have been reluctant to

accept that analytic results are limited and that the cavalier assumptions sometimes taken

to allow for closed-form solutions often confuse the discussion more than clarify it. While

there is an important role for analytic result in special cases for building intuition, for under-

standing the logic of economic mechanisms, and for testing the performance of our numerical

approximations, many of the questions that DSGE models are designed to address require

a quantitative answer that only numerical methods can provide. Think, for example, about

the design of the optimal response of monetary policy to a negative supply shock. Suggesting
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that the monetary authority should lower the nominal interest rate to smooth output is, ob-

viously, not enough for real world advise. We need to gauge the magnitude of such nominal

interest rate reduction. Similarly, saying that an increase in government spending increases

output does not provide enough information to design a countercyclical fiscal package.

Second, the lack of familiarity with numerical analysis has led to the slow diffusion

of best practices in solution methods and to a certain lack of interest in issues such as

detailed assessments of numerical errors in computations and their possible implications.

For example, welfare comparisons of different policies are highly dependent on the accuracy

of our solution methods (see the examples of spurious welfare reversals in Kim and Kim,

2003). Similarly, the identification of parameter values may depend on the quality of the

solution (see, Binsbergen et al., 2013, and Fernández-Villaverde et al., 2013, for several cases

involving DSGE models with recursive preferences). Although much progress in the quality

of computational work has been made in the last few years, there is still room for further

improvements.

Third, even within the set of state-of-the-art solution methods, researchers have some-

times been unsure about the trade-offs (for example, in terms of speed versus accuracy)

involved in the choosing among different algorithms.

In this first half of the chapter, we will cover some basic ideas about solution methods for

DSGE models, discuss some of trade-offs in created by the alternative algorithms, introduce

concepts related with the assessment of the accuracy of the solution, and briefly mention

parallel programing and the promise it brings of opening the door to the solution of a much

richer class of models. Throughout the chapter we will include a number of remarks with

additional material for those readers willing to dig deeper into some of the issues we deal

with.

Remark 1 (Initial Solution Methods). In the interest of space, we will skip a detailed his-

torical survey of methods employed for the solution of DSGE models (or more precisely, for

their ancestors during the first two decades of the rational expectations revolution). Instead,

we will just mentioned some of the most influential approaches. Fair and Taylor (1983)

presented an extended path algorithm. The idea was to solve, for a terminal date sufficiently

far into the future, the path of endogenous variables using a shooting algorithm. Kydland

and Prescott (1982) exploited the fact that their economy was Pareto optimal to solve the

social planner’s problem instead of the recursive equilibrium of their model. To do so, they
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substituted the original social planner’s problem by a linear quadratic approximation to it,

that is, they wrote all the constraints as a linear function of the state variables and approxi-

mated the utility function with a second-order Taylor expansion. Then they took advantage

that we have plenty of efficient methods to solve linear quadratic problems to find a fast

solution to their problem. King, Plosser, and Rebelo (in the widely disseminated techni-

cal appendix, not published until 2002) linearized the equilibrium conditions of the model

(optimality conditions, market clearing conditions, etc.), and solved the resulting system

of stochastic linear difference equations. We will revisit this method below by interpreting

it as a first-order perturbation. Christiano (1990) applied value function iteration to solve

directly for the social planner’s problem of a stochastic neoclassical growth model.

Remark 2 (Discrete versus Continuous Time). In this chapter, we will deal with DSGE

models expressed in discrete time. We will only make passing references to models in con-

tinuous time. We do so because most of the DSGE literature is in discrete time and space

considerations make dealing with both cases difficult. This, however, should not be a reason

for forgetting about the recent advances in the computation of DSGE models in continuous

time (see Fernández-Villaverde et al., 2015) or for underestimating the analytic power of

continuous time. Our position is that researchers should be open to both specifications and

opt, in each particular application, for the time structure that maximizes their ability to

analyze the model and take it to the data successfully.

3 A General Framework

A large number of solution methods have been proposed to solve DSGE models. It is,

therefore, useful, to have a general notation to express the model and its solution. This

general notation will make the similarities and differences among the solution methods clear

and will help us to link the different approaches with formal mathematics, in particular with

the well-developed study of functional equations.

Indeed, we can cast numerous problems in macroeconomics in the form of a functional

equation.1 Let us then define a functional equation more precisely. Let J1 and J2 be two

1Much of we have to say in this chapter is not, by any means, limited to macroeconomics. Similar

problems (with similar notation and solution methods) appear in other fields such as finance, industrial

organization, international finance, etc.



Fernandez-Villaverde, Rubio-Ramirez, Schorfheide: This Version April 7, 2015 4

functional spaces, Ω ⊆ Rl and let H : J1 → J2 be an operator between these two spaces. A

functional equation problem is to find a function d : Ω → Rm (where Ω is the state space)

such that:

H (d) = 0. (1)

From equation (1), we can see that regular equations are nothing but particular examples of

functional equations. Also, note that 0 is the space zero, different in general that the zero

in the reals.

Examples of problems in macroeconomics that can be easily framed as a functional

equation include value functions, Euler equations, and conditional expectations. To make

this connection explicit, we introduce first the stochastic neoclassical growth model, the

ancestor of all modern DSGE models, and then show how we can derive a functional equation

problem that solves for the equilibrium dynamics of the model in terms of either a value

function, an Euler equation, or a conditional expectation. After this example, the reader

will be able to extend the steps in our derivations to her own particular application.

3.1 The Stochastic Neoclassical Growth Model

We have an economy with a representative household that picks a sequence of consumption

ct and capital kt to solve

max
{ct,kt+1}

E0

∞∑
t=0

βtu (ct) (2a)

where Et is the conditional expectation operator evaluated at period t, β is the discount

factor, and u (·) is the period utility function. Notice that, for simplicity, we have eliminated

the labor supply decision.

The resource constraint of the economy is given by

ct + kt+1 = eztkαt + (1− δ)kt (3)

where δ is the depreciation rate and zt is an AR(1) productivity process:

zt = ρzt−1 + σεt, εt ∼ N (0, 1). (4)

Since both fundamental welfare theorems hold in this economy, we can jump between

the social planner’s problem and the competitive equilibrium according to which approach
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is more convenient in each moment. In more general applications, this would not be possible

and some care is required to stay within either the equilibrium problem or the social planner’s

problem.

3.2 A Value Function

Under standard technical conditions (Stokey, Lucas, and Prescott, 1989), we can transform

the sequential problem defined by equations (2a)-(4) into a recursive problem in terms of a

value function V (kt, zt) for the social planner. More concretely, V (kt, zt) is defined by the

Bellman operator:

V (kt, zt) = max
kt+1

[u (eztkαt + (1− δ)kt − kt+1) + βEtV (kt+1, zt+1)] (5)

where we have use the resource constraint (3) to substitute for ct in the utility function and

the expectation in (5) is taken with respect to (4). This value function has an associated

decision rule

kt+1 = g (kt, zt)

that maps the states kt and zt into optimal choices of kt+1 (and, therefore, optimal choices

of ct = eztkαt + (1− δ)kt − g (kt, zt)).

Expressing our problem in terms of a value function is convenient for several reasons.

First is that we have many results about the properties of value functions and the decision

rules associated with it (for example, regarding their differentiability). These results can be

put to good use both in the economic analysis of the problem and in the design of numerical

methods to tackle the dynamic programming problem. The second reason is that, as a

default, we can use value function iteration (which we would explain in section xxx below),

a solution method that is particularly reliable, although often slow.

We can rewrite the Bellman operator as:

V (kt, zt)−max
kt+1

[u (eztkαt + (1− δ)kt − kt+1) + βEtV (kt+1, zt+1)] = 0,

for all kt and zt. If we define:

H (d) = V (kt, zt)−max
kt+1

[u (eztkαt + (1− δ)kt − kt+1) + βEtV (kt+1, zt+1)] , (6)
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for all kt and zt, where

d = V (·, ·)

we see how the operator H, a rewriting of the Bellman operator, takes the value function

V (·, ·) and obtains a zero. More precisely, equation (6) is an integral equation given the

presence of the expectation operator. This can lead to some non-trivial measure theory

considerations that we leave aside for the moment.

3.3 Euler Equation

We outlined above a several reasons why casting the problem in terms of a value function is

attractive. Unfortunately, this formulation is often difficult. As soon as the model that we

are dealing with does not satisfy the two fundamental welfare theorems, we cannot easily

move between the social planner’s problem and the competitive equilibrium and the value

function of the household and firms will require laws of motion for individual and aggregate

state variables that can be challenging to characterize.2

An alternative is to work directly with the set of equilibrium conditions. These include

the first-order conditions for households, firms, and if specified, government, budget con-

straints, market clearing conditions, and laws of motion for exogenous processes. Since at

the core of this approach, we will have the Euler equations for the agents in the model that

encode the core of optimal behavior (with the other conditions being somewhat mechanical),

this approach is commonly known as solving the Euler equation (although sometimes also

referred as solving the equilibrium conditions of the models). But, regardless of the name we

use, the approach is extremely general and it allows to handle non-pareto efficient economies

without further complications.

In the case of the stochastic neoclassical growth model, the Euler equation for the se-

quential problem defined by equations (2a)-(4) is:

u′ (ct) = βEt
[
u′ (ct+1)

(
αezt+1kα−1

t+1 + 1− δ
)]
. (7)

Again, under standard technical conditions, there is a decision rule g : R+×R→ R2
+ for the

social planner that gives the optimal choice of consumption (g1 (kt, zt)) and capital tomorrow

2See, however, xxx for examples of how to recast a non-pareto optimal economy into the mold of an

associated pareto-optimal problem.
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(g2 (kt, zt)) given capital, kt, and productivity, zt, today. Then, we can rewrite the first-order

condition as:

u′
(
g1 (kt, zt)

)
= βEt

[
u′
(
g1 (kt+1, zt+1)

) (
αeρzt+σεt+1

(
g2 (kt, zt)

)α−1
+ 1− δ

)]
,

for all kt and zt, where we have used the law of motion for productivity (4) to substitute

zt+1 or, alternatively:

u′
(
g1 (kt, zt)

)
− βEt

[
u′
(
g1 (kt+1, zt+1)

) (
αeρzt+σεt+1

(
g2 (kt, zt)

)α−1
+ 1− δ

)]
= 0, (8)

for all kt and zt. We also have the resource constraint:

g1 (kt, zt) + g2 (kt, zt) = eztkαt + (1− δ)kt (9)

Then, we have a functional equation where the unknown object is the decision rule g (·).
Mapping equations (8) and (9) into our operator H is straightforward:

H (d) =

 u′ (g1 (kt, zt))− βEt
[
u′ (g1 (kt+1, zt+1))

(
αeρzt+σεt+1 (g2 (kt, zt))

α−1
+ 1− δ

)]
g1 (kt, zt) + g2 (kt, zt)− eztkαt + (1− δ)kt

= 0 ,

for all kt and zt,

where:

d = g (·, ·) .

In this simple model, we could also have substituted the resource constraint in equation

(8) and solve for a one-dimensional decision rule., but by leaving equations (8) and (9) we

illustrate how to handle cases where this substitution is either unfeasible or inadvisable.

An additional consideration that we need to take care of in this Euler equation approach

is that the Euler equation (7) is only a necessary condition. Thus, after finding g (·, ·), we

would also need to ensure that a transversality condition of the form:

lim
t→∞

β
u′ (ct+1)

u′ (c0)
kt = 0

is satisfied. We will describe below how we build our solution methods to ensure that this

is, indeed, the case.
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3.4 Conditional Expectations

Note that we have a considerable degree of flexibility in how we specifyH and d. For instance,

if we go back to the Euler equation (7):

u′ (ct) = βEt
[
u′ (ct+1)

(
αezt+1kα−1

t+1 + 1− δ
)]

we may be interested in finding the unknown conditional expectation:

Et
[
u′ (ct+1)

(
αezt+1kα−1

t+1 + 1− δ
)]
.

This may be the case either because the conditional expectation is the object of interest

in the analysis or, more likely, because solving for the conditional expectation may avoid

problems associated with the decision rule. For example, we could enrich the basic stochastic

neoclassical growth model with additional constraints (such as a non-negative investment

constraint: kt+1 ≥ (1 − δ)kt) that may induce kinks or other undesirable properties in

the decision rules. Even when those features appear, the conditional expectation (since it

smooths over different realizations of the productivity shock) may still have properties such

as differentiability that the researcher can successfully exploit either in her numerical solution

or later in the economic analysis.3

To see how this would work, we can set up as our unknown function:

g (kt, zt) = Et
[
u′ (ct+1)

(
αezt+1kα−1

t+1 + 1− δ
)]

(10)

where we take advantage that Et (·) is itself another function of the states of the economy.

Going back to our the Euler equation (7) and the resource constraint (3), if we have access

to g (·, ·), we can find:

ct = u′ (βg (kt, zt))
−1 (11)

and

kt+1 = eztkαt + (1− δ)kt − u′ (βg (kt, zt))
−1 .

3See Fernández-Villaverde et al. (2014) for an example of this principle. The paper is interested in

solving a New Keynesian business cycle model with a zero lower bound (ZLB) on the nominal interest rate.

This ZLB creates a kink on the function that maps states of the model into nominal interest rates. The

paper gets around this problem by solving for consumption, inflation, and an auxiliary variable that encodes

information very similar to that of a conditional expectation. Once these function have been found, the

rest of the endogenous variables of the model, including the nominal interest rate, can be derived without

additional approximation. In particular, the ZLB is always satisfied.
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This shows that knowledge of the conditional expectation allows us to recover all the other

endogenous variables of interest in the model. To save on notation, we write:

ct = cg,t,

and

kt+1 = kg,t

to denote the values of ct and kt+1 implied by g (·, ·). Similarly:

ct+1 = cg,t+1 = u′ (βg (kt+1, zt+1))−1 = u′ (βg (kg,t, zt+1))−1

is the value of ct+1 implied by the recursive application of g (·, ·).

To solve for g (·, ·), we use its definition in equation (10):

g (kt, zt) = βEt
[
u′ (cg,t+1)

(
αeρzt+σεt+1kα−1

g,t + 1− δ
)]

and write:

H (d) = g (kt, zt)− ββEt
[
u′ (cg,t+1)

(
αeρzt+σεt+1kα−1

g,t + 1− δ
)]

= 0

where

d = g (kt, zt) .

3.5 The Way Forward

In this section we have argued that a large number of problems in macroeconomics can be

expressed in terms of a functional equation problem

H (d) = 0

and we illustrate our assertion by building the operator H for a value function, for an Euler

equation problem, and for a conditional expectation problem. Our examples, though, were

not an exhaustive list and dozens of other cases can be constructed following the same ideas.

We will move now two study the two main families of solution methods for functional

equation problems: perturbation and projection methods. Both families substitute the un-

known function d for an approximation dj (x, θ) in terms of the state variables of the model
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x and a vector of coefficients θ and an degree of approximation j (we are deliberately being

ambiguous about the interpretation of that degree). We will use the terminology “param-

eters” to refer to objects describing the preferences, technology, and information sets of

the model. The discount factor, risk aversion, the depreciation rate, or the persistence of

the productivity shock are, thus, examples of parameters. We will call “coefficients” the

numerical terms in the numerical solution. While the “parameters” usually have a clear eco-

nomic interpretation associated with them, the “coefficients” will, most of time, lack such

interpretation.

Remark 3 (Structural Parameters?). We are being careful at not adding the adjective

“structural.” Here we follow Hurwicz (1962), who defined “structural” as invariant to a class

of policy interventions the researcher is interested in analyzing. Many parameters of interest

may not “structural” in that sense. For example, the persistence of a technology shock may

depend on the barriers to entry/exit in the goods and services industries and how quickly

technological innovations can diffuse. These barriers may change with variations in com-

petition policy. See a more detailed discussion on the “structural” character of parameters

in DSGE models as well as empirical evidence in Fernández-Villaverde and Rubio-Ramı́rez

(2008).

The states of the model will be determined by the structure of the model. Even if in

the words of Thomas Sargent, “finding the states is an art” (meaning both that there is no

constructive algorithm to do so and that the researcher may be able to find different possible

sets of states that accomplish the goal of fully describing the situation of the model, some

of which may be more useful than the others in one context), determining the states is a

step previous to the numerical solution of the model and therefore outside the purview of

this chapter. The real goal of the numerical solution would be to determine, for a degree of

approximation n, the value of the coefficients θ that get the approximated solution of the

model as close as possible to the exact unknown solution under an appropriate metric.

4 Perturbation

Perturbation methods -sometimes also known as asymptotic methods- build approximate

solution to a DSGE model by starting from the exact solution of a particular case of the
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model or from the solution of a close, related model whose solution we have access to. In

their more common incarnation in macroeconomics (but not necessarily the only possible

one), perturbation builds higher-order Taylor series approximations to the solution of DSGE

model around its deterministic steady state. With a long tradition in physics and other

natural sciences, perturbation methods were popularized in economics by Judd and Guu

(1993).4

Recently, perturbation methods have gained much popularity among researchers over

the last decade because of three reasons. First, they are accurate. Perturbation methods

find an approximate solution that is inherently local, that is, that is highly accurate around

the point where we take the Taylor series expansion. However, researchers have documented

that perturbation often display good global properties along a wide range of state variable

values (see the evidence presented in Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez,

2006, and Caldara et al., 2012). Second, the results are intuitive and easily interpretable.

For example, a second order expansion includes a term that corrects for the standard de-

viation of the shocks that drive the dynamics of the economy. This term, which captures

precautionary behavior, breaks the certainty equivalence of linear approximations that makes

it difficult to talk about welfare and risk in a linearized world. Third, thanks to software

such as Dynare and Dynare++ (developed by Michel Juillard and a team of collaborators),

higher perturbations are easy to compute even for practitioners less familiar with numerical

method.5

More concretely, perturbation methods solve the functional equation problem:

H (d) = 0

by specifying an approximation to the unknown function d : Ω→ Rm in terms of the n state

variables of the model x and some coefficients θi of the form:

dji (x, θ) = θi,0 + θi,1 (x− x0)′ + (x− x0) θi,2 (x− x0)′ + ..., for i = 1, . . . ,m

where x0 is the point around which we build our perturbation solution, θi,0 is a scalar, θi,1 is

a n-dimensional vector that stacks additional coefficients θi.2 − θi,n+1, θi,2 is a n× n matrix

4Perturbation methods were already widely used in physics in the 19th century, but they became a key

tool in science with the development of quantum mechanics in the first half of the 20th century.
5Dynare (a toolbox for Matlab) and Dynare++ (a stand-alone application) allow the researcher to write, in

a concise and intuitive language, the equilibrium conditions of a DSGE model and find a perturbation solution

to it, up to third-order in Dynare and to an arbitrary order in Dynare++. See http://www.dynare.org/.
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that stacks additional coefficients θi,n+2 + θi,n(n+1)+2, and so on up to an order j. As we will

describe momentarily, the coefficients θi,l’s are found using implicit-function theorems.

Note that the traditional linearization approach popularized by King, Plosser, and Rebelo

(2002) delivers a solution of the form:

dji (x, θ) = θi,0 + θi,1 (x− x0)′ .

In other words, linearization is nothing more than a first-order perturbation and higher-

order approximations generalize it by including additional terms. Instead of being an ad

hoc procedure (as it was sometimes understood in the 1980s and 1990s), linearization can

borrow from all that we know from perturbation theory. But the direction of influence also

goes in the other direction: we can use much of what we already know about the linearized

solution to DSGE models (such as how to efficiently solve for the coefficients θi,0 and θi,1) to

confidently apply perturbation.

Remark 4 (Linearization vs. Loglinearization). Linearization and, more generally, pertur-

bation, can be performed in the level of the state variables or after applying some change of

variables. Loglinearization, for example, approximates the solution of the model in terms of

the log-deviations of the variables with respect to their steady state. We will come back to

this point later in the chapter.

Remark 5 (First-Oder Perturbation and Linear-Quadratic Approximations). Kydland and

Prescott (1982), equivalent under linear constraints.

Before getting into technical details of how to implement perturbation methods, a simple

example will clarify many of the ideas we just introduced. Also, we will briefly distinguish

between regular and singular perturbations.

4.1 An Example

Let us image that we want to compute
√

26 without the use of a hand calculator and without

resorting to some of the traditional algorithms to do so. A possibility is to write:

√
26 =

√
25 ∗ 1.04 =

√
25 ∗
√

1.04 = 5 ∗
√

1.04.
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Now, note that
√

1.04 ≈ 1.02. Therefore, we can find:

√
26 ≈ 5 ∗ 1.02 = 5.1,

an approximated solution that we were able to find with trivial computations. The numerical

error between the exact solution,
√

26 = 5.099 and our approximation:

e =

∣∣∣∣5.1− 5.099

5.099

∣∣∣∣ = 0.00019

might be sufficiently small for many (but not necessarily all) applications of interest.

This idea can be easily generalized. The square root of an arbitrary number x can be

written as:
√
x =

√
y2 ∗ (1 + σ) = y ∗

√
(1 + σ) ≈ y ∗

(
1 +
√
σ
)

where y is an integer whose square is close to x and σis a perturbation parameter such that:

σ =
x

y2
− 1.

When x = y2, the perturbation parameter is zero, and the approximated solution is exact.

When x and y2 are not equal but close, we can build an approximated solution y ∗ (1 +
√
σ),

whose accuracy will fall as x and y2 get away from each other.

This example illustrates, therefore, several important points. First, that we can easily

build an approximated solution to an otherwise complicated problem with a high degree of

accuracy. Second, that such solution is local and that its accuracy falls as we move away

from the point where the solution holds exactly.

4.2 Regular versus Singular Perturbations

Perturbations of a problem can be either regular or singular. A regular perturbation is

situation where a small change in the problem induces a small change in the solution. A

typical example in economics is a standard New Keynesian model. A small change, for

example, in the standard deviation of the monetary policy shock will lead to a small change

in the properties of the equilibrium dynamics. A singular perturbation is a situation where

a small change in the problem induces a large change in the solution. An example can

be excess demand function. A small change in the excess demand function may lead to an

arbitrarily large change in the price that clears the market.
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Most problems involving DSGE model will result in regular perturbations and, therefore,

we will concentrate now our attention on them. But this does not need to be necessarily

the case. For instance, introducing a new asset in an incomplete market model can lead to

large changes in the solution. As researchers pay more attention to models with financial

frictions, this class of problems may become more common with DSGE models.

4.3 The General Case

We present first the general case of how to find a perturbation solution of a DSGE model

by 1) using the equilibrium conditions to the model and 2) by finding a higher-order Taylor

series approximations. Once we have mastered this task, it would be straightforward to

extend the results to other problems such as the solution of a value function and to conceive

other possible perturbation schemes.

We start by noticing that the set of equilibrium conditions of the model can be written

as

EtH(y,y′,x,x′) = 0, (12)

where y is a ny×1 vector of controls and x is a nx×1 vector of states. We define n = nx+ny.

The operator H : Rny × Rny × Rnx × Rnx → Rn stacks all the equilibrium conditions, some

of which will have expectational terms, some of which will not. Without loss of generality,

and with a slight change of notation with respect to section 3, we place the conditional

expectation operator outside H (·): for those equilibrium conditions without expectations,

the conditional expectation operator will not have any impact. Moving Et (·) outside H (·)
will make some of the derivations below easier to follow. Note that, to save on space, we use

the recursive notation where x represents a variable at period t and x′ a variable at period

t+ 1.

It will also be convenient to separate the endogenous state variables (capital, asset posi-

tions, etc.) from the exogenous state variables (productivity shocks, preference shocks, etc.).

In that way, it will be easy to see on which variables the perturbation will have a direct

effect. Thus, we partition the state vector xt as

x = [x1; x2]t.

where x1 is a (nx − nε)× 1 vector of endogenous state variables and x2 is a nε × 1 vector of

exogenous state variables.
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4.4 Steady State

If we suppress the stochastic component of the model (more details below), we can define

the deterministic steady state of the model as vectors (x̄,y) such that:

H(ȳ, ȳ, x̄, x̄) = 0. (13)

The solution (x̄,y) of this problem can often be found analytically. When this cannot be

done, it is possible to resort to a non-linear equation solver.

Remark 6 (Simplifying the solution of (x̄,y)). Finding the solution (x̄,y) can often be made

much easier by using two “tricks.” One is to substitute some of the variables away from the

operator H (·) and reduced the system from being one of n equations on n unknowns into

a system of n′ < n equations on n′ unknowns. Since the complexity of solving a nonlinear

system of equations grows exponentially in the dimension of the problem (see Sikorski, 1985,

for some classic results on computational complexity), even a few substitutions can produce

considerable improvements.

A second possibility is to select parameter values to pin down one or more variables of

the model and then to solve all the other variables as a function of the fixed variables. To

illustrate this point, let us consider a simple stochastic neoclassical growth model with a

representative household with utility function:

E0

∞∑
t=0

βt
(

log ct − ψ
l1+η
t

1 + η

)
where the notation is the same than in section x and a production function:

outputt = Atk
α
t l

1−α
t

where At is the productivity level and a law of motion for capital:

kt+1 = outputt + (1− δ)kt − ct.

This model has a static optimality condition for labor supply of the form:

ψctl
η
t = wt

where wt is the wage. Since with the log-CRRA utility function that we selected, lt does not

have a natural unit, we can fix its deterministic steady state value, for example, at 1:

l = 1.



Fernandez-Villaverde, Rubio-Ramirez, Schorfheide: This Version April 7, 2015 16

Then, we can solve the rest of the equilibrium conditions of the model for all other endogenous

variables as a function of l = 1. After doing so, we return to the static optimality condition

to obtain the value of the parameter ψ as:

ψ =
w

cl
η =

w

c

where c and w are the deterministic steady state values of consumption and wage respectively.

Another way to think about this procedure is to realize that it is easier to find parameter

values that imply a particular endogenous variable value than to solve for those endogenous

variable values as a function of an arbitrary parameter value.

Although not strictly needed to find the solution (x̄,y), other good practices include to

pick units that make algebraic and numerical computations easier to handle. For example,

we can pick units to make output outputt equal to 1 in the deterministic steady state:

output = 1.

Again, in the context of the stochastic neoclassical growth model, we will have:

output = 1 = Ak
α
l
1−α

.

If, in addition, we impose l = 1 as before, we can find

A =
1

k
α

and wages:

w = (1− α)
output

l
= 1− α.

Then, we can go back to the intertemporal Euler equation:

1

c
=

1

c
β (1 + r − δ)

where r is the rental rate of capital, , and δ is depreciation, to find:

r =
1

β
− 1 + δ.

Since:

r = α
output

k
=
α

k
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we get:

k =
α

1
β
− 1 + δ

and:

c = output− δk = 1− δ α
1
β
− 1 + δ

,

from which:

ψ =
w

c
=

1− α
1− δ α

1
β
−1+δ

With this example, we have shown that two judicious choices of units (l = 1 and output =

1) renders the solution of the deterministic steady state a straightforward exercise. While the

deterministic steady state of more complicated models would be harder to solve, experience

suggests that following the advise in this remark dramatically simplifies the task in a large

class of situations.

Note that this (x̄,y) is different from a fixed-point (x̂, ŷ) of (12):

EtH(ŷ, ŷ, x̂, x̂) = 0,

because in the former case we eliminate the conditional expectation operator while in the later

we do not. The vector (x̂, ŷ) is sometimes known as the stochastic steady-state (although,

since we find the idea of mixing the words “stochastic” and “steady state” in the same term

confusing, we will avoid that terminology).

4.5 Exogenous Stochastic Process

For the exogenous stochastic variables, we specify a stochastic process of the form:

x′2 = C(x2) + σηεε
′ (14)

where:

1. C(·) is a potentially non-linear function. At this level of abstraction we are not im-

posing much structure on C(·), but in concrete applications we will need to impose

some additional constraints. For example, it is often convenient to assume that all the

eigenvalues of the Hessian matrix of C(·) evaluated at the non-stochastic steady state

(x̄,y) lie within the unit circle.
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2. ε′ contains the nε exogenous zero-mean innovations. Initially, we only assume that

εt+1 is independent and identically distributed with finite second moments, meaning

that no distributional assumption is imposed and the innovations may therefore be

non-Gaussian. This is denoted by εt+1 ∼ IID (0, I). Additional moment restrictions

will be imposed as needed.

3. ηε is a nε × nε matrix that determines the variances-covariances of the innovations,

4. σ ≥ 0 is a perturbation parameter that scales η.

Remark 7 (Linearity of Innovations). The assumption that innovations enter linearly in

(14) may appear restrictive, but it is without loss of generality because the state vector

can be extended to deal with non-linearities between x2 and ε′. A popular case is to intro-

duce innovations with time-varying volatility (see Fernández-Villaverde and Rubio-Ramı́rez,

2007).

Often, it will be the case that C(·) is linear, and we can write:

x′2 = Cx2 + σηεε
′

where C is a nε × nε matrix, with all eigenvalues with modulus less than one.

Note that in (14) we only have one perturbation parameter even if we have a model

with many different sources of innovations. The matrix η takes account of relative sizes (and

comovements) of the different innovations. If we set σ = 0, we have a deterministic model.

Also, we are departing from Samuelson (1970) and Jin and Judd (2002), who impose that

the innovations to this stochastic process have a bounded support. By doing so, these authors

avoid some problems with the stability of the simulations coming from the perturbation

solution that we will discuss below. Instead, we will discuss pruning as a superior strategy

to fix these problems.

4.6 Solution of the Model

The solution of the model will be given by a set of decision rules for the control variables

y = g (x;σ) , (15)
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and for the state variables

x′ = h (x;σ) + σηε′, (16)

where g maps Rnx×R+ into Rny and h maps Rnx×R+ into Rnx . Note our timing convention:

control depend on current states while states next period depend on states today and the

innovations tomorrow. By defining additional state variables that store the information of

states with leads and lags, this structure is flexible to capture the dynamics of a very rich

class of models. Also, note that by separate states x and the perturbation parameter σ by

a semicolon to emphasize the difference between both elements of the functions g and h.

The matrix η is of order nx × nε and is given by:

η =

[
∅
ηε

]

where the first nx rows come from the fact that states today determine the endogenous states

tomorrow and the last nε rows from the observation that the exogenous states tomorrow

depend on the states today and the innovations tomorrow.

4.7 Perturbation

The goal of perturbation is to find an approximation of the functions g (·) and h (·) around

the deterministic steady state, xt = x̄ and σ = 0. First, note by the definition of the

deterministic steady state (13) we have that

y = g(x̄; 0) (17)

and

x̄ = h(x̄; 0). (18)

Second, we plug-in the unknown solution on the operator H (·) and define the new

operator F (·) : Rnx+1 → Rn:

F (x;σ) ≡ EtH(g(x;σ),g(h (x;σ) + σηε′, σ),x,h (x;σ) + σηε′) = 0.

Since F (x;σ) = 0 for any values of x and σ, the derivatives of any order of F must also be

equal to zero. Formally:

Fxki σj(x;σ) = 0, ∀x, σ, i, k, j,
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where Fxki σj(x;σ) denotes the derivative of F with respect to the i-th component xi of x

taken k times and with respect to σ taken j times evaluated at (x;σ). We will exploit this

fact repeatedly.

4.8 First-Order Approximation

A first-order approximation looks for approximations to g and h around (x;σ) = (x̄; 0) of

the form:

g(x;σ) = g(x̄; 0) + gx(x̄; 0)(x− x̄)′ + gσ(x̄; 0)σ

h(x;σ) = h(x̄; 0) + hx(x̄; 0)(x− x̄)′ + hσ(x̄; 0)σ

where gx (·) and hx(·) are the gradients of g and h respectively (where the gradient includes

only the partial derivatives with respect to components of x) and gσ and hσ the derivatives

of g and h with respect to the perturbation parameter σ.

Using equations (17) and (18), we can write

g(x;σ)− y = gx(x̄; 0)(x− x̄)′ + gσ(x̄; 0)σ

h(x;σ)− x̄ = hx(x̄; 0)(x− x̄)′ + hσ(x̄; 0)σ.

Since we know (x̄,y), we only need to find gx(x̄; 0), gσ(x̄; 0), hx(x̄; 0), and hσ(x̄; 0) to

evaluate the approximation at any arbitrary point (x,σ). Note that in total we are searching

for n× (nx + 1) coefficients (the nx×ny terms in gx(x̄; 0), the nx×nx terms in hx(x̄; 0), the

ny terms in gσ(x̄; 0), and the nx terms in hσ(x̄; 0)).

These coefficients can be found by using the fact that:

Fxi(x̄; 0) = 0, ∀i,

which gives us n× nx equations and

Fσ(x̄; 0) = 0,

which gives us n equations.

But before doing so, we need to introduce the tensor notation.
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Remark 8 (Tensor Notation). Tensors, commonly used in physics, keep notation while we

perform a perturbation at a manageable level. An nth-rank tensor in a m-dimensional space

is an operator that has n indices and mn components and obeys certain transformation rules.

In our environment, [Hy]
i
α is the (i, α) element of the derivative of H with respect to y:

1. The derivative of H with respect to y is an n× ny matrix.

2. Thus, [Hy]
i
α is the element of this matrix located at the intersection of the i-th row

and α-th column.

3. Thus, [Hy]
i
α[gx]

α
β [hx]

β
j =

∑ny
α=1

∑nx
β=1

∂Hi
∂yα

∂gα

∂xβ
∂hβ

∂xj
.

4. [Hy′y′ ]
i
αγ:

(a) Hy′y′ is a three dimensional array with n rows, ny columns, and ny pages.

(b) Then [Hy′y′ ]
i
αγ denotes the element of Hy′y′ located at the intersection of row i,

column α and page γ.

Note how, in particular, tensor notation eliminates the need to keep track of the sum

operators.

With the tensor notation, we can now get into solving the system. First, gx(x̄; 0) and

hx(x̄; 0) can be found as the solution to the system:

[Fx(x̄; 0)]ij = [Hy′ ]
i
α[gx]

α
β [hx]

β
j + [Hy]

i
α[gx]

α
j + [Hx′ ]

i
β[hx]

β
j + [Hx]

i
j = 0;

i = 1, . . . , n; j, β = 1, . . . , nx; α = 1, . . . , ny.

Note that the derivatives of H evaluated at (y,y′,x,x′) = (ȳ, ȳ, x̄, x̄) are known. Then,

we have a system of n×nx quadratic equations in the n×nx unknowns given by the elements

of gx(x̄; 0) and hx(x̄; 0). We can solve with a standard quadratic matrix equation solver.

Remark 9 (Quadratic Equation Solvers). Procedures to solve quadratic systems:

1. Blanchard and Kahn (1980).

2. Uhlig (1999).



Fernandez-Villaverde, Rubio-Ramirez, Schorfheide: This Version April 7, 2015 22

3. Sims (2000).

4. Klein (2000).[to be completed].

The coefficients gσ(x̄; 0) and hσ(x̄; 0) are the solution to the n equations:

[Fσ(x̄; 0)]i =

Et{[Hy′ ]
i
α[gx]

α
β [hσ]β + [Hy′ ]

i
α[gx]

α
β [η]βφ[ε′]φ + [Hy′ ]

i
α[gσ]α

+[Hy]
i
α[gσ]α + [Hx′ ]

i
β[hσ]β + [Hx′ ]

i
β[η]βφ[ε′]φ}

i = 1, . . . , n; α = 1, . . . , ny; β = 1, . . . , nx; φ = 1, . . . , nε.

Then:

[Fσ(x̄; 0)]i

= [Hy′ ]
i
α[gx]

α
β [hσ]β + [Hy′ ]

i
α[gσ]α + [Hy]

i
α[gσ]α + [fx′ ]

i
β[hσ]β = 0;

i = 1, . . . , n; α = 1, . . . , ny; β = 1, . . . , nx; φ = 1, . . . , nε.

Inspection of the previous equations shows that they linear and homogeneous equation

in gσ and hσ. Thus, if a unique solution exists, it satisfies:

gσ = 0

hσ = 0

In other words, the coefficients associated with the perturbation parameter are zero and the

first-order approximation is

g(x;σ)− y = gx(x̄; 0)(x− x̄)′

h(x;σ)− x̄ = hx(x̄; 0)(x− x̄)′.

These equations embody a certainty equivalence property as defined by Simon (1956) and

Theil (1957). The solution of the model, up to first-order, is identical to the solution of the

same model under perfect foresight (or under the assumption that σ = 0). The intuition for

this result is simple. Risk-aversion depends on the second derivative of the utility function

(concave utility). However, Leland (1968) and Sandmo (1970) showed that a sufficient con-

dition for risk aversion to translate into precautionary behavior is the convexity of marginal
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utility. In other words, we need information from the third derivative of the utility function.

But a first-order perturbation involves the equilibrium conditions of the model (which in-

cludes first-derivatives of the utility function, for example in the Euler equation that equates

marginal utilities over time) and first derivatives of these equilibrium conditions (and there-

fore second-derivatives of the utility function), but not higher-order derivatives.

Drawbacks of certainty equivalence.

4.9 Second-Order Approximation

The second-order approximations to g around (x;σ) = (x̄; 0) is

[g(x;σ)]i = [g(x̄; 0)]i + [gx(x̄; 0)]ia[(x− x̄)]a + [gσ(x̄; 0)]i[σ]

+
1

2
[gxx(x̄; 0)]iab[(x− x̄)]a[(x− x̄)]b

+
1

2
[gxσ(x̄; 0)]ia[(x− x̄)]a[σ]

+
1

2
[gσx(x̄; 0)]ia[(x− x̄)]a[σ]

+
1

2
[gσσ(x̄; 0)]i[σ][σ]

where i = 1, . . . , ny, a, b = 1, . . . , nx, and j = 1, . . . , nx.

Similarly, the second-order approximations to h around (x;σ) = (x̄; 0) is

[h(x;σ)]j = [h(x̄; 0)]j + [hx(x̄; 0)]ja[(x− x̄)]a + [hσ(x̄; 0)]j[σ]

+
1

2
[hxx(x̄; 0)]jab[(x− x̄)]a[(x− x̄)]b

+
1

2
[hxσ(x̄; 0)]ja[(x− x̄)]a[σ]

+
1

2
[hσx(x̄; 0)]ja[(x− x̄)]a[σ]

+
1

2
[hσσ(x̄; 0)]j[σ][σ],

where i = 1, . . . , ny, a, b = 1, . . . , nx, and j = 1, . . . , nx.

The unknowns of these expansions are [gxx]
i
ab, [gxσ]ia, [gσx]

i
a, [gσσ]i, [hxx]

j
ab, [hxσ]ja, [hσx]

j
a,

[hσσ]j. These coefficients can be identified by taking the derivative of F (x;σ) with respect

to x and σ twice and evaluating them at (x;σ) = (x̄; 0). By the arguments provided earlier,

these derivatives must be zero.
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The question is now how to solve the system. First, we use Fxx(x̄; 0) to identify gxx(x̄; 0)

and hxx(x̄; 0):

[Fxx(x̄; 0)]ijk =(
[Hy′y′ ]

i
αγ[gx]

γ
δ [hx]

δ
k + [Hy′y]

i
αγ[gx]

γ
k + [Hy′x′ ]

i
αδ[hx]

δ
k + [Hy′x]

i
αk

)
[gx]

α
β [hx]

β
j

+[Hy′ ]
i
α[gxx]

α
βδ[hx]

δ
k[hx]

β
j + [Hy′ ]

i
α[gx]

α
β [hxx]

β
jk

+
(
[Hyy′ ]

i
αγ[gx]

γ
δ [hx]

δ
k + [Hyy]

i
αγ[gx]

γ
k + [Hyx′ ]

i
αδ[hx]

δ
k + [Hyx]

i
αk

)
[gx]

α
j

+[Hy]
i
α[gxx]

α
jk

+
(
[Hx′y′ ]

i
βγ[gx]

γ
δ [hx]

δ
k + [Hx′y]

i
βγ[gx]

γ
k + [Hx′x′ ]

i
βδ[hx]

δ
k + [Hx′x]

i
βk

)
[hx]

β
j

+[Hx′ ]
i
β[hxx]

β
jk

+[Hxy′ ]
i
jγ[gx]

γ
δ [hx]

δ
k + [Hxy]

i
jγ[gx]

γ
k + [Hxx′ ]

i
jδ[hx]

δ
k + [Hxx]

i
jk = 0;

i = 1, . . . n, j, k, β, δ = 1, . . . nx; α, γ = 1, . . . ny.

We know the derivatives of H. We also know the first derivatives of g and h evaluated

at (y,y′,x,x′) = (ȳ, ȳ, x̄, x̄). Hence, the above expression represents a system of n×nx×nx
linear equations in then n× nx × nx unknowns elements of gxx and hxx.

Similarly, gσσ and hσσ can be obtained by solving:

[Fσσ(x̄; 0)]i = [Hy′ ]
i
α[gx]

α
β [hσσ]β

+[Hy′y′ ]
i
αγ[gx]

γ
δ [η]δξ[gx]

α
β [η]βφ[I]φξ

+[Hy′x′ ]
i
αδ[η]δξ[gx]

α
β [η]βφ[I]φξ

+[Hy′ ]
i
α[gxx]

α
βδ[η]δξ[η]βφ[I]φξ + [Hy′ ]

i
α[gσσ]α

+[Hy]
i
α[gσσ]α + [Hx′ ]

i
β[hσσ]β

+[Hx′y′ ]
i
βγ[gx]

γ
δ [η]δξ[η]βφ[I]φξ

+[Hx′x′ ]
i
βδ[η]δξ[η]βφ[I]φξ = 0;

i = 1, . . . , n;α, γ = 1, . . . , ny; β, δ = 1, . . . , nx;φ, ξ = 1, . . . , nε

a system of n linear equations in the n unknowns given by the elements of gσσ and hσσ.

Note the cross derivatives gxσ and hxσ are zero when evaluated at (x̄, 0).

• Why? Write the system Fσx(x̄; 0) = 0 taking into account that all terms containing

either gσ or hσ are zero at (x̄, 0).
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• Then:

[Fσx(x̄; 0)]ij = [Hy′ ]
i
α[gx]

α
β [hσx]

β
j + [Hy′ ]

i
α[gσx]

α
γ [hx]

γ
j+

[Hy]
i
α[gσx]

α
j + [Hx′ ]

i
β[hσx]

β
j = 0;

i = 1, . . . n; α = 1, . . . , ny; β, γ, j = 1, . . . , nx.

• This is a system of n× nx equations in the n× nx unknowns given by the elements of

gσx and hσx.

• The system is homogeneous in the unknowns.

• Thus, if a unique solution exists, it is given by:

gσx = 0

hσx = 0

Structure of the Solution

• The perturbation solution of the model satisfies:

gσ(x̄; 0) = 0

hσ(x̄; 0) = 0

gxσ(x̄; 0) = 0

hxσ(x̄; 0) = 0

• Standard deviation only appears in:

1. A constant term given by 1
2
gσσσ

2 for the control vector yt.

2. The first nx − nε elements of 1
2
hσσσ

2.

• Correction for risk.

• Quadratic terms in endogenous state vector x1.

• Those terms capture non-linear behavior.
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4.10 Higher-Order Approximations

• We can iterate this procedure as many times as we want.

• We can obtain n-th order approximations.

• Problems:

1. Existence of higher order derivatives (Santos, 1992).

2. Numerical instabilities.

3. Computational costs.

4.11 An Example

Since the previous derivations are somewhat abstract, it is useful to show how perturbation

works in a concrete example. For that, we come back to our example of the neoclassical

growth model defined by equations (2a)-(4). The only difference is that, to make the algebra

easier to follow, we assume that:

u (c) = log c.

The equilibrium conditions of the model are then:

1

ct
= βEt

1

ct+1

(
αezt+1kα−1

t+1 + 1− δ
)

ct + kt+1 = eztkαt + (1− δ) kt
zt = ρzt−1 + σεt

The decision rules we are searching for are:

ct = c (kt, zt;σ)

and

kt+1 = k (kt, zt;σ) .

• One particular case the model has a closed form solution: δ = 1.

• Why? Because, the income and the substitution effect from a productivity shock cancel

each other:
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1. Labor is constant.

2. Consumption is a fixed fraction of income.

• Not very realistic, but we are trying to learn here.

Solution

• Equilibrium conditions with δ = 1.

1

ct
= βEt

αezt+1kα−1
t+1

ct+1

ct + kt+1 = eztkαt

zt = ρzt−1 + σεt

• By “guess and verify”

ct = (1− αβ) eztkαt

kt+1 = αβeztkαt

• How can you check? Plug the solution in the equilibrium conditions.

Another Way to Solve the Problem

• Now let us suppose that you missed the lecture when “guess and verify” was explained.

• You need to compute the RBC.

• What you are searching for? A decision rule for consumption:

ct = c (kt, zt)

and another one for capital:

kt+1 = k (kt, zt)

Note that our d is just the stack of c (kt, zt) and k (kt, zt).

Equilibrium Conditions
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• We substitute in the equilibrium conditions the budget constraint and the law of motion

for technology.

• And we write the decision rules explicitly as function of the states.

• Then, we have:

1

c (kt, zt)
= βEt

αeρzt+σεt+1k (kt, zt)
α−1

c (k (kt, zt) , ρzt + σεt+1)

c (kt, zt) + k (kt, zt) = eztkαt

• Hence, we want to transform the problem.

• Which perturbation parameter? Standard deviation σ.

• Why σ? Discrete versus continuous time.

• Set σ = 0⇒deterministic model, zt = 0 and ezt = 1.

• We know how to solve the deterministic steady state.

A Parametrized Decision Rule

• We search for decision rule:

ct = c (kt, zt;σ)

and

kt+1 = k (kt, zt;σ)

• Note new parameter σ.

• We are building a local approximation around σ = 0.

Taylor’s Theorem

• Equilibrium conditions:

Et

(
1

c (kt, zt;σ)
− β αeρzt+σεt+1k (kt, zt;σ)α−1

c (k (kt, zt;σ) , ρzt + σεt+1;σ)

)
= 0

c (kt, zt;σ) + k (kt, zt;σ)− eztkαt = 0
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• We will take derivatives with respect to kt, zt, and σ.

• Apply Taylor’s theorem to build solution around deterministic steady state. How?

Asymptotic Expansion I

ct = c (kt, zt;σ)|k,0,0 = c (k, 0; 0)

+ck (k, 0; 0) (kt − k) + cz (k, 0; 0) zt + cσ (k, 0; 0)σ

+
1

2
ckk (k, 0; 0) (kt − k)2 +

1

2
ckz (k, 0; 0) (kt − k) zt

+
1

2
ckσ (k, 0; 0) (kt − k)σ +

1

2
czk (k, 0; 0) zt (kt − k)

+
1

2
czz (k, 0; 0) z2

t +
1

2
czσ (k, 0; 0) ztσ

+
1

2
cσk (k, 0; 0)σ (kt − k) +

1

2
cσz (k, 0; 0)σzt

+
1

2
cσ2 (k, 0; 0)σ2 + ...

Asymptotic Expansion II

kt+1 = k (kt, zt;σ)|k,0,0 = k (k, 0; 0)

+kk (k, 0; 0) (kt − k) + kz (k, 0; 0) zt + kσ (k, 0; 0)σ

+
1

2
kkk (k, 0; 0) (kt − k)2 +

1

2
kkz (k, 0; 0) (kt − k) zt

+
1

2
kkσ (k, 0; 0) (kt − k)σ +

1

2
kzk (k, 0; 0) zt (kt − k)

+
1

2
kzz (k, 0; 0) z2

t +
1

2
kzσ (k, 0; 0) ztσ

+
1

2
kσk (k, 0; 0)σ (kt − k) +

1

2
kσz (k, 0; 0)σzt

+
1

2
kσ2 (k, 0; 0)σ2 + ...

Comment on Notation
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• From now on, to save on notation, I will write

F (kt, zt;σ) = Et

[
1

c(kt,zt;σ)
− β αe

ρzt+σεt+1k(kt,zt;σ)α−1

c(k(kt,zt;σ),ρzt+σεt+1;σ)

c (kt, zt;σ) + k (kt, zt;σ)− eztkαt

]
=

[
0

0

]

• Note that:

F (kt, zt;σ) = H (ct, ct+1, kt, kt+1, zt;σ)

= H (c (kt, zt;σ) , c (k (kt, zt;σ) , zt+1;σ) , kt, k (kt, zt;σ) , zt;σ)

• I will use Hi to represent the partial derivative of H with respect to the i component

and drop the evaluation at the steady state of the functions when we do not need it.

Zero-Order Approximation

• First, we evaluate σ = 0:

F (kt, 0; 0) = 0

• Steady state:
1

c
= β

αkα−1

c

or,

1 = αβkα−1

• Then:

c = c (k, 0; 0) = (αβ)
α

1−α − (αβ)
1

1−α

k = k (k, 0; 0) = (αβ)
1

1−α

First-Order Approximation

• We take derivatives of F (kt, zt;σ) around k, 0, and 0.

• With respect to kt:

Fk (k, 0; 0) = 0
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• With respect to zt:

Fz (k, 0; 0) = 0

• With respect to σ:

Fσ (k, 0; 0) = 0

Solving the System I

• Remember that:

F (kt, zt;σ) =

H (c (kt, zt;σ) , c (k (kt, zt;σ) , zt+1;σ) , kt, k (kt, zt;σ) , zt;σ) = 0

• Because F (kt, zt;σ) must be equal to zero for any possible values of kt, zt, and σ, the

derivatives of any order of F must also be zero.

• Then:

Fk (k, 0; 0) = H1ck +H2ckkk +H3 +H4kk = 0

Fz (k, 0; 0) = H1cz +H2 (ckkz + ckρ) +H4kz +H5 = 0

Fσ (k, 0; 0) = H1cσ +H2 (ckkσ + cσ) +H4kσ +H6 = 0

Solving the System II

• Note that:

Fk (k, 0; 0) = H1ck +H2ckkk +H3 +H4kk = 0

Fz (k, 0; 0) = H1cz +H2 (ckkz + ckρ) +H4kz +H5 = 0

is a quadratic system of four equations on four unknowns: ck, cz, kk, and kz.

• All of them equivalent.

• Why quadratic? Stable and unstable manifold.

Solving the System III
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• Also, note that:

Fσ (k, 0; 0) = H1cσ +H2 (ckkσ + cσ) +H4kσ +H6 = 0

is a linear, and homogeneous system in cσ and kσ.

• Hence:

cσ = kσ = 0

• This means the system is certainty equivalent.

4.12 Prunning

Although the higher-order approximations that we just describe are intuitive and straightfor-

ward to compute, they often generate explosive sample paths even when the corresponding

linear approximation is stable. These explosive sample paths arise because the higher-order

terms induce additional fixed points for the system, around which the approximated solution

is unstable (see ? and ? for illustrative examples). The presence of explosive behavior com-

plicates any model evaluation because no unconditional moments would exist based on this

approximation. It also means that any unconditional moment-matching estimation methods,

such as the generalized method of moments (GMM) or the simulated method of moments

(SMM), are inapplicable in this context as they rely on finite moments from stationary and

ergodic probability distributions.

4.13 Change of Variables

Here we can cite the idea of changing variables (Fernández-Villaverde and Rubio-Ramı́rez,

2006). Instead of writing a Taylor expansion in terms of a variable x:

f (x) ' f (a) + f ′ (a) (x− a) +H.O.T.

we can write it in terms of a transformed variable Y (x):

g (y) = h (f (X (y))) = g (b) + g′ (b) (Y (x)− b) +H.O.T.

where b = Y (a) and X (y) is the inverse of Y (x). By picking the right change of variables,

we can significantly increase the accuracy of the perturbation. A common example of change
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of variables (although rarely thought of in this way) is to loglinearize instead of linearizing

in levels.

A first order perturbation produces an approximated policy function in levels of the

form:6

(k′ − k0) = a1 (k − k0) + b1z

(l − l0) = c1 (k − k0) + d1z

where k and z are the current states of the economy, l0 is steady state value for labor

and where for convenience we have dropped the subscript p where no ambiguity exists.7

Analogously a loglinear approximation of the policy function will take the form:

log k′ − log k0 = a2 (log k − log k0) + b2z

log l − log l0 = c2 (log k − log k0) + d2z

or in equivalent notation:

k̂′ = a2k̂ + b2z

l̂ = c2k̂ + d2z

where x̂ = log x − log x0 is the percentage deviation of the variable x with respect to its

steady state.

How do we go from one approximation to the second one? First we follow Judd’s (2003)

notation and write the linear system in levels as:

k′p(k, z, σ) = f 1(k, z, σ) = f 1 (k0, 0, 0) + f 1
1 (k0, 0, 0) (k − k0) + f 1

2 (k0, 0, 0) z

lp(k, z, σ) = f 2(k, z, σ) = f 2 (k0, 0, 0) + f 2
1 (k0, 0, 0) (k − k0) + f 2

2 (k0, 0, 0) z

where:

6See Uhlig (1999) for details. Remember that this solution is the same as the one generated by a Linear

Quadratic approximation of the utility function (Kydland and Prescott, 1982), the Eigenvalue Decomposition

(Blanchard and Kahn, 1980 and King, Plosser and Rebelo, 2002), Generalized Schur Decomposition (Klein,

2000) or the QZ decomposition (Sims, 2002b) among others. Subject to applicability, all methods need to

find the same policy functions since the linear space approximating a nonlinear space is unique.
7It can be shown that the coefficients on σ are zero in the first order perturbation.
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f 1 (k0, 0, 0) = k0 f 1
1 (k0, 0, 0) = a1 f 1

2 (k0, 0, 0) = b1

f 2 (k0, 0, 0) = l0 f 2
1 (k0, 0, 0) = c1 f 2

2 (k0, 0, 0) = d1

Second we propose the changes of variables:

h1 = log f 1 Y 1 (x) = log x1 X1 = exp y1

h2 = log f 2 Y 2 = x2 X2 = y2

Judd’s (2003) formulae for this particular example imply:(
log k′ (log k, z)

log l (log k, z)

)
= g (log k, z) =

(
log f 1 (k0, 0, 0)

log f 2 (k0, 0, 0)

)
+

(
log k − log k0 z − z0

log k − log k0 z − z0

)
1
k0

(
f 1

1 (k0, 0, 0) f 1
2 (k0, 0, 0)

)( k0

1

)
1
l0

(
f 2

1 (k0, 0, 0) f 2
2 (k0, 0, 0)

)( k0

1

)
 ,

and thus:

log k′ − log k0 = f 1
1 (k0, 0, 0) (log k − log k0) +

1

k0

f 1
2 (k0, 0, 0) z

log l − log l0 =
k0

l0
f 2

1 (k0, 0, 0) (log k − log k0) +
1

l0
f 2

2 (k0, 0, 0) z

We equating coefficients we obtain a nice and simple closed-form relation between the

parameters of both representations:8

8An alternative heuristic argument that delivers the same result is as follows. Take the system

(k′ − k0) = a1 (k − k0) + b1z

(l − l0) = c1 (k − k0) + d1z

and divide on both sides by the steady state value of the control variable:

k′ − k0
k0

= a1
k − k0
k0

+
1

k0
b1z

l − l0
l0

= c1
k − k0
l0

+
1

l0
d1z

and noticing that x′−x0

x0
' log x− log x0 we get back the same relation that the one presented in the paper.

Of course our argument is more general and does not depend on an additional approximation.
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a2 = a1 b2 = 1
k0
b1

c2 = k0
l0
c1 d2 = 1

l0
d1

Note that we have not used any assumption on the utility or production functions except

that they satisfy the general technical conditions of the neoclassical growth model. Also

moving from one coefficient set to the other one is an operation that only involves k0 and l0,

values that we need to find anyway to compute the linearized version in levels. Therefore,

once you have the linear solution, obtaining the loglinear one is immediate.

4.14 The Optimal Change of Variables

In the last section we showed how to find a loglinear approximation to the solution of the

neoclassical growth model directly from its linear representation. Now we use the same

approach to generalize our result to encompass the relationship between any power function

approximation and the linear coefficients of the policy function. Also we search for the

optimal change of variable inside this class of power functions and we report how the Euler

equation errors improve with respect to the linear representation.

Before we argued that some practitioners have defended the use of loglinearizations to

capture some of the nonlinearities in the data. This practice can be push one step ahead.

We can generalize the log function into a general class of power function of the form:

k′p (k, z; γ, ζ, µ, ϕ)γ − kγ0 = a3

(
kζ − kζ0

)
+ b3z

ϕ

lp (k, z; γ, ζ, µ, ϕ)µ − lµ0 = c3

(
kζ − kζ0

)
+ d3z

ϕ

with ϕ ≥ 1. The last constraint assures that we will have real values for the power zϕ.

This class of functions is attractive because it provides a lot of flexibility in shapes

with few free parameters while including the log transformation as the limit case when the

coefficients γ, ζ and µ tend to zero and ϕ is equal to 1. Also a similar power function with

only two parameters is proposed by Judd (2003) in a simple optimal growth model without

leisure and stochastic perturbations. His finding of notable improvements in the accuracy

of the solution when he optimally selects the value of these parameters is suggestive of the

advantages of using this parametric family.

The changes of variables for this family of functions are given by :
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h1 = (f 1)
γ

Y 1 = (x1)
ζ

X1 = (y1)
1
ζ

h2 = (f 1)
µ

Y2 = (x2)
ϕ

X2 = (y2)
1
ϕ

Following the same reasoning than in the previous section we derive a form for the system

in term of the original coefficients:

k′p (k, z; γ, ζ, µ, ϕ)γ − kγ0 =
γ

ζ
kγ−ζ0 a1

(
kζ − kζ0

)
+
γ

ϕ
kγ−1

0 b1z
ϕ

lp (k, z; γ, ζ, µ, ϕ)µ − lµ0 =
µ

ζ
lµ−1
0 k1−ζ

0 c1

(
kζ − kζ0

)
+
µ

ϕ
lµ−1
0 d1z

ϕ

Therefore, the relation of between the new and the old coefficients is again very simple to

compute:

a3 = γ
ζ
kγ−ζ0 a1 b3 = γ

ϕ
kγ−1

0 b1

c3 = µ
ζ
lµ−1
0 k1−ζ

0 c1 d3 = µ
ϕ
lµ−1
0 d1

As we pointed out before when γ, ζ and µ tend to zero and ϕ is equal to 1 we get back

the transformation derived in the previous section to move from the linear into the loglinear

solution of the model.

4.15 Perturbing the Value Function

• We worked with the equilibrium conditions of the model.

• Sometimes we may want to perform a perturbation on the value function formulation

of the problem.

• Possible reasons:

1. Gain insight.

2. Difficulty in using equilibrium conditions.

3. Evaluate welfare.

4. Initial guess for VFI.

• More general point: we can perturb any operator problem that we find useful.
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Basic Problem

• Imagine that we have:

V (kt, zt) = max
ct

[
(1− β)

c1−γ
t

1− γ
+ βEtV (kt+1, zt+1)

]
s.t. ct + kt+1 = eztkθt + (1− δ) kt
zt = λzt−1 + σεt, εt ∼ N (0, 1)

• Write it as:

V (kt, zt;χ) = max
ct

[
(1− β)

c1−γ
t

1− γ
+ βEtV (kt+1, zt+1;χ)

]
s.t. ct + kt+1 = eztkθt + (1− δ) kt
zt = λzt−1 + χσεt, εt ∼ N (0, 1)

Alternative

• Another way to write the value function is:

V (kt, zt;χ) =

max
ct

[
(1− β)

c1−γt

1−γ +

βEtV
(
eztkθt + (1− δ) kt − ct, λzt + χσεt+1;χ

) ]
• This form makes the dependences in the next period states explicit.

• The solution of this problem is value function V (kt, zt;χ) and a policy function for

consumption c (kt, zt;χ).

Expanding the Value Function

The second-order Taylor approximation of the value function around the deterministic

steady state (kss, 0; 0) is:

V (kt, zt;χ) '

Vss + V1,ss (kt − kss) + V2,sszt + V3,ssχ

+
1

2
V11,ss (kt − kss)2 +

1

2
V12,ss (kt − kss) zt +

1

2
V13,ss (kt − kss)χ

+
1

2
V21,sszt (kt − kss) +

1

2
V22,ssz

2
t +

1

2
V23,ssztχ

+
1

2
V31,ssχ (kt − kss) +

1

2
V32,ssχzt +

1

2
V33,ssχ

2



Fernandez-Villaverde, Rubio-Ramirez, Schorfheide: This Version April 7, 2015 38

where

Vss = V (kss, 0; 0)

Vi,ss = Vi (kss, 0; 0) for i = {1, 2, 3}

Vij,ss = Vij (kss, 0; 0) for i, j = {1, 2, 3}

• By certainty equivalence, we will show below that:

V3,ss = V13,ss = V23,ss = 0

• Taking advantage of the equality of cross-derivatives, and setting χ = 1, which is just

a normalization:

V (kt, zt; 1) ' Vss + V1,ss (kt − kss) + V2,sszt

+
1

2
V11,ss (kt − kss)2 +

1

2
V22,ssz

2
tt

+V12,ss (kt − kss) z +
1

2
V33,ss

• Note that V33,ss 6= 0, a difference from the standard linear-quadratic approximation to

the utility functions.

Expanding the Consumption Function

• The policy function for consumption can be expanded as:

ct = c (kt, zt;χ) ' css + c1,ss (kt − kss) + c2,sszt + c3,ssχ

where:

c1,ss = c1 (kss, 0; 0)

c2,ss = c2 (kss, 0; 0)

c3,ss = c3 (kss, 0; 0)

• Since the first derivatives of the consumption function only depend on the first and

second derivatives of the value function, we must have that c3,ss = 0 (precautionary

consumption depends on the third derivative of the value function, Kimball, 1990).
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Linear Components of the Value Function

• To find the linear approximation to the value function, we take derivatives of the value

function with respect to controls (ct), states (kt, zt), and the perturbation parameter

χ.

• Notation:

1. Vi,t: derivative of the value function with respect to its i-th argument, evaluated

in (kt, zt;χ) .

2. Vi,ss: derivative evaluated in the steady state, (kss, 0; 0).

3. We follow the same notation for higher-order (cross-) derivatives.

Derivatives

• Derivative with respect to ct:

(1− β) c−γt − βEtV1,t+1 = 0

• Derivative with respect to kt:

V1,t = βEtV1,t+1

(
θeztkθ−1

t + 1− δ
)

• Derivative with respect to zt:

V2,t = βEt
[
V1,t+1e

ztkθt + V2,t+1λ
]

• Derivative with respect to χ:

V3,t = βEt [V2,t+1σεt+1 + V3,t+1]

• In the last three derivatives, we apply the envelope theorem to eliminate the derivatives

of consumption with respect to kt, zt, and χ.
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System of Equations I

Now, we have the system:

ct + kt+1 = eztkθt + (1− δ) kt

V (kt, zt;χ) = (1− β)
c1−γ
t

1− γ
+ βEtV (kt+1, zt+1;χ)

(1− β) c−γt − βEtV1,t+1 = 0

V1,t = βEtV1,t+1

(
θeztkθ−1

t + 1− δ
)

V2,t = βEt
[
V1,t+1e

ztkθt + V2,t+1λ
]

V3,t = βEt [V2,t+1σεt+1 + V3,t+1]

zt = λzt−1 + χσεt

If we set χ = 0 and compute the steady state, we get a system of six equations on six

unknowns, css, kss, Vss, V1,ss, V2,ss, and V3,ss:

css + δkss = kθss

Vss = (1− β)
c1−γ
ss

1− γ
+ βVss

(1− β) c−γss − βV1,ss = 0

V1,ss = βV1,ss

(
θkθ−1

ss + 1− δ
)

V2,ss = β
[
V1,ssk

θ
ss + V2,ssλ

]
V3,ss = βV3,ss

• From the last equation: V3,ss = 0.

• From the second equation: Vss = c1−γss

1−γ .

• From the third equation: V1,ss = 1−β
β
c−γss .

• After cancelling redundant terms:

css + δkss = kθss

1 = β
(
θkθ−1

ss + 1− δ
)

V2,ss = β
[
V1,ssk

θ
ss + V2,ssλ

]
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• Then:

kss =

[
1

θ

(
1

β
− 1 + δ

)] 1
θ−1

css = kθss − δkss

V2,ss =
1− β

1− βλ
kθssc

−γ
ss

• V1,ss > 0 and V2,ss > 0, as predicted by theory.

Quadratic Components of the Value Function

From the previous derivations, we have:

(1− β) c (kt, zt;χ)−γ − βEtV1,t+1 = 0

V1,t = βEtV1,t+1

(
θeztkθ−1

t + 1− δ
)

V2,t = βEt
[
V1,t+1e

ztkθt + V2,t+1λ
]

V3,t = βEt [V2,t+1σεt+1 + V3,t+1]

where:

kt+1 = eztkθt + (1− δ) kt − c (kt, zt;χ)

zt = λzt−1 + χσεt, εt ∼ N (0, 1)

• We will now take derivatives of each of the four equations with respect to kt, zt, and χ.

• We will take advantage of the equality of cross derivatives.

• The envelope theorem does not hold anymore (we are taking derivatives of the deriva-

tives of the value function).

First Equation I

We have:

(1− β) c (kt, zt;χ)−γ − βEtV1,t+1 = 0
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• Derivative with respect to kt:

− (1− β) γc (kt, zt;χ)−γ−1 c1,t

−βEt
[
V11,t+1

(
eztθkθ−1

t + 1− δ − c1,t

)]
= 0

In steady state:(
βV11,ss − (1− β) γc−γ−1

ss

)
c1,ss = β

[
V11,ss

(
θkθ−1

ss + 1− δ
)]

or

c1,ss =
V11,ss

βV11,ss − (1− β) γc−γ−1
ss

where we have used that 1 = β
(
θkθ−1

ss + 1− δ
)
.

• Derivative with respect to zt:

− (1− β) γc (kt, zt;χ)−γ−1 c2,t

−βEt
(
V11,t+1

(
eztkθt − c2,t

)
+ V12,t+1λ

)
= 0

In steady state: (
βV11,ss − (1− β) γc−γ−1

ss

)
c2,ss = β

(
V11,ssk

θ
t + V12,ssλ

)
or

c2,ss =
β

βV11,ss − (1− β) γc−γ−1
ss

(
V11,ssk

θ
ss + V12,ssλ

)
• Derivative with respect to χ:

− (1− β) γc (kt, zt;χ)−γ−1 c3,t

−βEt (−V11,t+1c3,t + V12,t+1σεt+1 + V13,t+1) = 0

In steady state: (
βV11,ss − (1− β) γc−γ−1

ss

)
c3,ss = βV13,ss

or

c3,ss =
β(

βV11,ss − (1− β) γc−γ−1
ss

)V13,ss
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Second Equation I

We have:

V1,t = βEtV1,t+1

(
θeztkθ−1

t + 1− δ
)

• Derivative with respect to kt:

V11,t = βEt

[
V11,t+1

(
θeztkθ−1

t + 1− δ − c1,t

) (
θeztkθ−1

t + 1− δ
)

+V1,t+1θ (θ − 1) eztkθ−2
t

]
In steady state:

V11,ss =

[
V11,ss

(
1

β
− c1,ss

)
+ βV1,ssθ (θ − 1) kθ−2

ss

]
or

V11,ss =
β

1− 1
β

+ c1,ss

V1,ssθ (θ − 1) kθ−2
ss

• Derivative with respect to zt:

V12,t = βEt

[
V11,t+1

(
eztkθt − c2,t

) (
θeztkθ−1

t + 1− δ
)

+V12,t+1λ
(
θeztkθ−1

t + 1− δ
)

+ V1,t+1θe
ztkθ−1

t

]
In steady state:

V12,ss = V11,ss

(
kθss − c2,ss

)
+ V12,ssλ+ βV1,ssθk

θ−1
t

or

V12,ss =
1

1− λ
[
V11,ss

(
kθss − c2,ss

)
+ βV1,ssθk

θ−1
ss

]
• Derivative with respect to χ:

V13,t = βEt [−V11,t+1c3,t + V12,t+1σεt+1 + V13,t+1]

In steady state,

V13,ss = β [−V11,ssc3,ss + V13,ss]⇒

V13,ss =
β

β − 1
V11,ssc3,ss

but since we know that:

c3,ss =
β(

βV11,ss − (1− β) γc−γ−1
ss

)V13,ss

the two equations can only hold simultaneously if V13,ss = c3,ss = 0.
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Third Equation I

We have

V2,t = βEt
[
V1,t+1e

ztkθt + V2,t+1λ
]

• Derivative with respect to zt:

V22,t = βEt

[
V11,t+1

(
eztkθt − c2,t

)
eztkθt + V12,t+1λe

ztkθt

+V1,t+1e
ztkθt + V21,t+1λ

(
eztkθt − c2,t

)
+ V22,t+1λ

2

]

In steady state:

V22,t = β

[
V11,ss

(
kθt − c2,ss

)
kθss + V12,ssλk

θ
ss + V1,ssk

θ
ss

+V21,ssλ
(
kθss − c2,ss

)
+ V22,ssλ

2

]
⇒

V22,ss =
β

1− βλ2

[
V11,ss

(
kθt − c2,ss

)
kθss + 2V12,ssλk

θ
ss

+V1,ssk
θ
ss − V12,ssλc2,ss

]

where we have used V12,ss = V21,ss.

• Derivative with respect to χ:

V23,t = βEt

[
−V11,t+1e

ztkθt c3,t + V12,t+1e
ztkθt σεt+1 + V13,t+1e

ztkθt

−V21,t+1λc3,t + V22,t+1λσεt+1 + V23,t+1λ

]

In steady state:

V23,ss = 0

Fourth Equation

We have

V3,t = βEt [V2,t+1σεt+1 + V3,t+1] .

• Derivative with respect to χ:

V33,t = βEt

[
−V21,t+1c3,tσεt+1 + V22,t+1σ

2ε2
t+1 + V23,t+1σεt+1

−V31,t+1c3,t + V32,t+1σεt+1 + V33,t+1

]
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In steady state:

V33,ss =
β

1− β
V22,ss

System I

c1,ss =
V11,ss

βV11,ss − (1− β) γc−γ−1
ss

c2,ss =
β

βV11,ss − (1− β) γc−γ−1
ss

(
V11,ssk

θ
ss + V12,ssλ

)
V11,ss =

β

1− 1
β

+ c1,ss

V1,ssθ (θ − 1) kθ−2
ss

V12,ss =
1

1− λ
[
V11,ss

(
kθss − c2,ss

)
+ βV1,ssθk

θ−1
ss

]
V22,ss =

β

1− βλ2

[
V11,ss

(
kθt − c2,ss

)
kθss + 2V12,ssλk

θ
ss

+V1,ssk
θ
ss − V12,ssλc2,ss

]

V33,ss =
β

1− β
σ2V22,ss

plus c3,ss = V13,ss = V23,ss = 0.

System II

• This is a system of nonlinear equations.

• However, it has a recursive structure.

• By substituting variables that we already know, we can find V11,ss.

• Then, using this results and by plugging c2,ss, we have a system of two equations, on

two unknowns, V12,ss and V22,ss.

• Once the system is solved, we can find c1,ss, c2,ss, and V33,ss directly.

The Welfare Cost of the Business Cycle

• An advantage of performing the perturbation on the value function is that we have

evaluation of welfare readily available.
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• Note that at the deterministic steady state, we have:

V (kss, 0;χ) ' Vss +
1

2
V33,ss

• Hence 1
2
V33,ss is a measure of the welfare cost of the business cycle.

• Note that this quantity is not necessarily negative. Indeed, it may well be positive in

many models, like in a RBC with leisure choice. See Cho and Cooley (2000).

Our Example

• We know that Vss = c1−γss

1−γ .

• Then, we can compute the decrease in consumption τ that will make the household

indifferent between consuming (1− τ) css units per period with certainty or ct units

with uncertainty.

• To do so, note that:

c1−γ
ss

1− γ
+

1

2
V33,ss =

(css (1− τ))1−γ

1− γ
⇒(

(1− τ)1−γ − 1
)
c1−γ
ss = (1− γ)

1

2
V33,ss

or

τ = 1−
[
1 +

1− γ
c1−γ
ss

1

2
V33,ss

] 1
1−γ

A Numerical Example

• We pick standard parameter values by setting

β = 0.99, γ = 2, δ = 0.0294, θ = 0.3, andλ = 0.95.

• Then, we get:

V (kt, zt; 1) ' −0.54000 + 0.00295 (kt − kss) + 0.11684zt

−0.00007 (kt − kss)2 − 0.00985z2
t

−0.97508σ2 − 0.00225 (kt − kss) zt
c (kt, zt;χ) ' 1.85193 + 0.04220 (kt − kss) + 0.74318zt
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• DYNARE produces the same policy function by linearizing the equilibrium conditions

of the problem.

• Also, the consumption equivalent of the welfare cost of the business cycle is 8.8475e-

005, even lower than Lucas’ (1987) original computation because of the smoothing

possibilities implied by the presence of capital.

• Use as an initial guess for VFI.

5 Projection

We move now to explore projection, the second class of solution methods that we will cover

in this chapter. Projection methods solve the functional equations of the form:

H (d) = 0

by specifying

dj (x, θ) =

j∑
i=0

θiΨi (x) (19)

that is, by building a linear combination of basis function Ψi (x) given coefficients θi. Note

that we are building linear combinations, but that more general non-linear alternatives:

dj (x, θ) = f (Ψi (x) , θ)

for a known function f (·, θ) are possible. However, the theory for more general approxima-

tions are less well developed than the one with linear combinations and, in any case, it is

probably more pedagogical to start with the linear combination case. The fact that we are

handling linear combinations also means that, in general, we will have with the same number

of coefficients θi than basis functions Ψi (x).

Inspection of equation (19) reveals that, to build the function dj (x, θ), we need to pick

a basis {Ψi (x)}∞i=0 and “project” H (·) against that basis to find the θi’s. Different choices

of the basis function and on the projection metric will imply different projection methods,

often known in the literature with their own names.

Basic Algorithm of projection goes is:
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1. Define j known linearly independent functions ψi : Ω → Rm where n < ∞. We call

the ψ1 (·) , ψ2 (·) , ..., ψn (·) the basis functions.

2. Define a vector of coefficients θ = [θ1, θ2, ..., θn].

3. Define a combination of the basis functions and the θ’s:

dj ( ·| θ) =

j∑
i=0

θiψn (·)

4. Plug dn ( ·| θ) into H (·) to find the residual equation:

R ( ·| θ) = H (dn ( ·| θ))

5. Find the value of θ̂ that make the residual equation as close to 0 as possible given some

objective function ρ : J1 × J1 → J2:

θ̂ = arg min
θ∈<n

ρ (R ( ·| θ) ,0)

5.1 Relation with Econometrics

• Looks a lot like OLS. Explore this similarity later in more detail.

• Also with semi-nonparametric methods as Sieves.

• Compare with:

1. Policy iteration.

2. Parameterized Expectations.

Two Issues

We need to decide:

1. Which basis we use?

(a) Pick a global basis⇒spectral methods.

(b) Pick a local basis⇒finite elements methods.

2. How do we “project”?

Different choices in 1 and 2 will result in slightly different projection methods.
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5.2 Spectral Techniques

Spectral techniques were introduced in economics by Judd (19992). Spectral techniques use

basis functions that are nonzero and smooth almost everywhere in Ω. The main advantage of

this class of basis functions is their simplicity: building and working with the approximation

would be particularly simple. The main disadvantage of spectral basis is that they would

have a hard time capturing local behavior. Gibbs phenomenon.

5.2.1 Spectral Basis

We introduce now some of the spectral basis. First, we will deal with the unidimensional

case where there is only one state variable. In the next subsection, we will deal with the

more general case of an arbitrary number of state variables.

5.3 Monomials

A first possible basis is the monomials c, x, x2, x3, ...Monomials are simple and intuitive.

Furthermore, even if this basis is not composed by orthogonal functions, if J1 is the space

of bounded measurable functions on a compact set, the Stone-Weierstrass theorem assures

completeness of our approximation in the L1 norm.

Unfortunately, monomials suffer from two severe problems. First, monomials are (nearly)

multicollinear. To illustrate this point, we plot in figure x, the graphs of x10 with x11 for

x ∈ [0.5, 1.5]. In the figure we can see how the both functions have a very similar shape. As

we add higher monomials, the new components of the solution do not allow to significantly

diminish the distance between the exact function we want to approximate and the computed

approximation.9

The second problem of monomials, which we can also see in figure x, is that they vary

considerably in size, leading to scaling problems and accumulation of numerical errors.

9A simple case where this problem is particularly clear is when the operator H (·) is linear. In that

situation, the solution of the projection involves inversion of matrices. When the basis functions are similar,

the condition number of these matrices (the ratio of the largest and smallest absolute eigenvalues) are too

high. Just the six first monomials can generate conditions numbers of 1010. In fact, the matrix of the least

square problem of fitting a polynomial of degree 6 to a function (the Hilbert Matrix ), is a popular test of

numerical accuracy since it maximizes rounding errors.
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The problem of monomials illustrate that we want to search for an orthogonal basis

that has a bounded variation in range. Orthogonality will imply that, when we add a new

element of the basis to the approximation (i.e., when we go from order j to order j+ 1), the

newest element brings a sufficiently different behavior as to capture features of the unknown

function d not well approximated before.

5.4 Trigonometric series

A second possible basis is the trigonometric series

1/ (2π)0.5 , cosx/ (2π)0.5 , sinx/ (2π)0.5 , ...,

cos kx/ (2π)0.5 , sin kx/ (2π)0.5 , ...

Trigonometric series are particularly well-suited to approximate periodic functions. Un-

fortunately, economic problems are rarely periodic. Furthermore, the periodic approxima-

tions to nonperiodic functions suffer from the Gibbs phenomenon, requiring many terms to

achieve good numerical performance (the rate of convergence to the true solution as n→∞
is only O (n)).

5.5 Orthoghonal polynomials of Jacobi type

Orthoghonal polynomials of Jacobi (also known as hypergeometric) type are a flexible class.

The Jacobi polynomial of degree n, Pα,β
n (x) for α, β > −1, is defined by the orthogonality

condition of the form:∫ 1

−1

(1− x)α (1 + x)β Pα,β
n (x)Pα,β

m (x) dx = 0 for m 6= n

One particular advantage of this class of polynomials is that we have a large number of

alternative expressions for them. The orthogonality condition implies, with the customary

normalizations:

Pα,β
n (1) =

(
n+ α

n

)
,
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that the general n term is given by:

2−n
n∑
k=0

(
n+ α

k

)(
n+ β

n− k

)
(x− 1)n−k (x+ 1)k

Recursively:

2 (n+ 1) (n+ α + β + 1) (2n+ α + β)Pn+1 =(
(2n+ α + β + 1) (α2 − β2)

+ (2n+ α + β) (2n+ α + β + 1) (2n+ α + β + 2)x

)
Pn

−2 (n+ α) (n+ β) (2n+ α + β + 2)Pn−1

The two most important cases of Jacobi polynomials are the Legendre, where α = β =

−1
2
, and the Chebyshev: α = β = 0.

5.6 Chebyshev Polynomials

Chebyshev polynomials are one of the most common tools of applied mathematics. See,

for example, Boyd (2001) and Fornberg (1998). Their popularity is easily explained if we

consider their advantages:

1. Numerous simple close-form expressions for the Chebyshev polynomials are available.

Thus, the researcher can easily move from one representation to another according to

her convenience. We will present several of them below.

2. The change between the coefficients of a Chebyshev expansion of a function and the

values of the function at the Chebyshev nodes are quickly performed by the cosine

transform.

3. Chebyshev polynomials are more robust than their alternatives for interpolation.

4. Chebyshev polynomials are bounded between [−1, 1] while Legendre polynomials are

not, offering a better performance close to the boundaries of the problems.

5. Chebyshev polynomials are smooth functions.

6. Several theorems bound the errors for Chebyshev polynomials interpolations.
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We have a number of alternative ways to define Chebyshev polynomials. The most

common definition is recursive, with T0 (x) = 1, T1 (x) = x, and the general n + 1-th order

polynomial given by:

Tn+1 (x) = 2xTn (x)− Tn−1 (x)

Applying this recursive definition, the first few polynomials are then 1, x, 2x2 − 1,

4x3− 3x, 8x4− 8x2 + 1, etc... In figure x, we plot the Chebysev polynomials of order 0 to 5.

The n zeros of the polynomial Tn (xk) = 0 are given by:

xk = cos
2k − 1

2n
π, k = 1, ..., n.

The fact that the Chebyshev polynomials of order n has n zeros will be useful below. Also,

note that this zeros are clustered quadratically towards ±1.

As we mentioned above, there is number of explicit and equivalent definitions for the

Chebyshev polynomials:

Tn (x) = cos (n arccosx)

=
1

2

(
zn +

1

zn

)
where

1

2

(
z +

1

z

)
= x

=
1

2

((
x+

(
x2 − 1

)0.5
)n

+
(
x−

(
x2 − 1

)0.5
)n)

=
1

2

[n/2]∑
k=0

(−1)k
(n− k − 1)!

k! (n− 2k)!
(2x)n−2k

=
(−1)n π0.5

2nΓ
(
n+ 1

2

) (1− x2
)0.5 dn

dxn

((
1− x2

)n− 1
2

)
A few remarks deserve to be highlighted. First, the domain of the Chebyshev polyno-

mials is [−1, 1]. Since our state space is, in general, different, we use a linear translation

from [a, b] into [−1, 1] :

2
x− a
b− a

− 1.

Second, the Chebyshev polynomials are orthogonal with respect to the weight function:

1

(1− x2)0.5 .

Chebyshev Interpolation Theorem: If an approximating function is exact at the roots

of the nth1 order Chebyshev polynomial then, as n1 →∞, the approximation error becomes

arbitrarily small.
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5.6.1 Multidimensional Problems

• Chebyshev polynomials are defined on [−1, 1].

• However, most problems in economics are multidimensional.

• How do we generalize the basis?

• Curse of dimensionality.

5.7 Tensors

• Assume we want to approximate F : [−1, 1]d → R.

• Let Tj denote the Chebyshev polynomial of degree j = 0, 1, .., κ.

• We can approximate F with tensor product of Chebyshev polynomials of degree κ:

F̂ (x) =
κ∑

n1=0

. . .
κ∑

nd=0

ξn1,...,ndTn1(x1) · · ·Tnd(xd)

• Beyond simplicity, an advantage of the tensor basis is that if the one-dimensional basis

is orthogonal in a norm, the tensor basis is orthogonal in the product norm.

• Disadvantage: number of elements increases exponentially. We end up having terms

xκ1x
κ
2 · · ·xκd , total number of (κ+ 1)d.

5.8 Complete Polynomials

• Solution: eliminate some elements of the tensor in such a way that there is not much

numerical degradation.

• Judd and Gaspar (1997): Use complete polynomials instead

Pdκ ≡

{
xi11 · · · x

id
d with

d∑
l=1

il ≤ κ, 0 ≤ i1, ..., id

}

• Advantage: much smaller number of terms, no terms of order dκ to evaluate.

• Disadvantage: still too many elements.
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5.9 Smolyak’s Algorithm

• Define m1 = 1 and mi = 2i−1 + 1, i = 2, ....

• Define Gi = {xi1, ..., ximi} ⊂ [−1, 1] as the set of the extrema of the Chebyshev polyno-

mials

xij = −cos
(
π(j − 1)

mi − 1

)
j = 1, ...,mi

with G1 = {0}. It is crucial that Gi ⊂ Gi+1, ∀i = 1, 2, . . .

• Example:

i = 1,mi = 1,Gi = {0}

i = 2,mi = 3,Gi = {−1, 0, 1}

i = 3,mi = 5,Gi = {−1,− cos
(π

4

)
, 0,− cos

(
3π

4

)
, 1}

• For q > d, define a sparse grid

H(q, d) =
⋃

q−d+1≤|i|≤q

(Gi1 × ...× Gid),

where |i| = i1 +. . .+id. The number q defines the size of the grid and thus the precision

of the approximation.

• For example, let q = d+ 2 = 5:

H(5, 3) =
⋃

3≤|i|≤5

(Gi1 × ...× Gid).

G3 × G1 × G1, G1 × G3 × G1, G1 × G1 × G3

G2 × G2 × G1, G2 × G1 × G2, G1 × G2 × G2

G2 × G1 × G1, G1 × G2 × G1, G1 × G1 × G2

G1 × G1 × G1

• Number of points for q = d+ 2

1 + 4d+ 4
d(d− 1)

2
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• Largest number of points along one dimension

i = q − d+ 1

mi = 2q−d + 1

• Rectangular grid [
2q−d + 1

]d
• Key: with rectangular grid, the number of grid points increases exponentially in the

number of dimensions. With the Smolyak algorithm number of points increases poly-

nomially in the number of dimensions.

Size of the Grid for q = d+ 2

d 2q−d + 1 #H(q, d)
[
2q−d + 1

]d
2 5 13 25

3 5 25 125

4 5 41 625

5 5 61 3, 125

12 5 313 244, 140, 625

• For one dimension denote the interpolating Chebyshev polynomials as

U i(xi) =

mi∑
j=1

ξijTj(x
i)

and the d-dimensional tensor product by U i1 ⊗ ...⊗ U id(x).

• For q > d, approximating function (Smolyak’s algorithm) given by

A(q, d)(x) =
∑

q−d+1≤|i|≤q

(−1)q−|i|

(
d− 1

q − |i|

)
(U i1 ⊗ . . .⊗ U id)(x)

• Method is (almost) optimal within the set of polynomial approximations (Barthelmann,

Novak and Ritter, 1999).

• Method is universal, that is, almost optimal for many different function spaces.
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Boyd’s Moral Principal

1. When in doubt, use Chebyshev polynomials unless the solution is spatially periodic,

in which case an ordinary Fourier series is better.

2. Unless you are sure another set of basis functions is better, use Chebyshev polynomials.

3. Unless you are really, really sure another set of basis functions is better, use Chebyshev

polynomials.

5.10 Finite Elements

• Standard Reference: McGrattan (1999).

• Bound the domain Ω in small of the state variables.

• Partition Ω in small in nonintersecting elements.

• These small sections are called elements.

• The boundaries of the elements are called nodes.

Partition into Elements

• Elements may be of unequal size.

• We can have small elements in the areas of Ω where the economy will spend most of

the time while just a few, big size elements will cover wide areas of the state space

infrequently visited.

• Also, through elements, we can easily handle issues like kinks or constraints.

• There is a whole area of research concentrated on the optimal generation of an element

grid. See Thomson, Warsi, and Mastin (1985).

Structure

• Choose a basis for the policy functions in each element.
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• Since the elements are small, a linear basis is often good enough:

ψi (k) =


x−xi−1

xi−xi−1
if x ∈ [xi−1, xi]

xi+1−x
xi+1−xi if k ∈ [xi, xi+1]

0 elsewhere

• Plug the policy function in the Equilibrium Conditions and find the unknown coeffi-

cients.

• Paste it together to ensure continuity.

• Why is this an smart strategy?

• Advantages: we will need to invert an sparse matrix.

• When should be choose this strategy? speed of computation versus accuracy.

The literature distinguish among three different refinements:

1. h-refinement : this scheme subdivides each element into smaller elements to improve

resolution uniformly over the domain.

2. r-refinement : this scheme subdivides each element only in those regions where there

are high nonlinearities.

3. p-refinement : this scheme increases the order of the approximation in each element. If

the order of the expansion is high enough, we will generate in that way an hybrid of

finite and spectral methods knows as spectral elements.

5.11 Choosing the Objective Function

• The most common answer to the second question is given by a weighted residual.

• That is why often projection methods are also called weighted residual methods

• This set of techniques propose to get the residual close to 0 in the weighted integral

sense.
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• Given some weight functions φi : Ω→ Rm:

ρ (R ( ·| θ) ,0) =

{
0 if

∫
Ω
φi (x)R ( ·| θ) dx = 0, i = 0, .., n

1 otherwise

• Then the problem is to choose the θ that solve the system of equations:∫
Ω

φi (x)R ( ·| θ) dx = 0, i = 0, .., n

Remarks

• With the approximation of d by some functions ψi and the definition of some weight

functions φi (·), we have transform a rather intractable functional equation problem

into the standard nonlinear equations system!

• The solution of this system can be found using standard methods, as a Newton for

relatively small problems or a conjugate gradient for bigger ones.

• Issue: we have different choices for an weight function:

5.12 Weight Function I: Least Squares

• φi (x) = ∂R(x|θ)
∂θi

.

• This choice is motivated by the solution of the variational problem:

min
θ

∫
Ω

R2 ( ·| θ) dx

with first order condition:∫
Ω

∂R (x| θ)
∂θi

R ( ·| θ) dx = 0, i = 0, .., n

• Variational problem is mathematically equivalent to a standard regression problem in

econometrics.

• OLS or NLLS are regression against a manifold spanned by the observations.

• Least Squares always generates symmetric matrices even if the operator H is not self-

adjoint.
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• Symmetric matrices are convenient theoretically (they simplify the proofs) and com-

putationally (there are algorithms that exploit their structure to increase speed and

decrease memory requirements).

• However, least squares may lead to ill-conditioning and systems of equations compli-

cated to solve numerically.

5.13 Weight Function II: Subdomain

• We divide the domain Ω in n subdomains Ωi and define the n step functions:

φi (x) =

{
1 if x ∈ Ωi

0 otherwise

• This choice is then equivalent to solve the system:∫
Ωi

R ( ·| θ) dx = 0, i = 0, .., n

5.14 Weight Function III: Moments

• Take {0, x, x2, ..., xn−1} and compute the first n periods of the residual function:∫
Ωi

xiR ( ·| θ) dx = 0, i = 0, .., n

• This approach, widely used in engineering works well for a low n (2 or 3).

• However, for higher orders, its numerical performance is very low: high orders of x are

highly collinear and arise serious rounding error problems.

• Hence, moments are to be avoided as weight functions.

Weight Function III: Collocation or Pseudospectral or Method of Selected Points

• φi (x) = δ (x− xi) where δ is the dirac delta function and xi are the collocation points.

• This method implies that the residual function is zero at the n collocation points.
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• Simple to compute since the integral only needs to be evaluated in one point. Specially

attractive when dealing with strong nonlinearities.

• A systematic way to pick collocation points is to use a density function:

µγ (x) =
Γ
(

3
2
− γ
)

(1− x2)γ π
1
2 Γ (1− γ)

γ < 1

and find the collocation points as the xj, j = 0, ..., n solutions to:∫ xj

−1

µγ (x) dx =
j

n

• For γ = 0, the density function implies equispaced points.

Weight Function IV: Orthogonal Collocation

• Variation of the collocation method:

1. Basis functions are a set of orthogonal polynomials.

2. Collocation points given by the roots of the n− th polynomial.

• When we use Chebyshev polynomials, their roots are the collocation points implied by

µ 1
2

(x) and their clustering can be shown to be optimal as n→∞.

• Surprisingly good performance of orthogonal collocation methods.

5.15 Weight Function V: Galerkin or Rayleigh-Ritz

• φi (x) = ψi (x) with a linear approximating function
∑n

i=0 θiψi (x).

• Then: ∫
Ω

ψi (x)H

(
n∑
i=0

θiψi (x)

)
dx = 0, i = 0, .., n

that is, the residual has to be orthogonal to each of the basis functions.

• Galerkin is a highly accurate and robust but difficult to code.
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• If the basis functions are complete over J1 (they are indeed a basis of the space), then

the Galerkin solution will converge pointwise to the true solution as n goes to infinity:

lim
n→∞

n∑
i=0

θiψi (·) = d (·)

• Experience suggests that a Galerkin approximation of order n is as accurate as a

Pseudospectral n+ 1 or n+ 2 expansion.

6 Which Methods to Use?

Description of trade-offs....

7 Analysis of Error

A key step in every numerical solution of a DSGE model is to assess the error created by

the approximation, that is, the difference between the exact and the approximated solution.

This may seem a challenging task since the exact solution is unknown. However, different

methods have been proposed to evaluate the error.

• As with projection, it is important to study the Euler equation errors.

Once we know we can improve errors:

• 1. Adding additional functions in the basis.

2. Refine the elements.

• Multigrid schemes.
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8 Parallel Programming

• Moore’s Law (1965): transistor density of semiconductor chips would double roughly

every 18 months.

• Problems when transistor size falls by a factor x:

1. Electricity consumption goes up by x4.

2. Heat goes up.

3. Manufacturing costs go up.

• Inherent limits on serial machines imposed by the speed of light (30 cm/nanosecond)

and transmission limit of copper wire (9 cm/nanosecond): virtually impossible to build

a serial Teraflop machine with current approach.

• Furthermore, real bottleneck is often memory access (RAM latency has only improved

around 10% a year).

• Alternative: having more processors!

• Main idea⇒divide and conquer:

1. Numerical computation.

2. Data handling (MapReduce and Hadoop).

• Two issues:

1. Algorithms.

2. Coding.

3.

When do we parallelize?

• Scalability:

1. Strongly scalable: problems that are inherently easy to parallelize.
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2. Weakly scalable: problems that are not.

• Granularity:

1. Coarse: more computation than communication.

2. Fine: more communication.

• Overheads and load balancing.

• Whether or not the problem is easy to parallelize may depend on the way you set it

up.

• Taking advantage of your architecture.

• Trade off between speed up and coding time.

• Debugging and profiling may be challenging.

• You will need a good IDE, debugger, and profiler.

8.1 Example I: value function iteration

V (k) = max
k′
{u (c) + βV (k′)}

c = kα + (1− δ) k − k′

1. We have a grid of capital with 100 points, k ∈ [k1, k2, ..., k100] .

2. We have a current guess V n (k) .

3. We can send the problem:

max
k′
{u (c) + βV n (k′)}

c = kα1 + (1− δ) k1 − k′

to processor 1 to get V n+1 (k1) .

4. We can send similar problem for each k to each processor.

5. When all processors are done, we gather the V n+1 (k1) back.
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8.2 Example II: random walk Metropolis-Hastings

• Get a draw from an arbitrary distribution P (·)

θ ∼ P (·)

• How?

1. Given a state of the chain θn−1, we generate a proposal:

θ∗ = θn−1 + λε, ε ∼ N (0, 1)

2. We compute:

α = min

{
1,

P (θ∗)

P (θn−1)

}
3. We set:

θn = θ∗ w.p. α

θn = θn−1 w.p. 1− α

• Problem: to generate θ∗ we need to θn−1.

• No obvious fix (parallel chains violate the asymptotic properties of the chain).

• Limitations

• Amdahl’s Law: the speedup of a program using multiple processors in parallel com-

puting is limited by the time needed for the sequential fraction of the program.

• Overheads:

1. Cost of starting a thread or process.

2. Cost of communicating shared data.

3. Cost of synchronizing.

• Load imbalance: often we use less than 10% of capability of a machine.

• ENDOFJESUS: 10160 words.
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9 Confronting DSGE Models with Data

9.1 A Simple DSGE Model and Its Solution

Throughout the second part of this chapter we consider a simplified New Keynesian DSGE

model in its log-linearized form. This model shares many of the features of its more realistic

siblings that have been estimated in the literature. It is a stripped down version of the

model developed in the work by Christiano, Eichenbaum, and Evans (2005) and Smets and

Wouters (2003). The specific version presented below is taken from Del Negro, Schorfheide,

Smets, and Wouters (2007) and obtained by imposing a several parameter restrictions. As

is, the model presented below is not suitable to be confronted with actual data, but it can

be solved analytically, which is tremendously useful for discussing estimation and inference.

We subsequently provide a brief summary of the model that focuses on the key equilibrium

conditions.

The model economy consists of households, intermediate goods producers, final goods

producers, a monetary policy authority, and a fiscal authority. Macroeconomic fluctuations

are driven by four exogenous processes: a technology growth shock, zt, a shock that generates

shifts in the preference for leisure, φt, a price markup shock, λt, and a monetary policy shock

εR,t. We will derive a law of motion for aggregate output Xt, real wages Wt, gross inflation

πt, and a gross nominal interest rate Rt. We assume that productivity Zt in the economy is

evolving exogenously according to a random walk with drift:

lnZt = ln γ + lnZt−1 + zt, zt = ρzzt−1 + σzεz,t (20)

The productivity process Zt induces a stochastic trend in output and real wages. To facilitate

the model solution, it is useful to introduce the detrended variables xt = Xt/Zt and wt =

Wt/Zt. In terms of the detrended variables, the model has the following steady state:

x = x∗, w = lsh =
1

1 + λ
, π = π∗, R = π∗

γ

β
. (21)

Here X∗ and π∗ are free parameters. The latter can be interpreted as the central bank’s

target inflation rate, whereas the former can in principle be derived from the weight on leisure

in the households’ utility function. The parameter λ can be interpreted as the steady-state

markup charged by the monopolistically competitive intermediate goods producers, β is the

discount factor of the households, and γ was the growth rate of technology. Under the
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assumption that the production technology is linear in labor and labor is the only factor of

production, the steady state labor share equals the steady state of detrended wages.

We now present the equilibrium conditions in log-linearized form. Let x̂ = ln(xt/x),

ŵt = ln(wt/w), π̂t = ln(πt/π), and R̂t = ln(Rt/R). We assume that labor is the only factor

of production and that all output is consumed. The consumption Euler equation of the

households takes the form

x̂t = Et+1[x̂t+1]−
(
R̂t − E[π̂t+1]

)
+ Et[zt+1]. (22)

The expected technology growth rate arises because the Euler equation is written in terms

of output in deviations from the stochastic trend induced by Zt. Assuming the absence

of nominal wage rigidities, the intratemporal Euler equation for the households leads the

following labor supply equation:

ŵt = (1 + ν)x̂t + φt, (23)

where ŵt is the real wage, 1/(1 + ν) is the Frisch labor supply elasticity, x̂t is proportional

to hours worked, and φt is an exogenous labor supply shifter

φt = ρφφt−1 + σφεφ,t. (24)

The intermediate goods producers hire labor from the household and produce differ-

entiated products, indexed by j, using a linear technology of the form Xt(j) = ZtLt(j).

After detrending and log-linearization around steady state aggregate output, the production

function becomes

x̂t(j) = L̂t(j). (25)

Nominal price rigidity is introduced via the Calvo mechanism. In each period firm j is unable

to re-optimize its nominal price with probability ζp. In this case the firm simply adjusts its

price from the previous period by the steady state inflation rate. With probability 1 − ζp,
the firm can choose its price to maximize the expected sum of future profits. The inter-

mediate goods are purchased and converted into an aggregate good Xt by a collection of

perfectly competitive final goods producers using a constant-elasticity-of-substitution aggre-

gator. The optimality conditions for the two types of firms can be combined to the so-called

New Keynesian Phillips curve, which can be expressed as

π̂t = βEt[π̂t+1] + κp(ŵt + λt), κp =
(1− ζpβ)(1− ζp)

ζp
, (26)
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where β is the households’ discount factor and λt can be interpreted as a price mark-up

shock, which exogenously evolves according to

λt = ρλλt−1 + σλελ,t. (27)

It is possibe to derive an aggregate resource constraint that relates the total amount of labor

Lt hired by the intermediate goods producers to the total aggregate output Xt produced

in the economy. Based on this aggregate resource constraint, it is possible to compute the

labor share of income, which, in terms of deviations from steady state is given by

l̂sht = ŵt. (28)

Finally, the central bank sets the nominal interest rate according to the feedback rule

R̂t = ψπ̂t + σRεR,t ψ = 1/β. (29)

We abstract from interest rate smoothing and the fact that central banks typically also

react to some measure of real activity, e.g., the gap between actual output and potential

output. The shock εR,t is an unanticipated deviation from the systematic part of the interest

rate feedback rule and called monetary policy shock. We assume that ψ = 1/β, which

ensures the existence of a unique stable solution to the system of linear rational expectations

difference equations and, as will become apparent below, simplifies the solution of the model

considerably. The fiscal authority determines the level of debt and lump sum taxes such that

the government budget constraint is satisfied.

To solve the model, first eliminate the nominal interest rate from the consumption Euler

equation using (29):

x̂t = Et+1[x̂t+1]−
(

1

β
πt + σRεR,t − E[π̂t+1]

)
+ Et[zt+1]. (30)

Now notice that the New Keynesian Phillips curve can be rewritten as

1

β
π̂t − Et[π̂t+1] =

κp
β

(
(1 + ν)x̂t + φt + λt). (31)

Here we replaced wages ŵt by the right-hand-side of (23). Substituting (31) into (30) and

rearranging terms leads to the following expectational difference equation for output x̂t

x̂t = ψpE[x̂t+1]− κpψp
β

(φt + λt) + ψpEt[zt+1]− ψpσRεR,t, (32)
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where 0 ≤ ψp ≤ 1 is given by

ψp =

(
1 +

κp
β(1 + ν)

)−1

.

Solving the expectational difference equation forward yields

x̂t = −ψpσRεR,t +
∞∑
j=0

ψjpEt
[
−κpψp

β
(φt+j + λt+j) + ψpzt+1+j

]
. (33)

Using the laws of motion of the exogenous shock processes in (20), (24), and (27), and

assuming that the innovations εt are Martingale difference sequences, we deduce that output

in percentage deviations from steady state evolves according to

x̂t = − κpψp/β

1− ψpρφ
φt −

κpψp/β

1− ψpρλ
λt +

ρzψp
1− ψpρz

zt − ψpσRεR,t. (34)

After having determined the law of motion for output, we now solve for wages, inflation,

and nominal interest rates. Using (23) and (28) we deduce that the labor share is determined

according to

l̂sht =

[
1− (1 + ν)κpψp/β

1− ψpρφ

]
φt −

(1 + ν)κpψp/β

1− ψpρλ
λt +

(1 + ν)ρzψp
1− ψpρz

zt − (1 + ν)ψpσRεR,t. (35)

To obtain the law of motion of inflation, we have to solve the New Keynesian Phillips

curve (26) forward:

π̂t =
∞∑
j=0

βjκpEt[l̂sht+j + λt+j]. (36)

Using (27) and (35) to evaluate the conditional expectations in (36), we obtain

π̂t =

[
1− (1 + ν)κpψp/β

1− ψpρφ

]
κp

1− βρφ
φt +

[
1− (1 + ν)κpψp/β

1− ψpρλ

]
κp

1− βρλ
λt (37)

+
κp(1 + ν)ρzψp

(1− ψpρz)(1− βρz)
zt − κp(1 + ν)ψpσRεR,t.

Finally, combining (38) with the monetary policy rule (29) yields the solution for the nominal

interest rate

R̂t =
1

β

[
1− (1 + ν)κpψp/β

1− ψpρφ

]
κp

1− βρφ
φt +

1

β

[
1− (1 + ν)κpψp/β

1− ψpρλ

]
κp

1− βρλ
λt (38)

+
κp(1 + ν)ρzψp

β(1− ψpρz)(1− βρz)
zt + (1− κp(1 + ν)ψp/β)σRεR,t.
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The DSGE model solution for the detrended variables comprises (34), (35), (38), and (39).

To confront the model with data, one has to account for the presence of the model-implied

stochastic trend in aggregate output and to add the steady states to all model variables. If

the observables consist of output growth, the labor share, net inflation rates and net interest

rates, then the measurement equations take the form

ln(Xt/Xt−1) = x̂t − x̂t−1 + zt + ln γ (39)

ln(lsht) = l̂sht + ln(lsh)

lnπt = π̂t + ln π∗

lnRt = R̂t + ln(π∗γ/β)

The DSGE model solution has the form of a generic state space model. Define the vector of

state variables st as

st = [φt, λt, zt, εR,t, x̂t−1]′

and the vector of DSGE model parameters

θ = [β, γ, λ, π∗, ζp, ν, ρφ, ρλ, ρz, σφ, σλ, σz, σR]′. (40)

For now we omitted the steady state output x∗ from the list of parameters because it does

not affect the law of motion of output growth. Using this notation, we can express the state

transition equation as

st = Φ1(θ)st−1 + Φε(θ)εt, (41)

where εt = [εφ,t, ελ,t, εz,t, εR,t]
′. The coefficient matrices Φ1(θ) and Φε(θ) are determined

by (20), (24), (27), the identity εR,t = εR,t, and a lagged version of (34). If we define the

vector of observables as

yt = M ′
y[ln(Xt/Xt−1), ln lsht, ln πt, lnRt]

′, (42)

where M ′
y is a matrix that selects rows of the vector [ln(Xt/Xt−1), ln lsht, lnπt, lnRt]

′ then

the measurement equation can be written as

yt = Ψ0(θ) + Ψ1(θ)st. (43)

The coefficient matrices Ψ0(θ) and Ψ1(θ) can be obtained from (39), the equilibrium law

of motion for the detrended model variables given by (34), (35), (38), and (39). They are

summarized in Table 1.
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Table 1: System Matrics for DSGE Model

State space representation:

yt = Ψ0(θ) + Ψ1(θ)st

st = Φ1(θ)st−1 + Φε(θ)εt

System matrices:

Φ0(θ) = M ′y


ln γ

ln(lsh)

lnπ∗

ln(π∗γ/β)

 , Φx̂φ =
κpψp/β

1− ψpρφ
, Φx̂λ =

κpψp/β

1− ψpρλ
, Φx̂z =

ρzψp
1− ψpρz

Φ1(θ) = M ′y


−Φx̂φ −Φx̂λ Φx̂z + 1 −ψp −1

1− (1 + ν)Φx̂φ −(1 + ν)Φx̂λ (1 + ν)Φx̂z −(1 + ν)ψp 0

(1− (1 + ν)Φx̂φ)
κp

1−βρφ (1− (1 + ν)Φx̂λ)
κp

1−βρλ (1 + ν)Φx̂z
κp

1−βρz −κp(1 + ν)ψp 0

(1− (1 + ν)Φx̂φ)
κp/β
1−βρφ (1− (1 + ν)Φx̂λ)

κp/β
1−βρλ (1 + ν)Φx̂z

κp/β
1−βρz (1− κp(1 + ν)ψp/β) 0



Ψ1(θ) =



ρφ 0 0 0 0

0 ρλ 0 0 0

0 0 ρz 0 0

0 0 0 0 0

−Φx̂φ −Φx̂λ Φx̂z −ψp 0


, ψε(θ) =



σφ 0 0 0

0 σλ 0 0

0 0 σz 0

0 0 0 σR

0 0 0 0


M ′y is a ny × 4 selection matrix that selects rows of Φ0 and Φ1.

The state-space representation of the DSGE model given by (41) and (43) provide the

basis for the subsequent econometric analysis. We conclude this section with four remarks.

First, it is useful to distinguish economic state variables, namely φt,λt, zt, and εR,t, that

are relevant for the agents’ intertemporal optimization problems, from the econometric state

variables st, which are used to cast the DSGE model solution into the state-space form

given by (41) and (43). The economic state variables of our simple model are all exogenous.

A richer DSGE model typically includes endogenous variables such as the capital stock or

lagged inflation and interest rates as additional state variables. Second, output growth in the

measurement equation could be replaced by the level of output. This would require adding

x∗ to the parameter vector θ, eliminating x̂t−1 from st, adding lnZt/γ
t to st, and accounting
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Table 2: DSGE Model Parameters Used for Illustration

Parameter Value Parameter Value

β 1/1.01 γ exp(0.005)

λ 0.15 π∗ exp(0.005)

ζp 0.65 ν 0

ρφ 0.94 ρλ 0.88

ρz 0.13

σφ 0.01 σλ 0.01

σz 0.01 σr 0.01

for the deterministing trend component (ln γ)t in log output in the measurement equation.

Third, the measurement equation (43) could be augmented by measurement errors. Fourth,

if the DSGE model is solved with a nonlinear solution techniques, then, depending on how

exactly the state vector st is defined, the state-transition equation (41), the measurement

equation (43), or both are nonlinear. We will discuss how the various econometric procedures

need to be adjusted for the presence of nonlinearities throughout the subsequent sections.

9.2 Model Implications

Once we specify a distribution for the vector εt the probability distribution of the DSGE

model variables is fully determined. For the sake of concreteness, we assume for now that

εt ∼ iidN(0, I), (44)

where I denotes the identity matrix. Recall that the innovation standard deviations were

absorbed into the definition of the matrix Φε(θ) in (43). Based on the probabilistic structure

of the DSGE model we can derive a number of implications from the DSGE model that can

later on be used to construct estimators of the parameter vector θ and evaluate the fit of the

model.
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9.2.1 Autocovariances and Forecast Error Variances

DSGE models are widely used for business cycle analysis. In this regard, the model-implied

variances, autocorrelations, and cross correlations are important objects. For linear DSGE

models it is straightforward to compute the autocovariance function from the state-space

representation given by (41) and (43). We will assume that the largest (in absolute value)

eigenvalue of the matrix Φ1(θ) in (41) is less than one. It can be verified that this assumption

is consistent with commonly imposed restrictions on the DSGE model parameters:

0 ≤ β < 1, κ > 0, 1 + ν ≥ 0, 0 ≤ ρφ < 1, 0 ≤ ρλ < 1, 0 ≤ ρz < 1.

This implies that the VAR(1) law of motion for st is covariance stationary (provided the

innovation sequence is covariance stationary and the process has been initialized in the

infinite past). Using the notation

Γyy(h) = E[ytyt−h], Γss(h) = E[stst−h], Γys(h) = E[yts
′
t−h], and E[εtε

′
t] = Σε,

we can express the autocovariance matrix of st as the solution to the following Riccati

equation:10

Γss(0) = Φ1Γss(0)Φ′1 + ΦεΦ
′
ε. (45)

Here we used E[εtε
′
t] = I, see (44). Once the covariance matrix of st has been determined, it

is straightforward to compute the autocovariance matrices for h 6= 0 according to

Γss(h) = Φh
1Γss(0). (46)

Finally, using the measurement equation 43, we deduce that

Γyy(h) = Ψ1Γss(h)Ψ′1, Γys(h) = Ψ1Γss(h). (47)

Correlations can be easily computed by normalizing the entries of the autocovariance matri-

ces using the respective standard deviations.

Illustration: Figure 1 shows the model-implied autocorrelation function of output growth

and the cross-correlations of output growth with the labor share, inflation, and interest rates.

*** Elaborate ***

10Efficient numerical routines to solve Riccati equations are readily available in many software packages
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Figure 1: Autocorrelations

Corr
(

ln(Xt/Xt−1), ln(Xt−h/Xt−h−1)
)

Corr
(

ln(Xt/Xt−1), lnZt−h
)

Notes: y-axis: autocorrelation; x-axis displacement h.

The law of motion for the state vector st can also be expressed as the infinite-order vector

moving average (MA) process

yt = Ψ0 + Ψ1

∞∑
s=0

Φs
1Φεεt−s. (48)

Based on the moving average representation, it is straightforward to compute the h-step

ahead forecast error, which is given by

et|t−h = yt − Et−s[yt] = Ψ1

h−1∑
s=0

Φs
1Φεεt−s. (49)

The h-step ahead forecast error covariance matrix is given by

E[et|t−he
′
t|t−h] = Ψ1

(
h−1∑
s=0

Φs
1ΦεΦ

′
εΦ

s′

1

)
Ψ′1 with lim

h−→∞
E[et|t−he

′
t|t−h] = Γss(0). (50)

Provided that the innovations εt are uncorrelated, it is possible to decompose the forecast

error covariance matrix as follows. Let I(j) be defined by setting all but the j’th diagonal

element of the I to zero. Then we can write

I =
nε∑
i=1

I(i). (51)
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Moreover, we can express the contribution of shock j to the forecast error for yt as

e
(j)
t|t−h = Ψ1

h−1∑
s=0

Φs
1ΦεI

(j)εt−s. (52)

Thus, the contribution of shock j to the forecast error variance of observation yi,t is given

by the ratio

FEVD(i, j, h) =

[
Ψ1

(∑h−1
s=0 Φs

1ΦεI(j)Φ
′
εΦ

s′
1

)
Ψ′1

]
ii[

Ψ1

(∑h−1
s=0 Φs

1ΦεΦ′εΦ
s′
1

)
Ψ′1

]
ii

, (53)

where [A]ij denotes element (i, j) of a matrix A.

Illustration. Figure 2 shows the contribution of the four shocks to the forecast error variance

of output growth, the labor share, inflation, and interest rates. *** elaborate ***

9.2.2 Spectrum

The analysis of the forecast error covariance matrix over different horizons h highlights

that the uncertainty about macroeconomic outcomes implied by DSGE models varies with

the horizon. Moreover, it is conceivable that some of the structural shocks are important

over short horizons, whereas others are more important over long horizons. *** provide some

references on spectral analysis *** Before providing a general formula for the spectral density

function for a DSGE model, we provide a brief discussion of the linear cyclical model, which

will be useful for interpreting some of the formulas presented below.

Suppose that yt is a scalar time series that follows the process

yt = 2
m∑
j=1

aj
(

cos θj cos(ωjt)− sin θj sin(ωjt)
)
, (54)

where θj ∼ iidU [−π, π] and 0 ≤ ωj ≤ ωj+1 ≤ π. The random variables θj are determined

in the infinite past and cause a phase shift of the cycle. In a nutshell, the model in (54)

expresses the variable yt as the sum of sine and cosine waves that differ in their frequency.

The interpretation of the ωj’s depends on the length of the period t. Suppose, the model

is designed for quarterly data and ωj = (2π)/32. This means that it takes 32 periods to

complete the cycle. Business cycles are typically comprised of cycles that have a duration of

8 to 32 quarters, which would correspond to ωj ∈ [0.196, 0.785] for quarterly t.
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Figure 2: Forecast Error Variance Decomposition

Output Growth ln(Xt/Xt−1) Labor Share ln lsht

Inflation ln πt Interest Rates lnRt

Notes: For each panel: plot ”stacked bar plot” that captures the forecast error variance

decomposition. Green is φt, pink is λt, black is zt, blue is εR,t.

Using Euler’s formula, we rewrite the cyclical model in terms of an exponential function.

This alternative representation is less intuitive but mathematically more convenient.

yt =
m∑

j=−m

A(ωj)e
iωjt, (55)

where ω−j = −ωj and i =
√
−1. Let a−j = aj and

A(ωj) =

{
aj(cos θ|j| + i sin θ|j|) if j > 0

aj(cos θ|j| − i sin θ|j|) if j < 0
. (56)
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It can be verified that expressions (54) and (55) are identical by showing that

A(ωj)e
iωjt + A(ω−j)e

−iωjt = 2 [aj cos θj cos(ωjt)− aj sin θj sin(ωjt)] (57)

for j = 1, . . . ,m.

The spectral distribution function of yt on the interval ω ∈ (−π, π] is defined as

Fyy(ω) =
m∑

j=−m

E[A(ωj)A(ωj)]I{ωj ≤ ω}, (58)

where I{ωj ≤ ω} denotes the indicator function that is one if ωj ≤ ω and z̄ = x− iy is the

complex conjugate of z = x + iy. If Fyy(ω) is differentiable with respect to ω, then we can

define the spectral density function as

fyy(ω) = dFyy(ω)dω. (59)

If a process has a spectral density function syy(ω) then the covariances can be expressed as

Γyy(h) =

∫
(−π,π]

eihωfyy(ω)dω. (60)

For the linear cyclical model in (54) the spectral It can also be shown that the autovariances

are given by

Γyy(h) =
m∑

j=−m

E[A(ωj)A(ωj)]e
iωjh =

m∑
j=−m

a2
je
iωjh. (61)

The spectral density uniquely determines the entire sequence of autocovariances. Moreover,

the converse is also true. The spectral density can be obtained by evaluating the autocovari-

ance generating function of yt at z = e−iω:

fyy(ω) =
1

2π

∞∑
h=−∞

Γyy(h)e−iωh.

The formulas presented for a scalar process yt have a straightforward extension to the

vector case. Recall that for our DSGE model defined by the state-space system (41) and (43)

the autocovariance function for the state vector st was defined as Γss(h) = Φh
1Γss(0). Thus,

fss(ω) =
1

2π

∞∑
h=−∞

Φh
1Γyy(0)e−iωh (62)

=
1

2π

(
I − Φ′1e

iω
)−1

ΦεΦ
′
ε

(
I − Φ1e

−iω)−1
.
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The contribution of shock j to the spectral density is given by

f (j)
ss (ω) =

1

2π

(
I − Φ′1e

iω
)−1

ΦεI(j)Φ′ε
(
I − Φ1e

−iω)−1
. (63)

The spectral density for the observables yt (and the contribution of shock j to the spectral

density) can be easily obtained as

fyy(ω) = Ψ1fss(ω)Ψ′1 and f (j)
yy (ω) = Ψ1f

(j)
ss (ω)Ψ′1. (64)

Illustration: Figure 3 depicts the DSGE model-implied spectral density functions for output

growth, the labor share, inflation, and interest rates. Each panel stacks the contributions of

the four shocks to the spectral densities. *** elaborate ***

9.2.3 Impulse Response Functions

An important tool for studying the effects of innovations to exogenous shocks onto the

endogenous DSGE model variables and the observables yt are impulse response functions.

Formally, impulse responses in a DSGE model can be defined as the difference between two

conditional expectations:

IRF(i, j, h) = E
[
yi,t+h

∣∣ st−1, εj,t+1 = 1
]
− E

[
yi,t+h

∣∣ st−1,
]
. (65)

Both expectations are conditional on the initial state st−1 and integrate over current and

future realizations of the shocks εt. However, the first term also conditions on εj,t = 1,

whereas the second term averages of εj,t. In a linearized DSGE model with a state space

representation of the form (41) and (43), we can use the linearity and the property that

E[εt+h|st−1] = 0 for h = 0, 1, . . . to deduce that

IRF(., j, h) = Ψ1
∂

∂εj,t
st+h = Ψ1Φh

1 [Φε].j, (66)

where [A].j is the j’th column of matrix A.

Illustration: Figure 4 depicts the impulse response function of log output to the four

structural shocks. *** elaborate ***
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Figure 3: Spectral Decomposition

Output Growth Labor Share

Inflation Interest Rates

Notes: For each panel: plot ”stacked lines plot” that capture the cumulative contribution

of the shocks to the spectral density. Top line should correspond to total spectral density,

bottom line to contribution of shock 1 to spectral density. Basically, a line version of the

stacked bar plot.

9.2.4 Conditional Moment Restrictions

The intertemporal optimality conditions take the form of conditional moment restrictions.

For instance, re-arranging the terms in the New Keynesian Phillips (26) curve a bit, we can

write

Et−1

[
π̂t−1 − βπ̂t − κp(l̂sht−1 + λt−1)

]
= 0. (67)
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Figure 4: Impulse Responses of Output Growth 100 ln(Xt/Xt−1)

Preference φt Mark-Up λt

Techn. Growth zt Monetary Policy εR,t

Notes:

The conditional moment condition can be converted into an unconditional moment con-

dition as follows. Let Ft denote the sigma algebra generated by the infinite histories of

{yτ , sτ , ετ}tτ=−∞ and let zt *** this is bad notation because zt is technology growth *** be a

random variable that is measurable with respect to Ft, meaning that its value is determined

based on information on current and past (yt, st, εt). Then for every such zt,

E
[
zt
(
π̂t−1−βπ̂t−κp(l̂sht−1 +λt−1)

)]
= E

[
ztEt−1

[
π̂t−1−βπ̂t−κp(l̂sht−1 +λt−1)

]]
= 0. (68)

The moment condition derived from the New Keynesian Phillips curve involves the latent

price markup shock λt, which will cause difficulties if one tries to use the condition in a
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estimation objective function. Now consider the Euler equation (22) instead. Recall from

the definition of detrended output in deviations from its steady state

x̂t − x̂t−1 + zt+1 = lnXt − lnXt−1 − ln γ.

Thus, we can write

Et−1

[
− ln(Xt/Xt−1) + lnRt−1 − lnπt − ln(1/β)

]
= 0. (69)

The terms γ and lnπ∗ that appear in the steady state formulas for the nominal interest rate

and inflation cancel and the conditional moment condition only depends on observables and

the model parameters, but not on latent variables. Finally, as long as the monetary policy

shock satisfies the martingale difference sequences property Et−1[εR,t] = 0, we obtain from

the monetary policy rule the condition that

Et−1

[
lnRt − ln(γ/β)− ψ lnπt − (1− ψ) lnπ∗] = 0. (70)

9.2.5 Analytical Calculation of Moments versus Simulation Approximations

• In linearized DSGE models with Gaussian innovations we can compute the autocovari-

ance function and impulse response functions directly from the state-space representa-

tion of the DSGE model.

• In DSGE models solved with perturbation methods the moments can also be computed

analytically. See Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez (2013)

• In general nonlinear DSGE models the moments have to be computed by simulation.

If the moment as a function of the parameter is of interest, then fixing the random

seed may be useful.

9.3 Empirical Analogues

Our goal is to confront the DSGE model with observed macroeconomic data to determine

suitable numerical values for the parameter vector θ and to assess the fit of the model.

We previously provided a characterization of the joint distribution of observable and latent

model variables denoted by p(Y1:T , S1:T |θ). Based on this distribution we computed various
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moments, including autocovariances, the spectrum, and impulse response functions. Con-

fronting the DSGE model with data can essentially take two forms. If it is reasonable to

assume that the probabilistic structure of the DSGE model is well specified, then one can ask

how far the observed data Y o
1:T or sample statistics S(Y o

1:T ) computed from the observed data

far into the tails of the model-implied distribution derived from p(Y1:T |θ). The parameter

vector θ can be chosen to ensure that the density (likelihood) of S(Y o
1:T ) is high under the

distribution p(Y1:T |θ). If, on the other hand, there is strong believe (possibly supported by

empirical evidence) that the probabilistic structure of the DSGE model is not rich enough to

capture the salient features of the observed data, it is more sensible to consider a reference

model with a well-specified probabilistic structure, use it to estimate some of the population

objects introduced in Section 9.2 and compare these estimates to their model counterparts.

Before delving into the intricacies of econometric inference, we discuss some of the sample

analogues of the population objects introduced in Section 9.2.

All data was downloaded from FRED, and we record the series name in parentheses.

For Output, we use quarterly, seasonally adjusted GDP at the annual rate that has been

pegged to 2009 dollars (GDPC96). We turn GDP into growth rates by taking logs and

then differencing. For Labor Share, we use Compensation of Employees (COE) divided by

nominal GDP (GDP), both of which are quarterly and seasonally adjusted at the annual

rate. We use the log labor share as the observable. For Inflation, we use the implicit price

deflator (GDPDEF), which is seasonally adjusted. We also use growth rates for the deflator,

and again we turn it from levels into growth rates by taking log differences. Lastly, for the

interest rate, we use the Effective Federal Funds Rate (FEDFUNDS), which is monthly, and

not seasonally adjusted. To turn the series quarterly, we take the average.

9.3.1 Autocovariances

The sample analogue of the population autocovariance Γyy(h) is defined as

Γ̂yy(h) =
1

T

T∑
t=h

(yt − µ̂y)(yt−h − µ̂y)′, where µ̂y =
1

T

T∑
t=1

yt. (71)

Under suitable regularity conditions, which include the ergodicity and stationarity of the

vector process yt, the sufficiently fast decay of the serial correlation in yt, and some bounds
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on higher-order moments of yt, the sample autocovariance Γ̂yy(h) converges to the population

autocovariance Γyy(h) and satisfies a central limit theorem (CLT).

If the object of interest is the autocovariance function for h = 0, . . . , H, then it might be

more efficient to obtain these estimates indirectly by first estimating an auxiliary model and

then converting the parameter estimates of the auxiliary model into estimates of the auto-

covariance. A natural class of auxiliary models is provided by linear vector autoregressions

(VARs). For illustrative purposes consider the following VAR(1):

yt = Φ1yt−1 + Φ0 + ut, ut ∼ iid(0,Σ). (72)

Using the Frisch-Waugh-Lovell Theorem, we can approximate the OLS estimator of Φ1 by

Φ̂1 = Γ̂yy(1)
(
Γ̂yy(0)

)−1
+Op(T

−1), Σ̂ = Γ̂yy(0)− Γ̂yy(1)
(
Γ̂yy(0)

)−1
Γ̂′yy(1) +Op(T

−1) (73)

The Op(T
−1) terms arise because the range of the summations in the definition of the sample

autocovariances in (71) and the definition of the OLS estimator are not exactly the same.

Suppose now, we plug the OLS estimator into the autocovariance formulas associated with

the VAR(1), see (45) and (46), then, up to an Op(T
−1) term, we recover the sample au-

tocovariances for h = 0 and use Φ̂h
1 Γ̂yy(0) as an estimate of the autocovariance of order

h:

Γ̂Vyy(0) = Γ̂yy(0) +Op(T
−1), Γ̂Vyy(h) =

(
Γ̂yy(1)

(
Γ̂yy(0)

)−1
)h

Γ̂yy(0) +Op(T
−1). (74)

Note that for h = 1 we obtain Γ̂Vyy(1) = Γ̂yy(1) + Op(T
−1). For h > 1 the VAR(1) plug-in

estimate of the autocovariance matrix differs from the sample autocovariance matrix. If

the actual time series are well approximated by a VAR(1), then the plug-in autocovariance

estimate tends to be more efficient than the direct sample autocovariance estimate. A formal

analysis in the context of multi-step forecasting is provided by Schorfheide (2005b).

In practice, a VAR(1) may be insufficient to capture the dynamics of a time series yt. In

this case the autocovariances can be obtained from a VAR(p)

yt = Φ1yt−1 + . . .+ Φpyt−p + Φ0 + ut, ut ∼ iid(0,Σ). (75)

The appropriate lag length p could be determined with a model selection criterion, e.g., the

Schwarz (1978) criterion. The notationally easiest way (but not the computationally fastest
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Figure 5: Empirical Crosscorrelations

Sample Correlations VAR Implied Correlations

way) is to rewrite the VAR(p) in companion form. This entails expressing the law of motion

for the stacked vector ỹt = [y′t, y
′
t−1, . . . , y

′
t−p+1] as VAR(1):

ỹt = Φ̃1ỹt−1 + Φ̃0 + ũt, ũt ∼ iid(0, Σ̃), (76)

where

Φ̃1 =


Φ1 . . . Φp−1 Φp

In×n . . . 0n×n 0n×n
...

. . .
...

...

0n×n . . . In×n 0n×n

 , Φ̃0 =

[
Φ0

0n(p−1)×1

]
,

ε̃t =

[
εt

0n(p−1)×1

]
, Σ̃ =

[
Σ 0n×n(p−1)

0n(p−1)×n 0n(p−1)×n(p−1)

]
.

The autocovariances for ỹt are then obtained by adjusting the VAR(1) formulas (74) to ỹt

and reading off the desired submatrices that correspond to the autocovariance matrices for

yt using the selection matrix M ′ = [In, 0n×n(p−1)] such that yt = M ′ỹt.

Illustration: We estimate a VAR for output growth, labor share, inflation, and interest

rates, based on a sample from 1984:Q1 to 2007:Q4. The lag length p = 1 is determined by

BIC. Figure 5 shows sample cross correlations between output growth and leads and lags of

the other three variables as well as correlations derived from the estimated VAR.
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9.3.2 Spectrum

An intuitively plausible estimate of the spectrum is the sample periodogram, defined as

f̂yy(ω) =
1

2π

T−1∑
h=−T+1

Γ̂yy(h)e−iωh =
1

2π

(
Γ̂yy(0) +

T−1∑
h=1

(Γ̂yy(h) + Γ̂yy(h)′) cosωh

)
. (77)

While the sample periodogram is an asymptotically unbiased estimator of the population

spectral density, it is inconsistent because its variance does not vanish as the sample size

T −→ ∞. A consistent estimator can be obtained by smoothing the sample periodogram

across adjacent frequencies. Define the fundamental frequencies

ωj = j
2π

T
, j = 1, . . . , (T − 1)/2

and let K(x) denote a kernel function with the property that
∫
K(x)dx = 1. A smoothed

periodogram can be defined as

f̄yy(ω) =
π

λ(T − 1)/2

(T−1)/2∑
j=1

K

(
ωj − ω
λ

)
f̂yy(ωj). (78)

An example of a kernel function is

K

(
ωj − ω
λ

)
f̂yy(ωj) = I

{
−1

2
<
ωj − ω
λ

<
1

2

}
= I
{
ωj ∈ B(ω|λ)

}
,

where B(ω|λ) is a frequency band. The smoothed periodogram estimator f̄yy(ω) is consistent,

provided that the bandwidth shrinks to zero, that is, λ −→ 0 as T −→ ∞, and the number

of ωj’s in the band, given by λT (2π), tends to infinity.

An estimate of the spectral density can also be obtained indirectly through the estimation

of the VAR(p) in (75). Define

Φ = [Φ1, . . . ,Φp,Φ0]′ and M(z) = [Iz, . . . , Izp],

and let Φ̂ be an estimator of Φ. Then a VAR(p) plug-in estimator of the spectral density is

given by

f̂Vyy(ω) =
1

2π
[I − Φ̂′M ′(e−iω)]−1Σ̂[I −M(e−iω)Φ̂]−1. (79)

This formula generalizes the VAR(1) spectral density in (62) to a spectral density for a

VAR(p).

Illustration: Figure 6 depicts the VAR-based estimate of the spectrum and the smoothed

sample periodogram. The sample period is 1984:Q1 to 2007:Q4. The VAR has one lag. The

shaded area indicates business cycle frequencies.
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Figure 6: Empirical Spectrum

Smoothed Periodograms VAR Implied Spectral Densities

9.3.3 Impulse Response Functions

Empirical analogues for the autocovariance function and the spectral density can be ob-

tained either by computing sample autocovariances and the smoothed periodogram or by

converting the parameters of an estimated VAR(p) into the objects of interest. No addi-

tional assumptions were required. Obtaining the empirical counterparts of the DSGE model

impulse response functions requires an auxiliary model upon which one has to impose some

additional structure that is not directly identifiable from the data. The VAR(p) in (75) is

a so-called reduced-form VAR because the innovations ut do not have a specific structural

interpretation – they are simply one-step-ahead forecast errors.

The impulse responses that we constructed for the DSGE model, are responses to inno-

vations in the structural shock innovations that contribute to the forecast error for several

observables simultaneously. Thus, we express the one-step-ahead forecast errors as a linear

combination of the structural innovations εt:

ut = Φεεt = ΣtrΩεt, (80)

where Σtr is the unique lower-triangular Cholesky factor of Σ with nonnegative diagonal

elements, and Ω is an n × n orthogonal matrix. The second equality ensures that the

covariance matrix of ut is preserved in the sense that

ΦεΦ
′
ε = ΣtrΩΩ′Σ′tr = Σ. (81)
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By construction, the covariance matrix of the forecast error is invariant to the choice of Ω,

which implies that it is not possible to identify Ω from the data. In turn, much of the liter-

ature on structural VARs reduces to arguments about an appropriate set of restrictions for

the matrix Ω. Detailed surveys about the restrictions, or identification schemes, that have

been used in the literature to identify innovations to technology, monetary policy, govern-

ment spending, and other exogenous shocks can be found, for instance, in Cochrane (1994),

Christiano, Eichenbaum, and Evans (1999), and Stock and Watson (2001). Conditional on

an estimate of the reduced form coefficient matrices Φ and Σ and an identification scheme

Ω, it is straightforward to express the impulse response as

ÎRF
V

(., j, h) = Ch(Φ̂)Σ̂tr[Ω].j, (82)

where the moving average coefficient matrix Ch(Φ̂) can be obtained from the companion

form representation of the VAR in (76): Ch(Φ) = M ′Φ̃h
1M with M ′ = [In, 0n×n(p−1)].

Illustration: we estimate a VAR in output growth, labor share, inflation, and interest rates.

Monetary policy shocks are identified according to sign restrictions which leads identified sets

for the IRFs. The upper and lower bounds for the identified sets of the IRFs are depicted

in Figure 7.

9.3.4 Conditional Moment Restrictions

The unconditional moment restrictions derived from the equilibrium conditions of the DSGE

model discussed in Section 9.2.4 have sample analogues in which the population expectations

are replaced by sample averages. These moment conditions are typically used to form gener-

alized method of moments (GMM) objective functions. A complication arises if the moment

conditions contain latent variables, e.g., the shock process λt in the moment condition (68)

derived from the New Keynesian Phillips curve.

9.4 Dealing with Trends

• Macroeconomic time series exhibit trends, which have deterministic and stochastic

components.
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Figure 7: Impulse Responses to a Monetary Policy Shock

• The simple DSGE model generates a common trend in output and real wages. So far,

we used a stationarity inducing transformation by considering output growth and the

labor share.

• Most DSGE models have strong co-trending implications, e.g., stationary labor share,

which may be contradicted in the data.

• Various remedies:

– ignore the mismatch;

– incorporate more elaborate trends into DSGE model

– detrend each data series separately and fit DSGE model to detrended data

– detrend both model-implied as well as actual data
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Figure 8: Consumption-Output Ratio and Labor Share (in Logs)

Consumption-Output Ratio Labor Share

– create a hybrid model with a more flexible trend specification: Canova (2014)

Illustration: Figure 8 depicts the log consumption-output ratio and the labor share in logs.

Consumption is defined as Personal Consumption Expenditure on Services (PCESV) plus

Personal Consumption Expenditure on nondurable goods (PCND) divided by nominal GDP.

9.5 What Next?

Our DSGE model generates a joint probability distribution for the vector of states xt and

the vector of observables yt. From this probability distribution, we derived very objects of

interests: the autocovariance function and the spectral density; impulse response functions;

conditional moment restrictions and the marginal distribution of the observables Y1:T . We

saw in Section 9.3 that these objects have empirical analogues.

Broadly speaking, DSGE model estimation is concerned with determining a range of

appropriate values for the parameters θ based on the available data. This is done by defin-

ing an objective function Q(θ|Y1:T ) that measures the discrepancy between a set of model

implication and their empirical counterparts. An example would be the discrepancy between

model-implied autocovariances and sample autocovariances. An estimator of θ can be ob-

tained as the extremum (set estimator) or a level set (set estimator) of the objective function

Q(θ|Y1:T ).
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Formal econometric analysis tends to use the probabilistic structure of the DSGE model

to determine the objective function Q(θ|Y1:T ), to derive measures of uncertainty for θ, and

to obtain absolute measures of fit for a specific model as well as relative measures of fit for

collections of models. Complications arise if the probabilistic structure of the DSGE model

is misspecified. In this case, formal econometric analysis requires a reference model with a

well-specified probabilistic structure, from which statistical measures of uncertainty and fit

can be derived. Before delving into the details of DSGE model estimation, we discuss an

object that is key for statistical inference, namely the likelihood function

10 The Likelihood Function

• An important object for statistical inference is the likelihood function: p(Y1:T |θ).
(sometimes we write p(Y |θ)).

• Thus far, we have characterized the joint distribution of p(Y1:T , S1:T |θ). In order to

obtain the likelihood function we need to integrate out the (hidden) states S1:T . We

use a filter to do so.

• Factorization:

p(Y1:T |θ) =
T∏
t=1

p(yt|Y1:t−1, θ). (83)

• General state-space representation:

yt = Ψ(st, t; θ) + ut, ut ∼ Fu(·; θ) (84)

st = Φ(st−1, εt; θ), εt ∼ Fε(·; θ).

• Due to the first-order Markov structure of the state transition equation neither the

states st−2, st−3, . . . nor the observations yt−1, yt−2, . . . provide any additional informa-

tion about st conditional on st−1. Thus,

p(st|st−1) = p(st|st−1, S1:t−2) = p(st|st−1, S1:t−2, Y1:t−1). (85)

• In our linearized DSGE model: The state-transition equation (41) describes a condi-

tional distribution of st|st−1, which we generically denote by its density p(st|st−1). If
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the innovations εt are normally distributed, then this conditional distribution is given

by

st|st−1 ∼ N
(
Φ1st−1,ΦεΦ

′
ε

)
. (86)

The conditional distribution of yt|st, which we denote by p(yt|st) is simply a point-

mass at yt = Ψ0 + Ψ1st in the absence of measurement errors. If the measure-

ment equation (43) is augmented by normally distributed measurement errors, say,

ut ∼ iidN(0,Σu), then yt|st ∼ N
(
Ψ0 + Ψ1st,Σu).

10.1 A Generic Filter and Smoother

We now describe a generic filter that can be used to recursively compute the conditional

distributions p(yt|Y1:t−1) and p(st|Y1:t). The former is the predictive distribution of yt given

past observations Y1:t−1 and appears in the factorization of the likelihood function in (83).

The latter summarizes the information about the state st conditional on the current and

past observations Y1:t. The filter is summarized in Algorithm 1.

Algorithm 1 (Generic Filter).

Let p(s0) = p(s0|Y1:0) be the initial distribution of the state. For t = 1 to T :

1. Forecasting t given t− 1:

(a) Transition equation:

p(st|Y1:t−1) =

∫
p(st|st−1, Y1:t−1)p(st−1|Y1:t−1)dst−1

(b) Measurement equation:

p(yt|Y1:t−1) =

∫
p(yt|st, Y1:t−1)p(st|Y1:t−1)dst

2. Updating with Bayes theorem. Once yt becomes available:

p(st|Y1:t, θ) = p(st|yt, Y1:t−1) =
p(yt|st, Y1:t−1)p(st|Y1:t−1)

p(yt|Y1:t−1)
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While Algorithm 1 suffices for real time inference (i.e., based on information Y1:t) about

the current state st, it is not sufficient to conduct ex post inference conditional on the full

sample Y1:T . For ex post inference about the latent states, the joint posterior distribution

p(S1:T |Y1:T ) is the relevant object. The joint posterior distribution can be factorized into

conditional distributions, starting from p(sT |Y1:T ) which is obtained in the last step of Algo-

rithm 1:

p(S1:T |Y1:T ) = p(sT |Y1:T )
T−1∏
t=1

p(st|St+1:T , Y1:T ). (87)

According to Bayes Theorem

p(st|St+1, Y1:T ) =
p(st, St+1:T , Y1:T )∫
p(st, St+1:T , Y1:T )dst

. (88)

The right-hand-side can be factorized as follows:

p(st, St+1:T , Y1:T ) =

∫
p(S1:T , Y1:T )dS1:t−1 (89)

=

∫
p(S1:t, Y1:t)

(
T−t∏
j=1

p(st+j|st+j−1)p(yt+j|st+j)

)
dS1:t−1

= p(st, Y1:t)p(st+1|st)C(St+1:T , Yt+1:T )

= p(st|Y1:t)p(Y1:t)p(st+1|st)C(St+1:T , Yt+1:T )

By combining (88) and (89) we can deduce

p(st|St+1, Y1:T ) =
p(st|Y1:t)p(st+1|st)∫
p(st|Y1:t)p(st+1|st)dst

= p(st|st+1, Y1:t) (90)

because the terms p(Y1:t) and C(St+1:T , Yt+1:T ) cancel from the numerator and denominator.

Using (90) we can simplify the factorization of the joint posterior density of the states

considerably:

p(S1:T |Y1:T ) = p(sT |Y1:T )
T−1∏
t=1

p(st|Y1:t)p(st+1|st)∫
p(st|Y1:t)

, (91)

where p(st|Y1:t) is generated by Algorithm 1 and p(st+1|st) is obtained from the state-

transition equation. The algorithm that generates the sequence of distributions p(st|St+1, Y1:T )

is called a smoother and summarized in Algorithm 2.

Algorithm 2 (Generic Smoother).

Run Algorithm 1 to obtain p(st|Y1:t), t = 1, . . . , T . For t = T − 1 to t, let

p(st|St+1, Y1:T ) =
p(st|Y1:t)p(st+1|st)∫
p(st|Y1:t)p(st+1|st)dst

. (92)
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Table 3: Conditional Distributions for Kalman Filter

Distribution Mean and Variance

st−1|Y1:t−1 N
(
s̄t−1|t−1, Pt−1|t−1

)
Given from Iteration t− 1

st|Y1:t−1 N
(
s̄t|t−1, Pt|t−1

)
s̄t|t−1 = Φ1s̄t−1|t−1

Pt|t−1 = Φ1Pt−1|t−1Φ′1 + ΦεΣεΦ
′
ε

yt|Y1:t−1 N
(
ȳt|t−1, Ft|t−1

)
ȳt|t−1 = Ψ0 + Ψ1s̄t|t−1

Ft|t−1 = Ψ1Pt|t−1Ψ′1 + Σu

st|Y1:t N
(
s̄t|t, Pt|t

)
s̄t|t = s̄t|t−1 + Pt|t−1Ψ′1F

−1
t|t−1(yt − ȳt|t−1)

Pt|t = Pt|t−1 − Pt|t−1Ψ′1F
−1
t|t−1Ψ1Pt|t−1

st|(St+1:T , Y1:T ) N
(
s̄t|t+1, Pt|t+1

)
s̄t|t+1 = s̄t|t + Pt|tΦ

′
1P
−1
t+1|t(st+1 − Φ1s̄t|t)

Pt|t+1 = Pt|t − Pt|tΦ′1P−1
t+1|tΦ1Pt|t

10.2 Likelihood Function for a Linearized DSGE Model

For illustrative purposes consider our prototypical DSGE model. Due to the simple structure

of the model, we can use (34), (35), (38), and (39) to solve for the latent shocks φt, λt, zt, and

εR,t as a function of x̂t, l̂sht, π̂t, and R̂t. Thus, we can deduce from (43) and the definition

of st that conditional on x̂0, the states st can be uniquely inferred from the observables yt in

a recursive manner, meaning that the conditional distributions p(st|Y1:t, x̂0) are degenerate.

Thus, the only uncertainty about the state stems from the initial condition.

Now suppose that we drop the labor share and the interest rates from the definition of yt.

In this case it is no longer possible to uniquely determine st as a function of yt and x̂0, because

we only have two equations, (34) and (38), and four unknowns. The filter in Algorithm 1 now

essentially solves a system of underdetermined equations, taking into account the probability

distribution of the four hidden processes. For our linearized DSGE model with Gaussian

innovations all the distributions that appear in Algorithm 1 are Gaussian. In this case the

Kalman filter can be used recursively compute the means and covariance matrices of these

distributions. To complete the model specification we make the following distributional

assumptions about the initial state s0:

s0 ∼ N
(
s̄0|0, P0|0

)
.
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In stationary models it is common to assume that s̄0|0 and P0|0 corresponds to the invariant

distribution associated with the law of motion of st in (41). The four conditional distributions

in the description of Algorithm 1 for a linear Gaussian state space model are summarized

in Table 3. Detailed derivations can be found in textbook treatments of the Kalman filter

and smoother, e.g., Hamilton (1994) or Durbin and Koopman (2001). *** Discuss efficient

smoothing; singularity of Pt|t matrix. ***

Illustration: We simulate T = 50 observations from the DSGE model. Figure 9 depicts the

filtered shock processes φt and zt based on observations of only output growth and based on

observations of output growth, the labor share, and inflation. The figure depicts E[st|Y1:t] as

well as 90% credible intervals around the mean based on V[st|Y1:t]. Note that the estimates

of the latent states become more accurate as the number of observables included in the

definition of yt increases.

10.3 Likelihood Function for Nonlinear DSGE Models

There exists a large literature on particle filters. Surveys and tutorials can be found, for

instance, in Arulampalam, Maskell, Gordon, and Clapp (2002), Cappé, Godsill, and Moulines

(2007), Doucet and Johansen (2011), Creal (2012). Kantas, Doucet, Singh, Maciejowski, and

Chopin (2014) discuss using particle filters in the context of estimating the parameters of

a state space models. These papers provide detailed references to the literature. The basic

bootstrap particle filtering algorithm is remarkably straightforward, but may perform quite

poorly in practice. Thus, much of the literature focuses on refinements of the bootstrap

filter that increases the efficiency of the algorithm, see, for instance, Doucet, de Freitas, and

Gordon (2001). Textbook treatments of the statistical theory underlying particle filters can

be found in Cappé, Moulines, and Ryden (2005), Liu (2001), and Del Moral (2013). First

application in DSGE model literature: Fernández-Villaverde and Rubio-Ramı́rez (2007).

In the basic version of the particle filter the time t particles were generated by simulating

the state transition equation forward. However, the naive forward simulation ignores infor-

mation contained in the current observation yt and may lead to a very uneven distribution

of particle weights, in particular if the measurement error variance is small or if the model

has difficulties explaining the period t observation in the sense that for most particles s̃jt the

actual observation yt lies far in the tails of the model-implied distribution of yt|(s̃jt , θ). The
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Figure 9: Filtered States

φt based on yt = ln(Xt/Xt−1) φt based on yt = [ln(Xt/Xt−1), lsht, πt]
′

zt based on yt = ln(Xt/Xt−1) zt based on yt = [ln(Xt/Xt−1), lsht, πt]
′

Notes: The filtered states are based on a simulated sample of T = 50 observations.
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particle filter can be generalized by allowing s̃jt in the forecasting step to be drawn from a

generic importance sampling density gt(·|sjt−1, θ), which leads to the following algorithm:

Algorithm 3 (Generic Particle Filter).

1. Initialization. Draw the initial particles from the distribution sj0
iid∼ p(s0) and set

W j
0 = 1, j = 1, . . . ,M .

2. Recursion. For t = 1, . . . , T :

(a) Forecasting st. Draw s̃jt from density gt(s̃t|sjt−1, θ) and define the importance

weights

ωjt =
p(s̃jt |s

j
t−1, θ)

gt(s̃
j
t |s

j
t−1, θ)

. (93)

An approximation of E[h(st)|Y1:t−1, θ] is given by

ĥt,M =
1

M

M∑
j=1

h(s̃jt)ω
j
tW

j
t−1. (94)

(b) Forecasting yt. Define the incremental weights

w̃jt = p(yt|s̃jt , θ)ω
j
t . (95)

The predictive density p(yt|Y1:t−1, θ) can be approximated by

p̂(yt|Y1:t−1, θ) =
1

M

M∑
j=1

w̃jtW
j
t−1. (96)

(c) Updating. Define the normalized weights

W̃ j
t =

w̃jtW
j
t−1

1
M

∑M
j=1 w̃

j
tW

j
t−1

. (97)

An approximation of E[h(st)|Y1:t, θ] is given by

h̃t,M =
1

M

M∑
j=1

h(s̃jt)W̃
j
t . (98)
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(d) Selection. Case (i): If ρt = 1 resample the particles via multinomial resampling.

Let {sjt}Mj=1 denote M iid draws from a multinomial distribution characterized by

support points and weights {s̃jt , W̃
j
t } and set W j

t = 1 for j =, 1 . . . ,M .

Case (ii): If ρt = 0, let sjt = s̃jt and W j
t = W̃ j

t for j =, 1 . . . ,M .

An approximation of E[h(st)|Y1:t, θ] is given by

h̄t,M =
1

M

M∑
j=1

h(sjt)W
j
t . (99)

3. Likelihood Approximation. The approximation of the log likelihood function is

given by

ln p̂(Y1:T |θ) =
T∑
t=1

ln

(
1

M

M∑
j=1

w̃jtW
j
t−1

)
. (100)

• Bootstrap particle filter sets gt(s̃
j
t |s

j
t−1, θ) = p(s̃jt |s

j
t−1, θ).

• Evaluation of p(s̃jt |s
j
t−1, θ).

• Conditionally-optimal particle filter sets

gt(s̃t|sjt−1) = p(s̃t|yt, sjt−1), (101)

that is, s̃t is sampled from the posterior distribution of the period t state given (yt, s
j
t−1).

In this case

w̃jt =

∫
p(yt|st)p(st|sjt−1)dst. (102)

In a typical (nonlinear) DSGE model applications it is not possible to sample directly

from p(s̃t|yt, sjt−1).

• Approximately conditionally-optimal particle filter: In a typical DSGE model appli-

cation, sampling from the conditionally-optimal importance distribution is infeasible

or computationally too costly. Alternatively, one could try to sample from an ap-

proximately conditionally-optimal importance distribution. For instance, if the DSGE

model nonlinearity arises from a higher-order perturbation solution and the nonlin-

earities are not too strong, then an approximately conditionally-optimal importance

distribution could be obtained by applying the one-step Kalman filter updating de-

scribed in Table 3 to the first-order approximation of the DSGE model. More gener-

ally, as suggested in Guo, Wang, and Chen (2005), one could use the updating steps of
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a conventional nonlinear filter, such as an extended Kalman filter, unscented Kalman

filter, or a Gaussian quadrature filter, to construct an efficient proposal distribution.

Approximate filters for nonlinear DSGE models have been developed by Andreasen

(2013) and Kollmann (2014).

• Conditionally linear models.

• Role of measurement errors ut.

• Various shortcuts.

Illustration: Show output from particle filter using the same design as for the Kalman

filter above. Illustrate numerical accuracy of likelihood approximation as a function of the

number of particles.

11 Statistical Inference

• Basic problem: infer DSGE model parameter vector θ from observations Y ; provide

measure of uncertainty. Once parameter values have been determined: explain the past:

what shocks contributed to economic fluctuations; how do these shocks propagate?

predict the future: generate DSGE model-based forecasts; policy counterfactuals and

welfare analysis.

• We have seen that DSGE model generates family of distributions p(Y |θ), θ ∈ Θ -

though we are free to ignore certain features of this distribution.

• DSGE models have a high degree of theoretical coherence. This means that the func-

tional forms and parameters of equations that describe the behavior of economic agents

are tightly restricted by optimality and equilibrium conditions.

• Family of probability distribution (likelihood function) for empirical models with strong

degree of theoretical coherence tend to be more restrictive than likelihood functions

associated with atheoretical models such as vector autoregressions. A challenge for

statistical inference arises if the data favor the atheoretical model and the atheoretical

model generates more accurate forecasts, but a theoretically coherent model is required

for the analysis of a particular economic policy.
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Figure 10: Particle Filtered States and Log-Likelihood

Filtered States

Log-Likelihood Approximation Distribution of Approximation Errors

Notes: The filtered states are based on a simulated sample of T = 50 observations. We use the

bootstrap particle filter with M = 100 particles. (All four observables; some measurement

error; Nrun = 100 repetitions to compute the density of the log-likelihood approximation

error.)



Fernandez-Villaverde, Rubio-Ramirez, Schorfheide: This Version April 7, 2015 99

• Two modes of statistical inference – frequentist and Bayesian:

– Frequentist inference takes a pre-experimental perspective and focuses on the

behavior of estimators and test statistics, which are functions of the observations

Y , in repeated sampling under the distribution PYθ , conditioning on a “true”

parameter value θ. Procedures have to be well behaved for all values of θ ∈ Θ.

Notion of a data generating process (DGP).

– Bayesian inference takes a post-experimental perspective by treating the unknown

parameter θ as a random variable and updating a prior distribution p(θ) in view

of the data Y using Bayes Theorem to obtain the posterior distribution p(Y |θ).

• In turn, we will provide more details on both modes of inference.

11.1 Identification

• A point θ0 is globally identified if p(Y |θ̃) = p(Y |θ0) with probability one implies that

θ̃ = θ0 for any θ̃ ∈ Θ. If the statement is true only for values of θ̃ in an open

neighborhood of θ0, then θ0 is locally identified.

• Finite T versus infinite T .

• Focus on entire distribution of the data vs. the first two moments / spectral density.

• The idea of Komunjer and Ng (2011) is to examine the relationship between the coef-

ficients of the state-space representation and the structural DSGE model parameters

θ.

• Roughly speaking the idea is to examine the mapping from structural parameters θ

into the reduced-form parameters, say, φ. Suppose

φ = f(θ)

and
∂

∂θ′
f(θ)

has full column rank at θ̃, then the structural parameters are locally identifiable at θ̃.

• The difficulty with this approach is to define the vector of reduced-form parameters.



Fernandez-Villaverde, Rubio-Ramirez, Schorfheide: This Version April 7, 2015 100

• DSGE models are summarized by reduced-form parameters, i.e., state-space represen-

tation. Recall that in the linearized DSGE model we have a restricted version:

yt = Ψ0(θ) + Ψ1(θ) (103)

st = Φ1(θ)st−1 + Φε(θ)εt

An unrestricted state-space model could be written as

yt = Ψ0 + Ψ1st (104)

st = Φ1st−1 + Φεεt,

where

φ′ = [vec(Ψ0)′, vec(Ψ1)′, vec(Φ1)′, vec(Φε)
′]

The problem is that the matrices Ψ1, Φ1, and Φε themselves are not identifiable. For

instance, let A be a nonsingular ns × ns matrix and Ω an nε × nε orthogonal matrix,

then we can define

s̃t = Ast, ε̃t = Ωεt, Ψ̃1 = Ψ1A
−1, Φ̃1 = Φ1A

−1, Φ̃ε = AΦεΩ
′

and write

yt = Ψ0 + Ψ̃1s̃t (105)

st = Φ̃1s̃t−1 + Φ̃εεt

Thus, the number of identifiable reduced-form parameters is smaller than the number

of elements in the Ψ and Φ matrices.

• Example from Schorfheide (2013):

yt = [1 1]st, st =

[
θ2

1 0

1− θ2
1 − θ1θ2 (1− θ2

1)

]
st−1 +

[
1

0

]
εt, εt ∼ iidN(0, 1).

(106)

How many identifiable reduced-form parameters are there? Letting L denote the lag

operator with the property that Lyt = yt−1, we can write the law of motion of yt as an

restricted ARMA(2,1) process:(
1− θ2

1L
)(

1− (1− θ2
1)L
)
yt =

(
1− θ1θ2L

)
εt. (107)
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This suggests that there are three. However, if one of the roots of the AR polynomial

is equal to the root of the MA polynomial, the process reduces to an AR(1) process,

which has only one identifiable reduced-form parameter. In this example, θ2 is not

identifiable if θ1 is 0, because it enters the model only multiplicatively. Moreover,

given θ1 and θ2, we obtain an observationally equivalent process by choosing θ̃1 and θ̃2

such that

θ̃1 =
√

1− θ2
1, θ̃2 = θ1θ2/θ̃1.

Here we switched the values of the two roots of the autoregressive lag polynomial.

• Alternatively, examine the Jacobian associated with the mapping between structural

parameters and the mean and covariance matrix of Y1:T (see Iskrev (2010));

• or the mapping between θ and the spectral density (see Qu and Tkachenko (2012)),

which requires

G(θ) =

∫ π

−π

(
∂

∂θ′
vec(fyy(ω)′)

)′(
∂

∂θ′
fyy(ω)

)
dω (108)

to be of full rank.

• Some numerical issues: accuracy of derivatives and of matrix rank.

• As we remove information, identification gets more problematic. This can be seen

from the example model: suppose we only observe the labor share. We can write the

law of motion of the labor share as ARMA(3,3) which has 8 reduced form parameters

including the mean. This is fewer than the 13 DSGE model parameters. Also, removing

information from the shocks eliminates information. Suppose we only focus on the

response to the monetary policy shock. Then we can at most identify β, ζ, ν, and σR.

See discussion by Canova and Sala (2009)

• Some recent work on global identification: Qu and Tkachenko (2014), Kociecki and

Kolasa (2015)

11.2 Frequentist Inference

• Some notation: we have to distinguish between the DSGE models, say, M1, . . . ,MJ ,

and a reference model M0. This reference M0 model could by a VAR, a general linear
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process, or some nonlinear statistical model. For now, we focus on a single DSGE

model M1 versus a reference model M0.

• We also use the notation ‖a‖W = a′Wa.

11.2.1 “Correct” Specification of DSGE Model

• “Correct” specification acknowledges that the DSGE model is an abstraction but re-

gards the family of distributions p(Y |θ) to be rich enough to capture the salient features

of the observables Y .

• Identification is required as regularity condition for “standard” inference procedures.

• DSGE model itself is the data generating process and p(Y |θ,M1) describes the sampling

distribution of Y under which the behavior of estimators and test statistics is being

analyzed.

• Example maximum likelihood estimator:

θ̂mle = argmaxθ∈Θ ln p(Y |θ,M1) (109)

Under suitable regularity conditions (identification and stationarity of {yt} process),

the MLE is consistent and asymptotically normal. Inference can be based on Wald,

LM, or LR tests. Confidence sets can be obtained by inverting test statistics.

• The likelihood function can be replaced by the objective function of an estimator that

matches sample statistics to model-implied population analogues:

– sample statistic m̂T (Y );

– model-implied population statistic E[m̂T (Y )|θ,M1]

– simulation-based approximation of of model-implied population statistic: let Y ∗(θ,M1)

be a sequence of λT simulated observations from DSGE model M1 given parame-

ter θ. Then we use m̂λT (Y ∗(θ,M1)) to denote the sample statistic computed from

the simulated observations.
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– Example (i): m̂T (Y ) could be composed of sample autocovariance matrix. E.g,

m̂T (Y ) =
[
vech(Γ̂yy(0))′, vec(Γ̂yy(1))′

]
=

1

T

T∑
t=1

m(yt−1:t).

Example (ii): m̂T (Y ) could be the OLS estimator of the coefficients of a VAR(1).

For simplicity, assume that the data are demeaned and the VAR(1) does not

contain an intercept, then

m̂T (Y ) = vec

( 1

T

T∑
t=1

yt−1y
′
t−1

)−1

1

T

T∑
t=1

yt−1y
′
t

 .

• If the moments can be evaluated analytically, we can define the objective function as

QT (θ|Y ) =
∥∥m̂T (Y )− E[m̂T (Y )|θ,M1]

∥∥
WT
, (110)

where WT is a symmetric positive-definite weight matrix. If the moments have to be

evaluated by simulation, we can use the objective function

QT (θ|Y ) =
∥∥m̂T (Y )− m̂T

(
Y ∗(θ,M1)

)∥∥
WT
, (111)

• Finally, let

θ̂mm = argmaxθ∈Θ QT (θ|Y ). (112)

• Under correct specification it makes sense to let the model-implied probability distri-

bution of the data determine the choice of the objective function for estimators and

test statistics to increase efficiency.

11.2.2 Incompleteness and Misspecification of DSGE Model

• Incompleteness: Suppose we remove all but the monetary policy shock from the DSGE

model. In this case, the DSGE model is incomplete because it does not contain suf-

ficiently many shocks to explain the variability in the observed data yt. The DSGE

model generates a counterfactual singular distribution. Another example of incom-

pleteness would be if we only consider a subset of the moment conditions implied by

the model, e.g., the moment condition implied by the Euler equation. This does not

completely specify the distribution of Y and the data generating process.



Fernandez-Villaverde, Rubio-Ramirez, Schorfheide: This Version April 7, 2015 104

• Misspecification: the DSGE model takes the form of a state-space model. The co-

efficient matrices Φ1, Φε, Ψ0, and Ψ1. are restricted functions of the DSGE model

parameters θ. These functions could be misspecified. Note that an omitted state

variable can also be interpreted as a misspecification of these functions.

• In either case we need a data generating process from which we can derive the sampling

distribution of Y :

1. the data generating process could be a fully-specified reference model such as a

VAR, p(Y |φ,M0), where φ is a finite-dimensional parameter vector;

2. the data generating process could be a general process for {yt} that restricts the

moments, degree of serial correlation, to ensure that certain sample moments are

convergent;

3. under incompleteness, the data generating process could be obtained by complet-

ing the model, e.g., by adding additional shocks to a version of the DSGE model

with only a monetary policy shock, or by adding additional equilibrium conditions

to an Euler equation.

4. We write p(Y |M0).

• The concept of “true” values is elusive, but we can distinguish the following cases:

1. Model is incompletely specified: it makes sense to refer to “true” values, in the

sense that we can imagine the DGP to be the incomplete model plus a set of

equations (with additional parameters) that complete the distribution of Y .

2. Model is misspecified: define pseudo-true (or pseudo-optimal) values, e.g., based

on likelihood / Kullback-Leibler distance

θ0(KL) = argmaxθ∈Θ

∫
p(Y |M0) ln p(Y |θ,M1)dY (113)

or based on a population analogue of the moment discrepancy function

θ0(Q,W ) = argminθ∈Θ Q(θ|M0), (114)

where

Q(θ|M0) =
∥∥E[m̂T (Y )|M0]− E[m̂(Y )|θ,M1]

∥∥
W

Note that θ0(·) is loss function (or discrepancy) dependent.
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• Under misspecification, the probability limit θ0(·) depends on the loss function / es-

timation objective function. In particular, in case of the moment-based objective

function it depends on the selection of moments in the vector m̂T (Y ) and it depends

on the weight matrix W . Thus, under misspecification, the choice of W should reflect

the relevant loss function rather than be determined by the covariance of the sample

moments m̂T (Y ).

• The sampling properties of estimators and test statistics have to be derived from the

reference model M0.

11.3 Bayesian Inference

11.3.1 “Correct” Specification of DSGE Model

• Under the Bayesian paradigm, the calculus of probability is not only used to deal

with uncertainty about shocks εt, states st, and observations yt, but also to deal with

uncertainty about the parameter vector θ. The initial state of knowledge (or ignorance)

is summarized by a prior distribution with density p(θ). This prior is combined with the

conditional distribution of the data given θ, i.e., the likelihood function, to characterize

the joint distribution of parameters and data. Bayes Theorem is applied to obtain the

conditional distribution of the parameters given the observed data Y . This distribution

is called the posterior distribution:

p(θ|Y,M1) =
p(Y |θ,M1)p(θ|M1)

p(Y |M1)
, p(Y |M1) =

∫
p(Y |θ,M1)p(θ|M1)dθ. (115)

• The posterior distribution contains all the information about θ conditional on sample

information Y .

• Some subtle terminology: under the Bayesian paradigm a model is a joint distribution

for data and parameters, i.e. likelihood function p(Y |θ,M1) and prior p(θ|M1).

• The posterior distribution of transformations of θ, say h(θ), e.g., autocovariances, IRFs,

etc., can be derived from p(θ).
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• A word on identification: for non-identifiable parameter the conditional prior distribu-

tion equals the conditional posterior distribution; lack of identification may generate

difficulties for posterior simulators.

• Use decision-theoretic setup to derive point estimators, interval estimators, predictions,

etc. for h(θ). The key idea is to specify a loss function L
(
h(θ), δ

)
and to find the

optimal decision δ∗ that minimizes the posterior expected loss:

δ∗ = argminδ∈D

∫
L
(
h(θ), δ

)
p(θ|Y )dθ. (116)

• Practical difficulty: characterization of moments of p(h(θ)|Y,M1). In practice, we

typically use Monte Carlo integration:

E[h(θ)|Y ] =

∫
h(θ)p(θ|Y )dθ ≈ 1

N

N∑
i=1

h(θi), (117)

where the θi’s are distributed according to p(θ|Y ). We will subsequently discuss dif-

ferent strategies of generating the θi draws.

• Modern Bayesian computational techniques: MCMC and sequential Monte Carlo sam-

pling.

• The relative fit of two DSGE models M1 and M2 can be summarized through posterior

model probabilities. Let πj,0 be prior probability of model j = 1, 2. Call ratios of

probabilities odds. Then the posterior odds of M1 versus M2 are given by

π1,T

π2,T

=
π1,0

π2,0

p(Y |M1)

p(Y |M2)
, (118)

where the first factor on the r.h.s captures the prior odds and the second factor, called

Bayes factor, is the ratio of marginal data densities. Note that p(Y |Mi) appears in the

denominator of Bayes Theorem (115). Posterior odds and probabilities can be used for

model selection and for model averaging. Applications: Rabanal and Rubio-Ramı́rez

(2005), Smets and Wouters (2007).

11.3.2 Misspecification of DSGE Model

• Researcher believes that there is some other more densely parameterized model, e.g.,

a VAR, that could have (or did) generate the data.
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• Schorfheide (2000): loss function based evaluation of DSGE models. Researcher is

interested in the relative ability of two (or more) DSGE models to explain certain

population characteristics ϕ, e.g., autocovariances or impulse responses. However, the

DSGE models may be potentially misspecified and the researcher considers a reference

model M0. Overall posterior:

p(ϕ|Y ) =
∑
j=0,1,2

πj,Tp(ϕ|Y,Mj). (119)

If one of the DSGE models is well specified, this model receives high posterior prob-

ability and dominates the mixture. If both DSGE models are at odds with the data

the posterior probability of the reference model will be close to one. Compute DSGE

model specific predictions:

ϕ̂(j) = argminϕ̃

∫
L(ϕ̃, ϕ)p(ϕ|Y,Mj)dϕ, j = 1, 2 (120)

Compare models based on ∫
L(ϕ̂(j), ϕ)p(ϕ|Y )dϕ. (121)

• Geweke (2010): incomplete econometric models; models of moments (also DeJong,

Ingram, and Whiteman (1996)). The idea is that the DSGE model is not meant to be

a model for the sample of observations of Y , but only a model for certain population

moments ϕ. He shows that under this assumption one can define model odds as

π1,T

π2,T

=
π1,0

π2,0

∫
p(ϕ|M1)p(ϕ|Y,M0)dϕ∫
p(ϕ|M2)p(ϕ|Y,M0)dϕ

(122)

Roughly, if we were able to observe ϕ, then p(ϕ|Mj) is the marginal likelihood. How-

ever, ϕ is unobservable and therefore replaced by a posterior predictive distribution

obtained from a reference model M0.

• Ingram and Whiteman (1994) and Del Negro and Schorfheide (2004): using DSGE

models to construct prior distributions for reference models such as VARs. Consider

companion form VAR in (76). Use the DSGE model to generate a prior distribution

for (Φ̃1, Φ̃0, Σ̃) and combine this prior with VAR likelihood function

p(Y, Φ̃0, Φ̃1, Σ̃, θ|λ) = p(Y |Φ̃0, Φ̃1, Σ̃)p(Φ̃0, Φ̃1, Σ̃|θ, λ)p(θ) (123)
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Define restriction functions, e.g., by population regression,

Φ̃∗0(θ), Φ̃∗1(θ), Σ̃∗(θ)

and center the prior p(Φ̃0, Φ̃1, Σ̃|θ, λ) on this restriction function, allowing for deviations

(misspecification). The parameter λ is a hyperparameter that controls the magnitude of

the deviations (prior variance) from the restriction function. Application to forecasting

performance of Smets-Wouters model: Del Negro, Schorfheide, Smets, and Wouters

(2007). Application to policy analysis: Del Negro and Schorfheide (2009).

• Interpretation of posterior odds if all models are misspecified: find the model that is

closest to M0 in a Kullback-Leibler sense. Fernandez-Villaverde and Rubio-Ramirez

(2004). Rather than using posterior probabilities to select among or average across two

DSGE models, one can form a prediction pool, which is essentially a linear combination

of two predictive densities:

λp(yt|Y1:t−1,M1) + (1− λ)p(yt|Y1:t−1,M2).

The weight λ can be determined based on

T∏
t=1

λp(yt|Y1:t−1,M1) + (1− λ)p(yt|Y1:t−1,M2),

see Geweke and Amisano (2011) and Geweke and Amisano (2012). Dynamic version

with λ depending on time t are provided by Waggoner and Zha (2012) and Del Negro,

Hasegawa, and Schorfheide (2014).

12 Frequentist Estimation Techniques

Discuss both estimation and basic model evaluation. Each estimation procedure comes with

an evaluation procedure. How well did we do achieving the estimation objective?

12.1 Likelihood-Based Estimation

• Makes sense if model is well specified
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• Early papers that estimate versions of the neoclassical stochastic growth model using

MLE are Altug (1989), McGrattan (1994), and Leeper and Sims (1995). Many papers

followed.

• Obstacle 1: stochastic singularity. Imagine we remove all but the technology shock

from our simple DSGE model. In this case, we have one shock and four observables. It

is easy to see from the DSGE model solution that the DSGE model places probability

one on the event that

β lnRt − lnπt = β ln(π∗γ/β)− lnπ∗.

Because for actual data β lnRt − lnπt the likelihood function is equal to zero and

not usable for inference. To overcome this obstacle, researchers either have to add

“measurement” errors or restrict the number of observables in the vector of yt to the

number of exogenous shocks εt. Choosing variables to include in the likelihood function:

Canova, Ferroni, and Matthes (2014)

• Obstacle 2: identification issues led researcher to fix a subset of the parameters during

the maximization of the likelihood function.

• Evaluation of the likelihood function: see Section 10

• Maximization of the likelihood function: various numerical techniques are available

*** provide a good reference ***. Key distinction: some methods are gradient-based,

e.g., Newton-Raphson and other methods do not rely on gradient, e.g., simulated

annealing. If the likelihood function is generated by particle filter, then it is non-

differentiable. In the resampling step particles are resampled based on a discontinuous

cumulative distribution function. A small change in the parameter θ will cause a

small change in the importance weights, which will potentially lead to a different set of

resampled particles. As a result the particle approximation of the likelihood function is

discontinuous even if the true likelihood function is not. See survey of Kantas, Doucet,

Singh, Maciejowski, and Chopin (2014) and the solution proposed by Malik and Pitt

(2011).

• Classical machinery: for a formal analysis of maximum likelihood estimators in state-

space models, see, for instance, Cappé, Moulines, and Ryden (2005).
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– Log-likelihood function `T (θ|Y ) = ln p(Y |θ). Recall that

`T (θ|Y ) =
T∑
t=1

ln p(yt|Y1:t−1) =
T∑
t=1

ln

∫
p(yt|st, θ)p(st|Y1:t−1)dst. (124)

Note that the summands are not stationary. Under the assumption that the

sequence {st, yt} is stationary if initialized in the infinite past, we can approximate

the log likelihood function by

`sT (θ|Y ) =
T∑
t=1

ln

∫
p(yt|st, θ)p(st|Y−∞:t−1)dst, (125)

such that ∣∣`T (θ|Y )− `sT (θ|Y )
∣∣ = small.

– Consistency requires: T−1`sT (θ|Y ) −→ `s(θ) uniformly almost surely, where ls(θ)

is deterministic and minimized at the “true” θ0.

– Frequentist asymptotics rely on second-order approximation of log-likelihood func-

tion. Define score (vector of first derivatives)∇θ`
s
T (θ|Y ) and observed information

matrix −∇2
θ`
s
T (θ|Y ) and let

`sT (θ|Y ) = `sT (θ0|Y ) + T−1/2∇θ`
s
T (θ0|Y )

√
T (θ − θ0)

+
1

2

√
T (θ − θ0)′

[
∇2
θ`
s
T (θ0|Y )

]√
T (θ − θ0) + small

– If the maximum is attained in the interior, the first-order conditions can be ap-

proximated by

√
T (θ − θ0) =

[
−∇2

θ`
s
T (θ0|Y )

]−1
T−1/2∇θ`

s
T (θ0|Y ). (126)

– The score process satisfies a CLT: T−1/2∇θ`T (θ|Y ) =⇒ N(0, I(θ0)), where I(θ0)

is the Fisher information matrix. The formal definition of Fisher information is

delicate for this model and therefore omitted.

– ‖−∇2
θ`T (θ|Y )−I(θ0)‖ converges to zero uniformly in a neighborhood around θ0.

– Overall, this leads to

√
T (θ̂mle − θ0) =⇒ N

(
0, I−1(θ0)

)
. (127)
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• In frequency domain we can use Whittle likelihood. Recall DSGE model implied

spectral density fyy(ω|θ) and sample periodogram f̂yy(ω). In our linearized DSGE

model with Gaussian innovations we can directly characterize the joint distribution of

the observables (rather than solving a filtering problem). Let Y by a T × n matrix

composed of rows y′t. Then the joint distribution of Y is given by

Y |θ ∼ N

I ⊗ Φ0(θ),


Γyy(0|θ) Γyy(1|θ) . . . Γyy(T − 1|θ)
Γ′yy(1|θ) Γyy(0|θ) . . . Γyy(T − 2|θ)

...
...

. . .
...

Γ′yy(T − 1|θ) Γ′yy(T − 2|θ) . . . Γyy(0|θ)



 (128)

For large T the joint density can be approximated by the so-called Whittle likelihood

function

pW (Y |θ) ∝

(
T−1∏
j=0

∣∣2πf−1
yy (ω|θ)

∣∣)1/2

exp

{
−1

2

T−1∑
j=0

tr
[
f−1
yy (ωj|θ)f̂yy(ωj)

]}
(129)

where ωj’s are the fundamental frequencies. The attractive feature of this likelihood

function is that the researcher can introduce weights for the different frequencies, and,

for instance, only consider business cycle frequencies in the construction of the likeli-

hood function. Applications: Christiano and Vigfusson (2003) and Sala (2015).

• Identification-robust inference:

– Guerron-Quintana, Inoue, and Kilian (2013): the key idea is to obtain direct

likelihood-based estimates of the system matrices of the state-space representation

Ψ̂0, Ψ̂1, Φ̂1 and Φ̂ε. In view of the identification problems of the system matrices

discussed above, they might have to be re-parameterized in terms of an identifiable

reduced form parameter φ = f(θ). See Table 1 for possible definition of φ. Note

that many elements of Φ1(θ) and Φε(θ) do not depend on θ. One can then form

a likelihood ratio test of H0 : θ = θ0 based on

LR = 2
[

ln p(Y |φ̂,Mφ
1 )− ln p(Y |f(θ0),Mφ

1 )
]

=⇒ χ2

dim(φ)

Here Mφ
1 refers to the state-space representation of DSGE model, parameterized

in terms of the identifiable reduced-form parameter vector φ. Degrees of freedom

depend on dimension of φ, which means that it is important to use a minimal
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state-variable representation of the DSGE model solution. Paper discusses imple-

mentation based on the output from a Bayesian estimation. Invert LR statistic to

generate confidence intervals. Subsector inference is possible by projection of the

joint confidence set. Strongly identified parameters could be concentrated out.

– Andrews and Mikusheva (2015): Lagrange multiplier test which is also identifica-

tion robust. Notation: we have the score ∇θ`T (θ|Y ) and the quadratic variation

of the score process. Define

sT,t(θ) = ∇θ`(θ|Y1:t)−∇θ`(θ|Y1:t−1), JT (θ) =
T∑
t=1

sT,t(θ)s
′
T,t(θ).

The Lagrange multiplier statistic can be defined as

LM = ∇′θ`T (θ0|Y )[JT (θ0)]−1∇θ`T (θ0|Y ) =⇒ χ2

dim(θ0)

– Frequency domain version of LM test is provided by Qu (2014).

12.2 (Simulated) Method of Moments Estimation and Indirect

Inference

• Recall method of moments estimator, define by the objective function Q(θ|Y ) in (110)

and (111). Examples for m̂T (Y ): a subset of the autocovariances Γyy(h), estimates

of the parameters of an approximating model, e.g., the VAR(p) in (75) as in Smith

(1993). If m̂T (Y ) consists of parameter estimates of a reference model (or approximat-

ing model), then the procedure is also called indirect inference.

• For some DSGE models and moment functions the model-implied moments can be

evaluated directly, e.g., the autocovariance function of linearized DSGE models, but,

in particular for nonlinear DSGE models, E[m̂T (Y )|θ,M1] is often replaced by the

simulation approximation m̂λT (Y ∗(θ,M1)), where Y ∗ is a sample of size λT simulated

from DSGE model M1 given the parameter value θ.

• Some sample statistics, e.g., autocovariances, can be expressed as sample averages,

e.g.,

m̂T (Y ) =
1

T

T∑
t=1

m(yt−p:1) (130)
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in which case (assuming stationarity)

E[m̂T (Y )|θ,M1] = E[m(yt−p:t)|θ,M1], (131)

which can be calculated from the model. On the other hand, if m̂T (Y ) corresponds to

the OLS estimator of a VAR(1) without intercept then,

E[m̂T (Y )] = E

( 1

T

T∑
t=1

yt−1y
′
t−1

)−1

1

T

T∑
t=1

yt−1y
′
t

∣∣∣∣θ,M1

 , (132)

which is difficult to evaluate even for a linearized DSGE model. In this case, it could be

replaced by the probability limit of m̂λT (Y ∗(θ,M1)), which is given by the population

regression (
E[yt−1y

′
t−1|θ,M1]

)−1 E[yt−1y
′
t|θ,M1]. (133)

• Conceptual issue: models with stochastic singularities. If the DSGE model is incom-

plete, in the sense that it does not contain a full set of shocks, then comparing the

autocovariance from the DSGE model to the sample autocovariance does not make

sense. Also, in this case the sampling distribution of m̂T (Y ) should not be derived

from DSGE model.

• Notation:

GT (θ|Y ) = m̂T (Y )− E[m̂T (Y )|θ,M1]

QT (θ|Y ) =
∥∥GT (θ|Y )

∥∥
W

D(θ) = ∇θE[m(yt−p:t)
′|θ,M1]

Ω(θ) =
T

lim
t=1

V
[√

TGT (θ|Y )
]

We also have the “score” ∇θQT (θ|Y ) and the “hessian” ∇2
θQT (θ|Y ).

• Note that under suitable regularity conditions QT (θ|Y )
a.s.−→ Q(θ), where Q(θ) ≥ 0 is

uniquely minimized at θ = θ0.

• Extremum estimator asymptotics rely on second-order approximation of objective func-

tion:

TQT (θ|Y ) =
√
T∇θQT (θ0|Y )

√
T (θ − θ0)′ (134)

+
1

2

√
T (θ − θ0)′

[
1

T
∇2
θQT (θ0|Y )

]√
T (θ − θ0) + small.
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• If the minimum is obtained in the interior, then

√
T (θ̂mm − θ0) =

[
− 1

T
∇2
θQT (θ0|Y )

]−1√
T∇θQT (θ0|Y ) + small. (135)

• The “score” for the quadratic objective function is given by

√
T∇θQT (θ0|Y ) = ∇θGT (θ0|Y )W

√
TGT (θ0|Y ) (136)

and its distribution depends on the distribution of

√
TG(θ0|Y ) =

√
T
(
m̂T (Y )− E[m̂T (Y )|θ0,M1]

)
+
√
T
(
Ê[m̂T (Y )|θ0,M1]− E[m̂T (Y )|θ0,M1]

)
= I + II,

say. Term II drops out if the moments for the estimation objective function are

computed analytically.

• Under suitable regularity conditions

√
TGT (θ0|Y ) =⇒ N

(
0,Ω

)
(137)

and we now consider the asymptotic covariance matrix

Ω = V∞[I] + V∞[II]. (138)

• The distribution of term II always depends on the model-implied distribution of the

moments, regardless of whether the model is correctly specified or not. Its asymptotic

variance is given by

V∞[II] = lim
T−→∞

TV [m̂λT (Y ∗(θ0,M1))] (139)

• We can write the limit variance of term I as

V∞[I] = lim
T−→∞

TV[m̂T (Y )] (140)

We can derive a formula for V∞[I] under the assumption that the model is correct as

well as under the assumption that the model is incorrect, ie., derive the limit distribu-

tion of m̂T (Y ) under M0 or M1.
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• Under the assumption that the model is “correctly” specified

Ω = (1 + 1/λ) lim
T−→∞

TV
[
m̂T (Y )|θ0,M1

]
.

• Ω is a long-run covariance matrix if m̂T (Y ) is a sample average.

• Limit distribution of methods of moments estimator:

√
T
(
θ̂mm − θ0) =⇒ N

(
0, (DWD′)−1DWΩWD′(DWD′)−1

)
(141)

• Under “correct” specification, optimal weight matrix is given by

W−1 = lim
T−→∞

TV
[
m̂T (Y )

]
.

• Early work on the asymptotics of simulation-based extremum estimators: Pakes and

Pollard (1989). DSGE model applications in Lee and Ingram (1991) and Smith (1993).

• Some performance comparisons in Ruge-Murcia (2007) and Ruge-Murcia (2012).

• Testing hypotheses about coefficients and construction of confidence intervals based on

quasi-likelihood (ratio, LM, Wald) statistics.

• Testing overidentifying restrictions based on TQT (θ̂mm|Y ) −→ χ2 under the optimal

weight matrix. Degrees of freedom depend on the number of over-identifying restric-

tions.

• Issues arising from stationarity inducing transformations: Gorodnichenko and Ng

(2010)

• Indirect inference for misspecified DSGE models: Dridi, Guay, and Renault (2007)

• Explict formulae for moments of pruned models solved with perturbation methods:

Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez (2013).

Illustration: use different choices of m(·) function, some of which are based on simulation

approximations. Apply repeatedly and show how sampling variation of estimator changes.
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12.3 Impulse Response Function Matching

• Sometimes, DSGE models are specified only with a few exogenous shocks that are

unable to explain all the variability in the data, e.g., only a technology shock or only

a monetary policy shock. To compare models and data we have to purge the effects of

the unspecified shocks from the data. This can be done by “filtering” the data through

a VAR and estimating the impulse response function to a particular structural shock.

One then can estimate the parameters based on discrepancy between model-implied

and empirical impulse response function. Any mismatch between the impulse responses

provides some indication about the misspecification of the propagation mechanism to

the considered structural shock.

• Influential empirical papers utilizing this approach: Rotemberg and Woodford (1997),

Christiano, Eichenbaum, and Evans (2005), Altig, Christiano, Eichenbaum, and Linde

(2011).

• This sounds like the moment-matching estimator described above, where m̂T (Y ) is now

a VAR impulse response function and E[m̂T (Y )|θ,M1] is the impulse response function

obtained from the DSGE model. Unfortunately, a few complications arise:

– empirical impulse responses are based on finite-order VAR(p)’s.

– DSGE models, if linearized, have a state-space representation and (i) can be

expressed as a low-order VAR(p) in terms of the observables and the structural

shocks of the DSGE model; (ii) can be expressed as an infinite-order VAR, where

the innovations correspond to the structural shocks of the DSGE model; (iii) can

be expressed as an infinite-order VAR, but the innovations of this VAR do not

correspond to the innovations of the structural shocks.

– only in case (i) there is a direct match between the empirical IRF and its model-

based counterpart.

• For formal check whether a DSGE model falls within one of the three categories de-

scribed above, see Fernández-Villaverde, Rubio-Ramı́rez, Sargent, and Watson (2007).

Here is an example: consider the two observationally-equivalent DSGE models

M1 : yt = εt + θεt−1 (142)

M2 : yt = θεt + εt−1,
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where 0 < θ < 1. The two models are observationally equivalent. Let L denote the lag

operator and note that the root of the MA polynomial of model M1 is outside of the

unit circle, whereas the root for model M2 is inside the unit circle. Thus, for M1 the

MA polynomial is invertible and we can express yt as an AR(∞) process:

M1 : yt = −
∞∑
j=1

(−θ)jyt−j + εt. (143)

Thus, the estimation of an autoregressive model with many lags can reproduce the

monotone impulse response function of model M1, but not the hump-shaped response

of model M2.

• If the DSGE model generates non-invertible moving average terms its impulse responses

cannot be approximated by a VAR(∞) and a direct comparison of VAR and DSGE

IRFs will be misleading.

• Consistency requirement for IRF matching estimator: suppose the only source of mis-

specification of the DSGE model is the omission of the “other” shocks. In this case,

it should be possible to consistently estimate the DSGE model parameters θ that are

related to the transmission of the shock under consideration.

– in general, this would require that the DSGE model allows for a VAR(∞) repre-

sentation;

– letting the number of lags in the empirical VAR go to infinity as T −→∞;

– a VAR identification scheme that correctly identifies the shock of interest if data

were generated from a “completion” of the DSGE model. This either works with

long-run restrictions or if certain adjustment lags are built into the DSGE model

that justify the use of zero-restrictions.

• Some debate in the literature about what can be learned from IRF matching: Chari,

Kehoe, and McGrattan (2008) and Christiano, Eichenbaum, and Vigfusson (2007).

• In practice: E[m̂T (Y )|θ,M1] is typically replaced by the population IRF computed

from the DSGE model, denoted by IRF (·|θ,M1).

• Asymptotics: the distribution of the IRF matching estimator depends on the sam-

pling distribution of the empirical VAR impulse responses m̂T (Y ) under the VAR M0.
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Common procedures: use first-order asymptotics and delta method to derive limit dis-

tribution of m̂T (Y ), see Lutkepohl (1990) and Mittnik and Zadrozny (1993). Phillips

(1998) Alternatively, use bootstrap approximation as in Kilian (1999, 1998). For per-

sistent VARs see Phillips (1998), Rossi and Pesavento (2006), and Pesavento and Rossi

(2007).

• Issue: choice of weight matrix - preferences versus statistical considerations. Moreover,

if the number of responses is large, then the distribution of the IRFs becomes singular,

meaning that there is redundant information: Guerron-Quintana, Inoue, and Kilian

(2014).

• Nonlinear IRFs: Ruge-Murcia (2014)

Illustration: Compare different versions of the IRF matching estimator: vary VAR specifi-

cation and weight matrix for IRF discrepancies. Use long sample so that parameter uncer-

tainty is irrelevant. Show discrepancy between IRFs and parameter estimates.

12.4 GMM Estimation

• Equilibrium conditions of DSGE model can be rewritten as

E[g(yt−p:t|θ,M1)] = 0 (144)

if and only if θ = θ0. We discussed in Section 9.2.4 how to use instrumental variables

convert conditional moment restrictions into unconditional moment restrictions. To

form an estimator, replace population moments by sample moments and let

GT (θ|Y ) =
1

T

T∑
t=1

g(yt−p:t|θ,M1). (145)

The GMM objective function is then given by

QT (θ|Y ) = GT (θ|Y )′WTGT (θ|Y ) (146)

and looks identical to the objective function studied in Section 12.2.
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• GMM estimator was originally proposed by Hansen (1982), who provided the first-order

asymptotics for the estimator. Since then, an explosion of work on GMM estimators.

GMM machinery can be applied to estimation of DSGE models.

• Early applications of GMM estimators to DSGE models are Christiano and Eichen-

baum (1992), Burnside, Eichenbaum, and Rebelo (1993). These papers consider suffi-

ciently many moment conditions to be able to estimate all the parameters of the DSGE

model.

• In general the GMM estimation can be applied to a subset of the equilibrium conditions,

e.g., the consumption Euler equation or the New Keynesian Phillips curve to estimate

the parameters related to these equilibrium conditions. Unlike all the other estimators

considered in this paper, the GMM estimators do not require the researchers to solve

the DSGE model. To the extent that model solution is computationally costly, this can

speed up the estimation process. However, GMM has difficulties dealing with latent

variables that appear in equilibrium conditions. Would be difficult to estimate, say the

coefficients of the λt process in our DSGE model because it is not observed.

• Robust to misspecification of other model aspects - but model needs to be solved to

be used for actual analysis

• The recent literature has focused on identification-robust inference in view of diffi-

culties with the identification of Phillips curve parameters and policy rule parame-

ters in New Keynesian DSGE models. Survey on weak instrument literature: Stock,

Wright, and Yogo (2002). Identification-robust inference for New Keynesian Phillips

curve:Mavroeidis (2005), Kleibergen and Mavroeidis (2009), and Mavroeidis, Plagborg-

Mller, and Stock (2014). Identification robust inference for monetary policy rule is

provided in Mavroeidis (2010) and general identification problems are discussed by

Cochrane (2011).

• Laplace type estimators: Chernozukov and Hong (2003) and Kormilitsina and Nekipolov

(2013).

• GMM with latent variables: Gallant, Giacomini, and Ragusa (2013).
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13 Bayesian Estimation Techniques

• This section relies heavily on Herbst and Schorfheide (2015).

• To implement Bayesian inference we need to specify a prior distribution p(θ|M1) and

develop numerical techniques to generate draws from the posterior distribution and

approximate the posterior mean and quantiles of transformations h(θ).

• There are many computational techniques available to approximate posterior expec-

tations. The most widely-used technique in the estimation of DSGE models is the

Metropolis-Hastings algorithm, which we discuss in Section 13.2.

• Alternatively, one can use sequential Monte Carlo techniques, that are similar in spirit

to the particle filter discussed in Section 10.3, except that the particles represent the

static parameter θ instead of a sequence of latent states st.

13.1 Prior Distributions

• Prior distributions are an essential part of the parameter inference in DSGE models.

• Various branches of econometrics use prior distributions differently: (i) keep the prior

“flat” so that the posterior reflects the shape of the likelihood function; (ii) use the

prior to deal with a proliferation of parameters; (iii) use the prior to regularize the

likelihood function (make it more ellipitical); (iv) use the prior to add substantive

information to the estimation problem. The Bayesian analysis of DSGE models uses

(iii) and (iv).

• Prior elicitation: Del Negro and Schorfheide (2008). Distinguish steady-state related

parameters, exogenous shock parameters, and endogenous propagation parameters

(give examples in the context of DSGE model).

• Use non-sample information, e.g., pre-sample or micro-level studies.

• Provide some more specifics in the context of stylized DSGE model.
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Table 4: Prior Distribution

Name Domain Prior

Density Para (1) Para (2)

Steady-State Related Parameters θ(ss)

100(1− 1/β) R+ Gamma 0.50 0.50

100 lnπ∗ R+ Gamma 1.00 0.50

100 ln γ R Normal 0.75 0.50

λ R+ Gamma 0.20 0.20

Endogenous Propagation Parameters θ(endo)

ζp [0, 1] Beta 0.70 0.15

1/(1 + ν) R+ Gamma 1.50 0.75

Exogenous Shock Parameters θ(exo)

ρφ [0, 1) Uniform 0.00 1.00

ρλ [0, 1) Uniform 0.00 1.00

ρz [0, 1) Uniform 0.00 1.00

100σφ R+ InvGamma 2.00 4.00

100σλ R+ InvGamma 0.50 4.00

100σz R+ InvGamma 2.00 4.00

100σr R+ InvGamma 0.50 4.00

Notes: Marginal prior distributions for each DSGE model parameter. Para (1) and Para (2)

list the means and the standard deviations for Beta, Gamma, and Normal distributions; the

upper and lower bound of the support for the Uniform distribution; s and ν for the Inverse

Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

. The joint prior distribution of θ is

truncated at the boundary of the determinacy region.

13.2 MCMC Methods

• Denote posterior distribution by π(θ) and expectations by Eπ[θ].
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• Direct sampling and computation of posterior moments is not possible for DSGE mod-

els.

• We begin with a Markov chain Monte Carlo algorithm, which constructs a Markov chain

such that the stationary distribution associated with this Markov chain is unique and

equals the posterior distribution of interest. MCMC algorithms generate a sequence of

draws θi i = 1, . . . , N and the distribution of draw i converges to the target posterior

distribution as N −→ ∞. Moreover, sample averages of draws converge to posterior

expectations:

1

N −N0

N∑
i=N0+1

h(θi)
a.s.−→ Eπ[h(θ)] (147)

• An MCMC algorithm generates a Markov transition kernel K(θi|θi−1) with the prop-

erty that ∫
K(θi|θi−1)π(θi−1)dθi−1 = π(θi) (148)

13.2.1 Metropolis-Hastings Algorithm

• We focus on a particular class of MCMC algorithms, namely, Metropolis-Hastings (MH)

algorithms A first version of such an algorithm had been constructed by Metropolis,

Rosenbluth, Rosenbluth, Teller, and Teller (1953) to solve a minimization problem

and was later generalized by Hastings (1970). Tierney (1994) proved important con-

vergence results for MCMC algorithms and Monte Carlo averages computed based on

their output. Chib and Greenberg (1995) provide an excellent introduction to MH

algorithms. Detailed textbook treatments can be found, for instance, in Robert and

Casella (2004) or Geweke (2005).

• Key ingredient of the MH algorithm is a proposal distribution q(ϑ|θi−1), which poten-

tially depends on the draw θi−1 in iteration i− 1 of the algorithm. The proposed draw

is always accepted if it raises the posterior density (relative to θi−1) and it is sometimes

accepted even if it lowers the posterior density. If the proposed draw is not accepted,

then the chain does not move and θi = θi−1. The acceptance probability is chosen to

ensure that the distribution of the draws converges to the target posterior distribution.

The algorithm takes the following form:
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Algorithm 4 (Generic MH Algorithm). For i = 1 to N:

1. Draw ϑ from a density q(ϑ|θi−1).

2. Set θi = ϑ with probability

α(ϑ|θi−1) = min

{
1,

p(Y |ϑ)p(ϑ)/q(ϑ|θi−1)

p(Y |θi−1)p(θi−1))/q(θi−1|ϑ)

}
and θi = θi−1 otherwise.

Because p(θ|Y ) ∝ p(Y |θ)p(θ) we can replace the posterior densities in the calculation

of the acceptance probabilities α(ϑ|θi−1) by the product of likelihood and prior, which does

not require the evaluation of the marginal data density p(Y ). Algorithm 4 describes how

to generate a parameter draw θi conditional on a parameter draw θi−1. Thus, implicitly it

characterizes a Markov transition kernel K(θ|θ̃), where the conditioning value θ̃ corresponds

to the parameter draw from iteration i− 1.

13.2.2 Random-Walk Metropolis-Hastings Algorithm

The most widely-used MH algorithm for DSGE model applications is the random walk MH

(RWMH) algorithm. The basic version of this algorithm uses a normal distribution centered

at the previous θi draw as the proposal density:

ϑ|θi ∼ N
(
θi, c2Σ̂) (149)

Given the symmetric nature of the proposal distribution, the acceptance probability becomes

α = min

{
p(ϑ|Y )

p(θi−1|Y )
, 1

}
.

A draw, ϑ, is accepted with probability one if the posterior at ϑ has a higher value than the

posterior at θi−1. The probability of acceptance decreases as the posterior at the candidate

value decreases relative to the current posterior.

To implement the RWMH, the user needs to specify c, and Σ̂. The proposal variance

controls the relative variances and correlations in the proposal distribution. The sampler can

work very poorly if q is strongly at odds with the target distribution. Suppose θ, comprises

two parameters, say β and δ, that are highly correlated in the posterior distribution. If the
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variance of the proposal distribution does not capture this correlation, e.g., the matrix Σ̂ is

diagonal, then the draw ϑ is unlikely to reflect the fact that if β is large then δ should also

be large, and vice versa. Therefore, p(ϑ|Y ) is likely to be smaller than p(θi−1|Y ), and so the

proposed draw will be rejected with high probability. As a consequence, the chain will have

a high rejection rate, exhibit a high autocorrelation, and the Monte Carlo estimates derived

from it will have a high variance.

A good choice for Σ̂ seeks to incorporate information from the posterior, to potentially

capture correlations discussed above. Obtaining this information can difficult. A popular

approach, used in Schorfheide (2000), is to set Σ̂ to be the negative of the inverse Hessian at

the mode of the log posterior, θ̂, obtained by running a numerical optimization routine before

running MCMC. Using this as an estimate for the covariance of the posterior is attractive,

because it can be viewed as a large sample approximation to the posterior covariance matrix

as the sample size T −→ ∞. There exists a large literature on the asymptotic normality

of posterior distributions. Fundamental conditions can be found, for instance, in Johnson

(1970).

Unfortunately, in many applications the maximization of the posterior density is tedious

and the numerical approximation of the Hessian may be inaccurate. These problems may

arise if the posterior distribution is very non-elliptical and possibly multi-modal, or if the

likelihood function is replaced by a non-differentiable particle filter approximation. In both

cases, a (partially) adaptive approach may work well: First, generate a set of posterior draws

based on a reasonable initial choice for Σ̂, e.g. the prior covariance matrix. Second, compute

the sample covariance matrix from the first sequence of posterior draws and use it as Σ̂ in a

second run of the RWMH algorithm. In principle, the covariance matrix Σ̂ can be adjusted

more than once. However, Σ̂ must be fixed eventually to guarantee the convergence of the

posterior simulator. Samplers which constantly (or automatically) adjust Σ̂ are known as

adaptive samplers and require substantially more elaborate theoretical justifications.

• discuss accuracy assessment through long-run covariance matrix and multiple runs of

the chain.

Illustration: Generate data from DSGE model. Use MCMC to generate posterior draws.

Show some output from MCMC: sequences of draws, effect of initialization, variance across

chains.
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13.2.3 Blocking

Despite a careful choice of the proposal distribution q(·|θi−1), it is natural that the efficiency

of the MH algorithm decreases as dimension of the parameter vector θ increases. The success

of the proposed random walk move decreases as the dimension d of the parameter space

increases. One way to alleviate this problem, is to break the parameter vector into blocks.

Suppose the dimension of the parameter vector θ is d. A partition of the parameter space,

B, is a collection of Nblocks sets of indices. These sets are mutually exclusive and collectively

exhaustive. Call the subsectors that correspond to the index sets θb, b = 1, . . . , Nblocks. In

the context of a sequence of parameter draws, let θib refer to the bth block of ith draw of θ and

let θi<b refer to the ith draw of all of the blocks before b and similarly for θi>b. Algorithm 5

describes a generic Block MH algorithm.

Algorithm 5 (Block MH Algorithm). Draw θ0 ∈ Θ and then for i = 1 to N :

1. Create a partition Bi of the parameter vector into Nblocks blocks θ1, . . . , θNblocks via

some rule (perhaps probabilistic), unrelated to the current state of the Markov chain.

2. For b = 1, . . . , Nblocks:

(a) Draw ϑb ∼ q(·|
[
θi<b, θ

i−1
b , θi−1

≥b
]
).

(b) With probability,

α = max

{
p(
[
θi<b, ϑb, θ

i−1
>b

]
|Y )q(θi−1

b , |θi<b, ϑb, θi−1
>b )

p(θi<b, θ
i−1
b , θi−1

>b |Y )q(ϑb|θi<b, θ
i−1
b , θi−1

>b )
, 1

}
,

set θib = ϑb, otherwise set θib = θi−1
b .

In order to make the Block MH algorithm operational the researcher has to decided how

to allocate parameters to blocks in each iteration and how to choose the proposal distribution

q(·|
[
θi<b, θ

i−1
b , θi−1

>b

]
) for parameters of block b.

A good rule of thumb, however, is that we want the parameters within a block, say, θb,

to be as correlated as possible while we want the parameters between blocks, say, θb and θ−b,

should be “as independent as possible,” according to Robert and Casella (2004). Unfortu-

nately, picking the “optimal” blocks to minimize dependence across blocks requires a priori

knowledge about the posterior and is therefore often infeasible. The first three papers in the
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DSGE model literature to consider blocking were Curdia and Reis (2009), Chib and Rama-

murthy (2010), and Herbst (2011). Curdia and Reis (2009) group the parameters by type:

economic – those related to agents’ preferences and production technologies – and statistical

– those governing the exogenous processes driving the model. The rationale for this grouping

is that it is relatively straightforward to design proposal distributions for the statistical pa-

rameters. However, the grouping is unlikely to be optimal, because, for instance, economic

parameters related to the persistence generated by the internal propagation mechanism of

a DSGE model may be highly correlated with the parameters of the exogenous processes.

Chib and Ramamurthy (2010) propose grouping parameters randomly. Essentially, the user

specifies how many blocks to partition the parameter vector into and every iteration a new

set of blocks is constructed. While there will be correlated blocks sometimes, the random-

ization ensures that this feature does not persist. Key to the algorithm is that the block

configuration is independent of the Markov chain. This is crucial for ensuring the conver-

gence of the chain. Otherwise, the chain is said to be adaptive and the asymptotic theory is

substantially more complicated. Herbst (2011) constructs a Block MH algorithm in which

the blocking is explicitly based on the posterior correlation structure which is approximated

based on draws from a burn-in period. He provides evidence that the distributional blocking

procedure outperforms the random blocking.

In order to tailor the block-specific proposal distributions, Chib and Ramamurthy (2010)

advocates using an optimization routine – specifically, simulated annealing – to find the mode

of the conditional posterior distribution. As in the RWMH-V algorithm, the variance of the

proposal distribution is based on the inverse Hessian of the conditional log posterior density

evaluated at the mode. This algorithm is called Tailorized Random Block MH (TaRBMH)

algorithm. While the TaRBMH algorithm is very successful in reducing the persistence of

the Markov chain relative to the benchmark RWMH-V algorithm, the downside is that the

algorithm is very slow due to the likelihood evaluations required to execute the simulated

annealing step and the computation of the Hessian.

13.2.4 Marginal Likelihood Approximations

Discuss Geweke (1999)’s harmonic mean estimator and refer to An and Schorfheide (2007)

and Herbst and Schorfheide (2015) for a comparison with the method proposed by Chib and

Jeliazkov (2001) and Sims, Waggoner, and Zha (2008).
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13.2.5 Particle MCMC

For nonlinear DSGE models the exact likelihood function has to be replaced by a particle

filter approximation, which leads to an algorithm that belongs to the class of particle MCMC

methods. We refer to the combination of a particle-filter approximated likelihood and the MH

algorithm as PFMH algorithm. This idea was first proposed for the estimation of nonlinear

DSGE models by Fernández-Villaverde and Rubio-Ramı́rez (2007). The statistical theory

underlying the PFMH algorithm is very complex and beyond the scope of this chapter. We

refer the interested reader to Andrieu, Doucet, and Holenstein (2010) for a careful exposition

and to Flury and Shephard (2011) for other applications in econometrics. By replacing the

exact likelihood function p(θ|Y ) with the particle filter approximation p̂(Y |θ) in Algorithm 4

one might expect to obtain draws from the approximate posterior p̂(θ|Y ) instead of the exact

posterior p(θ|Y ). The surprising implication of the theory developed in Andrieu, Doucet, and

Holenstein (2010) is that the distribution of draws from the PFMH algorithm that replaces

p(Y |θ) by p̂(Y |θ) in fact does converge to the exact posterior. The key requirement is that

the likelihood approximation generated by the particle filter is unbiased. The algorithm

takes the following form:

Algorithm 6 (PFMH Algorithm). For i = 1 to N :

1. Draw ϑ from a density q(ϑ|θi−1).

2. Set θi = ϑ with probability

α(ϑ|θi−1) = min

{
1,

p̂(Y |ϑ)p(ϑ)/q(ϑ|θi−1)

p̂(Y |θi−1)p(θi−1)/q(θi−1|ϑ)

}
and θi = θi−1 otherwise. The likelihood approximation p̂(Y |ϑ) is computed using

Algorithm 3.

The replacement of the exact likelihood function by the particle-filter approximation gen-

erally increases the persistence of the Markov chain and makes Monte Carlo approximations

less accurate. See Herbst and Schorfheide (2015) for numerical illustrations.
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13.3 SMC Methods

• References: Chopin (2002) showed how to adapt the particle filtering techniques to

conduct posterior inference for a static parameter vector. Textbook treatments of

SMC algorithms can be found, for instance, in Liu (2001) and Cappé, Moulines, and

Ryden (2005). The volume by Doucet, de Freitas, and Gordon (2001) discusses many

applications and practical aspects of SMC. Creal (2012) provides a recent survey fo-

cusing on SMC applications in econometrics. The first paper that applied SMC tech-

niques to posterior inference in a small-scale DSGE models is Creal (2007). Herbst

and Schorfheide (2014) developed the algorithm further, provided some convergence

results for an adaptive version of the algorithm building on the theoretical analysis

of Chopin (2004), and showed that a properly tailored SMC algorithm delivers more

reliable posterior inference for large-scale DSGE models with multi-modal posterior

than the widely-used RMWH-V algorithm. Much of exposition in this section borrows

from Herbst and Schorfheide (2014) and Herbst and Schorfheide (2015). An additional

advantage of the SMC algorithms over MCMC algorithms, on the computational front,

highlighted by Durham and Geweke (2012), is that SMC is much more amenable to

parallelization. Durham and Geweke (2012) show how to implement a SMC algorithm

on graphical processing unit (GPU), facilitating massive speed gains in estimations.

• Construct a sequence of posterior distributions. Suppose φn, n = 1, . . . , Nφ, is a

sequence that slowly increases from zero to one. We can define a sequence of tempered

posteriors as

πn(θ) =
[p(Y |θ)]φnp(θ)∫
[p(Y |θ)]φnp(θ)dθ

n = 0, . . . , Nφ, φn ↑ 1. (150)

Alternatively, one could construct the sequence of posteriors by sequentially adding

observations to the likelihood function, that is, πn(θ) is based on p(Y1:bφnT c|θ):

π(D)
n (θ) =

p(Y1:bφnT c)p(θ)∫
p(Y1:bφnT c)p(θ)dθ

. (151)

This data tempering is particularly attractive in sequential applications. Due to the

fact that individual observations are not divisible, the data tempering approach is

slightly less flexible.
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• At any stage the posterior distribution πn(θ) is represented by a swarm of particles

{θin,W i
n}Ni=1 in the sense that the Monte Carlo average

h̄n,N =
1

N

N∑
i=1

W i
nh(θi)

a.s.−→ Eπ[h(θn)]. (152)

Illustration: Generate data from DSGE model. Implement SMC algorithm. Show waterfall

plot of sequence of tempered posteriors. Maybe illustrate propagation of particles. Can

simplify DSGE model by fixing a subset of the parameters.

13.3.1 The SMC Algorithm

Starting from stage n − 1 particles {θin−1,W
i
n−1}Ni=1 the algorithm proceeds in three steps,

using Chopin (2004)’s terminology: correction, that is, reweighting the stage n−1 particles to

reflect the density in iteration n; selection, that is, eliminating a highly uneven distribution of

particle weights (degeneracy) by resampling the particles; and mutation, that is, propagating

the particles forward using a Markov transition kernel to adapt the particle values to the

stage n bridge density.

Algorithm 7 (Generic SMC Algorithm with Likelihood Tempering).

1. Initialization. (φ0 = 0). Draw the initial particles from the prior: θi1
iid∼ p(θ) and

W i
1 = 1, i = 1, . . . , N .

2. Recursion. For n = 1, . . . , Nφ,

(a) Correction. Reweight the particles from stage n− 1 by defining the incremental

weights

w̃in = [p(Y |θin−1)]φn−φn−1 (153)

and the normalized weights

W̃ i
n =

w̃inW
i
n−1

1
N

∑N
i=1 w̃

i
nW

i
n−1

, i = 1, . . . , N. (154)

An approximation of Eπn [h(θ)] is given by

h̃n,N =
1

N

N∑
i=1

W̃ i
nh(θin−1). (155)
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(b) Selection.

Case (i): If ρn = 1, resample the particles via multinomial resampling. Let {θ̂}Ni=1

denote N iid draws from a multinomial distribution characterized by support

points and weights {θin−1, W̃
i
n}Ni=1 and set W i

n = 1.

Case (ii): If ρn = 0, let θ̂in = θin−1 and W i
n = W̃ i

n, i = 1, . . . , N . An approximation

of Eπn [h(θ)] is given by

ĥn,N =
1

N

N∑
i=1

W i
nh(θ̂in). (156)

(c) Mutation. Propagate the particles {θ̂i,W i
n} via NMH steps of a MH algorithm

with transition density θin ∼ Kn(θn|θ̂in; ζn) and stationary distribution πn(θ). An

approximation of Eπn [h(θ)] is given by

h̄n,N =
1

N

N∑
i=1

h(θin)W i
n. (157)

3. For n = Nφ (φNφ = 1) the final importance sampling approximation of Eπ[h(θ)] is

given by:

h̄Nφ,N =
N∑
i=1

h(θiNφ)W i
Nφ
. (158)

13.3.2 Tailoring the SMC Algorithm

• The transition kernel in the mutation step can be generated by NMH steps of Algo-

rithm 5. A single step may be sufficient. The tuning constants c2 and Σ̂ for a RWMH

algorithm can be constructed adaptively; Σ̂ is obtained as the approximation of the

posterior covariance matrix from the output of the correction step and c2 can be ad-

justed adaptively based on rejection rates at earlier stages to reach a desired rejection

rate.

• Remaining choices: tempering schedule, number of particles, number of MH steps.

• See Herbst and Schorfheide (2015) for illustrations and trade-offs in the choice of tuning

parameters.
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13.3.3 Marginal Likelihood Approximation and SMC2

• Marginal likelihood can be computed based on unnormalized weights.

• If the exact likelihood function is replaced by a particle filter approximation then we

obtain an SMC2 algorithm, see Chopin, Jacob, and Papaspiliopoulos (2012) and the

DSGE model application in Herbst and Schorfheide (2015).

13.4 Model Evaluation

• Assessing the relative fit of DSGE models using posterior odds; Bayesian model aver-

aging.

• References: Lancaster (2004) and Geweke (2005). The absolute fit of a Bayes model

can be characterized using prior or posterior predictive checks. Let Y ∗1:T be an artificial

sample of length T . The predictive distribution for Y ∗1:T based on time t information

set Ft is

p(Y ∗1:T |Ft) =

∫
p(Y ∗1:T |θ)p(θ|Ft)dθ. (159)

Here F0 corresponds to prior information and FT corresponds to posterior distribution.

Consider transformation S(Y1:T ), e.g., sample autocovariances vech(Γ̂yy(0)). If the

value of this statistic computed from actual data falls far into the tails of the prior or

posterior predictive distribution, then it indicates that the model is inconsistent with

this particular feature of the data. Application: Chang, Doh, and Schorfheide (2007).

13.5 Bayesian Inference At Work

There are a large number of papers that apply Bayesian techniques to estimate DSGE model.

Below we are referencing a few of them.

• Early applications of Bayesian estimation of DSGE models: DeJong, Ingram, and

Whiteman (2000), Schorfheide (2000), Otrok (2001), Fernandez-Villaverde and Rubio-

Ramirez (2004), and Rabanal and Rubio-Ramı́rez (2005).

• Large scale models usable for policy analysis: Smets and Wouters (2003) and Smets

and Wouters (2007).
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• Policy analysis under uncertainty: Levin, Onatski, Williams, and Williams (2006)

• Allowing for indeterminacy: Lubik and Schorfheide (2004)

• Open economy models: Lubik and Schorfheide (2006)

• Adding stochastic volatility: Justiniano and Primiceri (2008)

• Fat-tailed error distributions: Curdia, Del Negro, and Greenwald (2014)

• Fully nonlinear estimation: Fernández-Villaverde and Rubio-Ramı́rez (2007), Fernández-

Villaverde and Rubio-Ramı́rez (2008)

• Regime switches in intercepts Schorfheide (2005a) and slope coefficients Bianchi (2013)

• Forecasting: handbook chapter of Del Negro and Schorfheide (2013)

• Identification and robustness to prior: Koop, Pesaran, and Smith (2013) and Müller

(2012).

• Choice of observables: Guerron-Quintana (2010)

13.6 Limited Information Bayesian Inference

Bayesian inference requires a likelihood function p(Y |θ). However, as we have seen, many

of the classical approaches to DSGE model estimation, e.g., (generalized) methods of mo-

ments and impulse response function matching, do not utilize the likelihood function of the

DSGE model, in part because there is some concern about misspecification of the likelihood

function. These approaches are often called limited information approaches (as opposed to

full-information inference based on the likelihood function). In this subsection we explore

several Bayesian approaches to limited-information inference.

• Lubik and Schorfheide (2005) estimated monetary policy rules for small open economy

models by augmenting the policy rule equation with a vector-autoregressive law of

motion for the endogenous regressors, e.g. output gap and inflation in the case of

our stylized model. This generates a VAR for output, inflation, and interest rates,

with cross-coefficient restrictions that depend on the monetary policy rule parameters.
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Kleibergen and Mavroeidis (2014) uses a similar approach, focusing on the specification

of prior distributions, and shows how it can be applied to the estimation of a New

Keynesian Phillips curve.

• Suppose we know the sampling distribution p(θ̂|θ) of an estimator θ̂. Then, instead of

updating our beliefs conditional on the observed sample Y , we could update the beliefs

about θ based on the realization of θ̂:

p(θ|θ̂) =
p(θ̂|θ)p(θ)∫
p(θ̂|θ)p(θ)

. (160)

This idea dates back at least to Pratt, Raiffa, and Schlaifer (1965). The problem

with this approach is that we typically do not have a closed-form representation of

the density p(θ̂|θ). We could replace p(θ̂|θ) by a simulation-based approximation, an

idea set forth by Boos and Monahan (1986). Alternatively, we could replace the finite-

sample distribution by a limit distribution, e.g.,

√
T (θ̂ − θ)|θ =⇒ N

(
0, V (θ)

)
. (161)

However, it is important that this convergence is uniform in θ, because we want to

approximate a posterior density for θ. Thus, we would need something like: for every

converging sequence θT −→ θ,

√
T (θ̂ − θT )|θT =⇒ N

(
0, V (θ)

)
. (162)

Note that this uniform convergence is typically not attainable as θT approaches the

boundary of the stationary region of the parameter space. This idea is explored in

Kwan (1999). Rather than making statements about the approximation of poste-

rior distribution, Müller (2013) shows that decisions based on the quasi-posterior are

asymptotically optimal under fairly general conditions.

• Kim (2002) constructs a limited-information likelihood function as follows. Suppose

the data is generated under the probability measure P and at θ0 we have the mo-

ment condition EP[g(yt−p:t|θ0)] = 0, thus we are considering the GMM setup. Using a

weight matrix that corresponds to the inverse of the long-run covariance matrix of the

sample analogue of the moment conditions and imposing uniform integrability, then,

limT−→∞ EP[QT (θ0|Y )] = k, where k is the dimension of θ.



Fernandez-Villaverde, Rubio-Ramirez, Schorfheide: This Version April 7, 2015 134

To obtain a limited-information likelihood function, consider the class of distributions

P(θ) defined as follows:

P(θ) =
{
P | lim

T−→∞
EP [TQT (θ|Y )] = k

}
. (163)

Because P(θ) is not a singleton, we do not have a likelihood function yet. To obtain a

unique distribution for each θ, let’s project the “true” distribution P onto the set P(θ)

using the Kullback-Leibler discrepancy as the metric:

P ∗(θ|Y ) = argminP∈P(θ)

∫
ln(dP/dP)dP, (164)

where p∗(θ|Y ) = dP/dP is the Radon-Nikodym derivative of P with respect to P. The

solution takes the form

p∗(θ|Y ) ∝ exp

{
−1

2
QT (θ|Y )

}
. (165)

Practical issues: dependence of weight matrix in QT (θ) objective function on θ; use of

quadratic expansion of the log likelihood to obtain Gaussian posterior.

This idea has been used by Christiano, Trabandt, and Walentin (2010) to construct

a Bayesian impulse response function matching estimator. Inoue and Shintani (2014)

construct a limited-information marginal likelihood that can be used for model selec-

tion.

• Nonparametric likelihood function: empirical likelihood as in Lazar (2003) and Schen-

nach (2005). Roughly, assign probability pt to observation yt and let the likelihood

function be
∏T

t=1 pt. Impose side constraint
∑T

t=1 ptg(yt−p:t|θ) and concentrate out

pt probabilities to obtain a profile objective function that only depends on θ. This

method is designed for iid data and possible models in which g(yt−p:t|θ) is a martingale

difference sequence. Kitamura and Otsu (2011) propose to use a Dirichlet process to

generate a prior for the distribution of Y1:T and then project this distribution on the

set of distributions that satisfies the moment restrictions. Shin (2014) uses a Dirichlet

process mixture and provides a time series extension.

14 Conclusion

(TBW)
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Mathematical Notation

• Sequences: Y1:t = {y1, . . . , yt}

• Steady states: x is steady state of xt

• Deviations: x̂t = ln(xt/x)

• Autocovariances (yt, st−h): Γys(h), Γ̂yy(h).

• Identity matrix: I

• forecast horizon: h

• Index for MA representation; s. NOTE s is also state.

• Variable i, shock j

• Number of shocks nε

• Matrix elements [A]ij, [A].j

• Indicator function: I{a ≥ b}

• Frequencies and fundamental frequencies: ω and ωj

• i =
√
−1

• complex conjugate z̄

• Spectral distribution function Fyy(ω)

• Spectral density function fyy(ω)

• Sample periodogram f̂yy(ω)

• Smoothed sample f̄yy(ω)

• VAR-based spectral estimate f̂Vyy(ω)

• Forecast error covariance decomposition: FEVD(i, j, h)

• Impulse response function: IRF(i, j, h)
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• Dimensions: ny, ns, nε

• Generic parameter vector: θ

• Measurement equation: Ψ

• Transition equation: Φ
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Abbreviations

• DSGE

• iid

• VAR

• CLT


