Trust the Experts? Eight Decades of Inflation Expectations

Tyler Goodspeed Hoover Institution, Stanford University 09 November 2022 E: <u>tbg@stanford.edu</u>

Economic Policy Working Group

November 2022

Consumers versus professionals, 1960-2022

Sources: University of Michigan; Federal Reserve Bank of Philadelphia; Bureau of Labor Statistics; Author's calculations.

Goodspeed

Preview of results

- During periods of low and stable inflation, the average professional forecaster is generally more accurate, rational, and efficient.
- But during periods of high inflation and inflation regime change, the average consumer forecast is more accurate, rational and efficient.
- 3.5% inflation is a critical threshold above which consumers rationally predict inflation.
- Professionals with commercial banks and labor organizations outperform other professionals during periods of price stability.
- Professionals with labor organizations exhibit less bias and more rationality and efficiency during periods of inflation regime change.

Survey data

- Livingston Survey of Professional Economists
 - Every June and December, 1946-present.
 - Implicit 14-month forecast, 1946-1991; 12-month forecast, 1992-present.
 - Seasonally unadjusted level of CPI, 1946-2004; seasonally adjusted level of CPI, 2004-present.
- University of Michigan Survey of Consumers
 - Quarterly, 1960-1977; monthly, 1978-present.
 - 1960 to 1966:Q2: "Do you think prices will go up in the next year, or go down, or stay the same?"
 - 1966:Q2 to 1977:Q3, respondents with $\pi^e > 0$ asked to report within specified ranges by how much they expected prices to increase.

	1960-2022
	(1)
α_1 : Professionals	0.47
	(0.11)
$\alpha_1 + \alpha_2$: Consumers	-0.54**
	p = 0.04
α_2 : Difference	-1.02***
	(0.11)
R^2	0.30
N	248

$$\pi_t - E_{t-12}\pi_t = \alpha_1 + \alpha_2 Survey + \varepsilon_t$$

	1960-2022	1960-1965
	(1)	(2)
α_1 : Professionals	0.47	0.50
	(0.11)	(0.26)
$\alpha_1 + \alpha_2$: Consumers	-0.54**	-0.52*
	p = 0.04	p = 0.05
α_2 : Difference	-1.02***	-1.02***
	(0.11)	(0.14)
R^2	0.30	0.48
N	248	24

	1960-2022	1960-1965	1966-1980
	(1)	(2)	(3)
α_1 : Professionals	0.47	0.50	2.15^{***}
	(0.11)	(0.26)	(0.67)
$\alpha_1 + \alpha_2$: Consumers	-0.54**	-0.52*	0.92
	p = 0.04	p = 0.05	p = 0.16
α_2 : Difference	-1.02***	-1.02***	-1.22***
	(0.11)	(0.14)	(0.24)
R^2	0.30	0.48	0.07
N	248	24	58

	1960-2022	1960-1965	1966-1980	1980-1987
	(1)	(2)	(3)	(4)
α_1 : Professionals	0.47	0.50	2.15^{***}	-1.48**
	(0.11)	(0.26)	(0.67)	(0.46)
$\alpha_1 + \alpha_2$: Consumers	-0.54**	-0.52*	0.92	-1.43**
	p = 0.04	p = 0.05	p = 0.16	p = 0.02
α_2 : Difference	-1.02***	-1.02***	-1.22***	0.06
	(0.11)	(0.14)	(0.24)	(0.20)
R^2	0.30	0.48	0.07	0.00
N	248	24	58	28

	1960-2022	1960-1965	1966-1980	1980-1987	1987-2020
	(1)	(2)	(3)	(4)	(5)
α_1 : Professionals	0.47	0.50	2.15^{***}	-1.48**	-0.01
	(0.11)	(0.26)	(0.67)	(0.46)	(0.22)
$\alpha_1 + \alpha_2$: Consumers	-0.54**	-0.52*	0.92	-1.43**	-1.09***
	p = 0.04	p = 0.05	p = 0.16	p = 0.02	p = 0.00
α_2 : Difference	-1.02***	-1.02***	-1.22***	0.06	-1.08***
	(0.11)	(0.14)	(0.24)	(0.20)	(0.11)
R^2	0.30	0.48	0.07	0.00	0.11
N	248	24	58	28	134

	1960-2022	1960-1965	1966-1980	1980-1987	1987-2020	2021-2022
	(1)	(2)	(3)	(4)	(5)	(6)
α_1 : Professionals	0.47	0.50	2.15^{***}	-1.48**	-0.01	5.99
	(0.11)	(0.26)	(0.67)	(0.46)	(0.22)	N/A
$\alpha_1 + \alpha_2$: Consumers	-0.54**	-0.52*	0.92	-1.43**	-1.09***	2.55
	p = 0.04	p = 0.05	p = 0.16	p = 0.02	p = 0.00	N/A
α_2 : Difference	-1.02***	-1.02***	-1.22***	0.06	-1.08***	3.44
	(0.11)	(0.14)	(0.24)	(0.20)	(0.11)	N/A
\overline{R}^2	0.30	0.48	0.07	0.00	0.11	0.93
N	248	24	58	28	134	4

Predicted probability consumer AE < professional AE by inflation level

$$P(Y=1 \mid \pi_t) = F(\alpha + \beta \pi_t)$$

Goodspeed

Economic Policy Working Group

November 2022

Are forecasts biased when $\pi \leq 3.5\%$, $\pi > 3.5\%$?

$_{-12}\pi_{t} = \alpha_{1} + \alpha_{2}$	$Survey + \alpha_3 \Pi_t^{3.5} +$	+ $\alpha_4 Survey \cdot \Pi_t^{3.5} + \alpha_4 Survey \cdot \Pi_t^{3.5}$	ε _t
Panel A: $\Pi_t^{3.8}$	$^{5}=0~(\pi<=3.5\%)$	Panel B: $\Pi_t^{3.5}$	$= 1 \ (\pi > 3.5\%)$
(1)	(2)	(3)	(4)
$\alpha_1 + \alpha_2$:	$-1.47\%^{***}$	$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$:	0.61%
	(0.00)		(0.12)
α_1 :	-0.36%**	$\alpha_1 + \alpha_3$:	$1.37\%^{**}$
	(0.03)		(0.01)
Profess	$sionals^{***}$	Consum	ners***
(1	0.00)	(0.0	00)
		0.30	
	146	10	2
	$\frac{-12\pi t}{Panel A: \Pi t} = \alpha_1 + \alpha_2$ $\frac{(1)}{\alpha_1 + \alpha_2}$ α_1 Profess (($\begin{array}{r} -12\pi _{t} = \alpha _{1} + \alpha _{2}Survey + \alpha _{3}\Pi _{t}^{3.5} - \frac{1}{2}Panel A: \Pi _{t}^{3.5} = 0 \ (\pi <= 3.5\%) \\ (1) \qquad (2) \\ \alpha _{1} + \alpha _{2} : \qquad -1.47\%^{***} \\ (0.00) \\ \alpha _{1} : \qquad -0.36\%^{**} \\ (0.03) \\ Professionals^{***} \\ (0.00) \end{array}$	$\begin{array}{c} -\underline{12}\pi_{t} = \alpha_{1} + \alpha_{2}Survey + \alpha_{3}\Pi_{t}^{3.5} + \alpha_{4}Survey \cdot \Pi_{t}^{3.5} + \alpha_{4}Survey \cdot \Pi_{t}^{3.5$

Notes: p-values are reported in parentheses. Robust standard errors (not reported) are clustered at the overlapping forecast-pair level. *** p < 0.01, ** p < 0.05, * p < 0.10.

Are forecast errors autocorrelated?

$\pi_{t} - E_{t-12}\pi_{t} = \alpha_{1} + \alpha_{2}\Pi_{t}^{3.5} + \beta(\pi_{t-12} - E_{t-24}\pi_{t-12}) + \gamma(\pi_{t-12} - E_{t-24}\pi_{t-12}) \cdot \Pi_{t}^{3.5} + \varepsilon_{t}$			
	Consumers	Professionals	
	(1)	(2)	
$egin{array}{lll} eta : (\pi_{t-12} - E_{t-24} \pi_{t}) \end{array}$	-0.02	0.12	
	(0.19)	(0.24)	
α_1 : Constant	-1.81%***	-0.53%**	
	(0.45)	(0.21)	
$\alpha_1 = \beta = 0?$	NO***	NO**	
	p = 0.00	p = 0.01	
$\gamma \colon (\pi_{t-12} - E_{t-24} \pi_{t}) \cdot \Pi_{t}^{-3.5}$	0.20	0.23	
	(0.25)	(0.31)	
$\alpha_1 + \alpha_2$: Constant	0.61%	$1.10\%^{***}$	
	p = 0.23	p = 0.00	
$\beta + \gamma = 0?$	\mathbf{YES}	NO^*	
	p = 0.27	p = 0.09	
$\alpha_1 + \alpha_2 = \beta + \gamma = 0?$	YES	NO***	
	p = 0.11	p = 0.00	
R^2	0.42	0.35	
N	59	59	

Notes: Robust standard errors are reported in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10

Does actual inflation on average move one-for-one with the forecast?

$\pi_{t} = \alpha_{1} + \alpha_{2}\Pi_{t}^{3.5} + \beta E_{t-12}\pi_{t} + \gamma E_{t-12}\pi_{t} \cdot \Pi_{t}^{3.5} + \varepsilon_{t}$			
	Consumers	Professionals	
	(1)	(2)	
$\overline{\beta\colon E_{t-12}\pi_{t}}$	0.07	0.37^{***}	
	(0.23)	(0.13)	
α_1 : Constant	$1.79\%^{**}$	$1.14\%^{***}$	
	(0.76)	(0.33)	
$\alpha_1 = 0, \beta = 1?$	NO***	NO***	
	p = 0.00	p = 0.00	
$\gamma \colon {E}_{t-12} \pi_{t} \cdot \Pi_{t}^{3.5}$	0.83^{**}	0.46^{*}	
	(0.30)	(0.26)	
$\alpha_1 + \alpha_2$: Constant	1.18%	$2.21\%^{**}$	
	p = 0.23	p = 0.03	
$\beta + \gamma = 1?$	YES	YES	
	p = 0.59	p = 0.47	
$\alpha_1 + \alpha_2 = 0, \beta + \gamma = 1?$	YES	NO***	
	p = 0.15	p = 0.00	
R^2	0.75	0.70	
N	120	120	

Notes: Robust standard errors are clustered at the overlapping forecast-pair level and reported in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.

Just for the Grumpy Economist

	Consumers	Professionals
	(1)	(2)
α_1 : Constant	-(0.17%
	((0.37)
$\alpha_1 + \alpha_2$: Constant	0.	$61\%^{**}$
	p	= 0.02
eta_1 : $(E[ext{Michigan}]_{t=12} \pi_{t} - \pi_{t=12})$	-0.18	
	(0.29)	
β_2 : $(E[\text{Livingston}]_{t-12}\pi_t - \pi_{t-12})$		1.19^{***}
		(0.28)
$v_1: (E[\text{Michigan}]_{t-12} \pi_t - \pi_{t-12}) \cdot \Pi_t^{-3.5}$	1.28^{***}	
	(0.35)	
${}^{\nu}_{2}$: $(E[{ m Livingston}]_{t-12} \pi_{tt} - \pi_{t-12}) \cdot \Pi_{tt}^{-3.5}$		-1.40***
		(0.33)
$B_1 = 1?$	NO***	
	p = 0.00	
$\beta_2 = 1?$		YES
		p = 0.48
$\beta_1 + \gamma_1 = 1?$	YES	
	p = 0.61	
$\beta_2 + \gamma_2 = 1?$		NO***
		p = 0.00
R^2		0.50
N		122

Goodspeed

Is information fully exploited?

$\pi_{t} - E_{t-12}\pi_{t} = \alpha_{1} + \alpha_{2}\Pi_{t}^{3.5} + \beta E_{t-12}\pi_{t} + \gamma E_{t-12}\pi_{t} \cdot \Pi_{t}^{3.5} + \varepsilon_{t}$			
	Consumers	Professionals	
	(1)	(2)	
eta : $E_{t-12}\pi_t$	-0.93***	-0.63***	
	(0.19)	(0.13)	
α_1 : Constant	$1.79\%^{**}$	$1.14\%^{***}$	
	(0.64)	(0.33)	
$\alpha_1 = \beta = 0?$	NO***	NO***	
	p = 0.00	p = 0.00	
$\gamma \colon {E}_{t-12} \pi_{t} \cdot \Pi_{t}^{3.5}$	0.83^{***}	-0.46	
	(0.11)	(0.26)	
$\alpha_1 + \alpha_2$: Constant	1.18%	$2.21\%^{***}$	
	p = 0.23	p = 0.03	
$\beta + \gamma = 0?$	YES	YES	
	p = 0.59	p = 0.47	
$\alpha_1 + \alpha_2 = \beta + \gamma = 0?$	YES	NO***	
	p = 0.15	p = 0.00	
R^2	0.44	0.28	
N	120	120	

Notes: Robust standard errors are clustered at the overlapping forecast-pair level and reported in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.

Is macroeconomic data fully exploited?

$\overline{\pi_{t} - E_{t-12}\pi_{t} = \alpha_{1} + \beta E_{t-12}\pi_{t} + \varphi \pi_{t-14} + \kappa i_{t-13} + \delta U_{t-13}}$				
$+ \alpha_{2} \Pi_{t}^{3.5} + \gamma E_{t-12} \pi_{t} \cdot \Pi_{t}^{3.5} + \lambda \pi_{t-14} \cdot \Pi_{t}^{3.5} + \varepsilon_{t}$				
	Consumers	Professionals		
	(1)	(2)		
$arphi$: $\pi_{t\ -14}$	0.40***	0.13		
	(0.11)	(0.16)		
$\kappa: i_{t-14}$	-0.00	-0.00*		
	(0.00)	(0.00)		
$\delta \colon {U}_{t\ -14}$	-0.00**	-0.00***		
	(0.00)	(0.00)		
$\varphi = \kappa = \delta = 0?$	NO***	NO*		
	p = 0.00	p = 0.05		
$\lambda:\pi_{t-14}\cdot\Pi_t^{-3.5}$	-0.29	0.04		
	(0.20)	(0.29)		
$\alpha_1 + \alpha_2 = \beta + \gamma = 0?$	NO*	NO***		
	p = 0.08	p = 0.00		
$\varphi + \lambda = \kappa = \delta = 0?$	YES	NO***		
	p = 0.23	p = 0.01		
R^2	0.49	0.40		
N	120	120		

Notes: Robust standard errors are clustered at the overlapping forecast-pair level and reported in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.

Identifying inflationary regime shifts

Goodspeed

Economic Policy Working Group

November 2022

Are forecasts biased during inflation regime shifts?

$\pi_{t} - E_{t-12}\pi_{t} = \alpha_{1} + \alpha_{2}\Pi_{t}^{inf} +$	$+ \alpha_3 \Pi_t^{dis} + \beta Surves$	$v + \gamma_1 Survey \cdot \Pi_t^{inf} +$	$\gamma_2 Survey \cdot \Pi_t^{dis} + \varepsilon_t$
	Consumers	Professionals	Difference?
	(1)	(2)	(3)
α_1 (Professionals), $\alpha_1 + \beta$	-0.69%***	0.25%	YES***
(Consumers)	p = 0.01	p = 0.44	p = 0.00
α_2	2.13	3%**	
	(0	.85)	
α3	$-1.55\%^{***}$		
	(0	.27)	
γ_{1}	-0.64%***		
	(0.22)		
γ_2	$0.82\%^{**}$		
	(0.33)		
$\overline{\Pi_t^{inf}} = 1, \Pi_t^{dis} = 0$	0.80%	$2.38\%^{***}$	YES***
	p = 0.41	p = 0.01	p = 0.00
$\Pi_t{}^{inf} = 0, \Pi_t{}^{dis} = 1$	-1.41%***	$-1.29\%^{***}$	NO
	p = 0.00	p = 0.00	p = 0.72
R^2		0.12	
N		228	

Notes: Robust standard errors are clustered at the overlapping forecast-pair level and reported in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.

Goodspeed

Are forecasts rational and efficient during regime shifts?

	Consumers	Professionals	
A. Are forecasting errors uncorrelated?			
No shock	NO***	YES	
Inflationary shock	NO***	NO***	
Disinflationary shock	YES	NO***	
B. Is information in the forecast fully exploited?			
No shock	NO***	YES	
Inflationary shock	YES	NO***	
Disinflationary shock	NO***	NO***	
C. Does inflation, on average, move one-for-one with the forecast?			
No shock	NO***	YES	
Inflationary shock	YES	NO***	
Disinflationary shock	NO***	NO***	
D. Are available macroeconomic data fully exploited?			
No shock	NO***	NO**	
Inflationary shock	NO***	NO^*	
Disinflationary shock	NO***	NO***	

Forecast bias by regime shock and type of expert

$\pi_{t} - E_{t-12}\pi_{t} = \alpha_{1} + \alpha_{2}\Pi_{t}^{inf} + \alpha_{3}\Pi_{t}^{dis} + \beta Survey + \gamma_{1}Survey \cdot \Pi_{t}^{inf} + \gamma_{2}Survey \cdot \Pi_{t}^{dis} + \varepsilon_{t}$			
	$\Pi_t^{inf}, \Pi_t^{dis} = 0$	$\Pi_t^{inf} = 1, \Pi_t^{dis} = 0$	$\Pi_t^{inf} = 0, \Pi_t^{dis} = 1$
	$(\alpha_1 + \beta)$	$(\alpha_1 + \alpha_2 + \beta + \gamma_1)$	$(\alpha_1 + \alpha_3 + \beta + \gamma_2)$
	(1)	(2)	(3)
Academic	0.43^{*}	2.30^{**}	-1.33***
	(0.06)	(0.02)	(0.00)
Commercial banking	0.35	2.22^{***}	-1.41***
	(0.15)	(0.01)	(0.00)
Federal Reserve	0.92	2.79^{***}	-0.84***
	(0.18)	(0.00)	(0.00)
Government	0.51^{**}	2.38^{**}	-1.25***
	(0.04)	(0.04)	(0.00)
Investment banking	0.28	2.15^{***}	-1.48***
	(0.26)	(0.00)	(0.00)
Labor	0.19	2.06^{***}	-1.57***
	(0.58)	(0.01)	(0.00)
Nonfinancial business	0.30	2.17^{**}	-1.46***
	(0.20)	(0.01)	(0.00)
Other	0.51	2.38^{***}	-1.25***
	(0.15)	(0.01)	(0.00)

Notes: p-values are reported in parentheses. Robust standard errors (not reported) are clustered at the overlapping forecast-pair level. Estimates are reported in percentages. *** p < 0.01, ** p < 0.05, * p < 0.10.

Forecast rationality and efficiency by regime shock and type of expert

	No Shock	Inflationary shock	Disinflationary shock
A. Are forecasting errors	uncorrelated?		
Academic	YES	NO***	NO*
Commercial banking	YES	NO***	NO*
Government	NO***	NO***	NO***
Investment banking	NO***	NO***	NO***
Labor	YES	NO***	YES
Nonfinancial business	NO^*	NO***	NO**
Other	YES	NO***	YES
B. Does inflation, on average, move one-for-one with the forecast?			
Academic	NO^*	NO***	NO***
Commercial banking	YES	NO***	NO***
Government	NO**	NO***	YES
Investment banking	YES	NO***	NO***
Labor	NO**	NO***	YES
Nonfinancial business	YES	NO***	NO***
Other	NO*	NO***	NO***
C. Is information fully ex	ploited?		
Academic	NO^*	NO**	YES
Commercial banking	YES	YES	YES
Government	YES	YES	YES
Investment banking	NO^*	NO***	YES
Labor	NO***	YES	NO***
Nonfinancial business	YES	NO***	YES
Other	NO**	NO***	NO**

Goodspeed

Some implications

- Merit to Greenspan dictum once consumers do notice, they pay very close attention.
- > 3% is cutting it close.
- \succ Importance of skin in the game.
- > Limits of models.

Forecast errors by survey and inflation level

Economic Policy Working Group

November 2022

Livingston institutional coverage by decade

Category	Decades with observations
Academic institution	All
Commercial banking	All
Consulting	1980s, 1990s, 2000s, 2010s
Federal Reserve	1970s, 1980s
Government	All
Industry trade group	1990s, 2000s, 2010s
Insurance company	1980s, 1990s, 2000s, 2010s
Investment banking	All
Labor	1940s, 1950s, 1960s, 1970s, 1980s, 1990s, 2000s
Nonfinancial business	All
Other / unknown	1940s, 1950s, 1960s, 1970s, 1980s, 1990s, 2000s, 2010s