WHEN DID GROWTH BEGIN?

NEW ESTIMATES OF PRODUCTIVITY GROWTH IN ENGLAND FROM 1250 TO 1860

Paul Bouscasse¹ Emi Nakamura² Jón Steinsson²

¹University of Cambridge ²University of California, Berkeley

November 2022

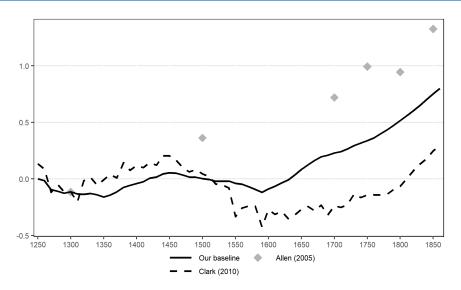
WHEN DID GROWTH BEGIN?

- Industrial Revolution (i.e., around 1800)
 - No trend in real wages before 1800 Real Wages
- First Great Divergence after 1500
 - Divergence of urbanization rates after 1500
 (e.g., Acemoglu, Johnson, and Robinson, 2005)
 - Revisionist view of Industrial Revolution (Crafts, 1983, 1985; Harley 1982; Crafts and Harley, 1992)
- Way Back When
 - GDP per capita has grown since 1270
 (Broadberry et al., 2015) GDP per capita
 - World population growth back to 1 million BC (Kremer, 1993)

PRODUCTIVITY GROWTH

- Our focus: Productivity growth
- Our main findings:
 - No productivity growth before 1600
 - Productivity growth began in 1600 at a modest rate of 3% per decade
 - Slight increase of productivity growth in 1760 to 4% per decade
 - Falling land share allowed economy to grow faster after 1760
- Findings shed light on why growth began:
 - Productivity growth began almost 100 years prior to Glorious Revolution
 - Indicates that economic change preceded 17th century political reforms in England (and may have contributed to causing them)

COMPARISON WITH EARLIER ESTIMATES



Allen (2005): TFP in agriculture (primal approach). Clark (2010): TFP for whole economy (dual approach).

ESTIMATING PRODUCTIVITY GROWTH

Primal approach (Solow, 1957; Allen, 2005):

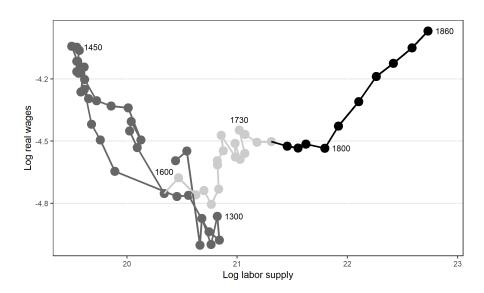
$$\Delta a_t = \Delta y_t - (1 - \alpha - \beta) \Delta I_t - \beta \Delta k_t$$

Dual approach (Hsieh, 2002; Clark, 2010):

$$\Delta a_t = (1 - \alpha - \beta) \Delta w_t + \alpha \Delta s_t + \beta \Delta r_t$$

Our approach different from both of these

REAL WAGES AND LABOR SUPPLY



ALTERNATIVE APPROACH

Labor demand:

$$W_t = (1 - \alpha)A_t \left(\frac{Z}{L_t}\right)^{\alpha}$$

Or in logs:

$$\mathbf{w}_t = \phi - \alpha \mathbf{I}_t + \mathbf{a}_t$$

- Empirical challenge:
 - a_t and l_t are correlated because of Malthusian forces
 - Higher a_t induces population growth in a Malthusian world

MALTHUSIAN MODEL

- We estimate a Malthusian model of economy
- In other words: We model the endogeneity of population dynamics

Outcomes:

- New series for productivity in England from 1250-1860
- Estimates of the strength of Malthusian forces in pre-industrial and early industrial England

A Malthusian Model of the Economy

PRODUCTION, LABOR AND CAPITAL DEMAND

Production function:

$$Y_t = A_t Z^{\alpha} K_t^{\beta} L_t^{1-\alpha-\beta}$$

where Z is land, K_t is capital, L_t is labor, and A_t is productivity

Labor demand:

$$W_t = (1 - \alpha - \beta)A_t Z^{\alpha} K^{\beta} L_t^{-\alpha - \beta}$$

Capital demand:

$$r_t + \delta = \beta A_t Z^{\alpha} K_t^{\beta - 1} L_t^{1 - \alpha - \beta},$$

LABOR SUPPLY AND POPULATION DYNAMICS

Labor supply is given by:

$$L_t = D_t N_t$$

where D_t is days worked per year and N_t is population

• Population growth increasing in income:

$$\frac{N_t}{N_{t-1}} = \Omega(W_{t-1}D_{t-1})^{\gamma} \Xi_t$$

- ullet γ : Elasticity of population growth with respect to income
- Ω: Normalizing constant
- Ξ_t : Population shock

EARLY INDUSTRIAL ECONOMY

Production function:

$$Y_t = A_t Z^{\alpha_t} K_t^{\beta_t} L_t^{1-\alpha_t-\beta_t}$$

allows for changing factor shares: α_t and β_t

Demand for land:

$$S_t = \alpha_t A_t Z^{\alpha_t - 1} K^{\beta_t} L_t^{1 - \alpha_t - \beta_t}$$

- Use data on land rents (S_t) and capital to pin down evolution of α_t and β_t
- We date onset of Industrial Revolution at 1760 (when we have data on capital from Feinstein 88)

PRODUCTIVITY

Pre-Industrial Economy:

Standard measure of productivity: A_t

Early Industrial Economy:

- With α_t , β_t changing, A_t no longer good measure of productivity wy

Malmquist index:

$$M_t = \sqrt{\frac{F_t(Z, K_t, L_t)F_t(Z, K_0, L_0)}{F_0(Z, K_t, L_t)F_0(Z, K_0, L_0)}}.$$

• With constant α and β : $M_t = A_t/A_0$

PRODUCTIVITY

Productivity has two components:

$$m_t = \tilde{m}_t + \epsilon_{2t}$$

where $m_t = \log M_t$

1. Permanent component:

$$ilde{m}_t = \mu + ilde{m}_{t-1} + \epsilon_{1t}$$
 $\epsilon_{1t} \sim \mathcal{N}(0, \sigma_{\epsilon_1}^2)$

2. Transitory component:

$$\epsilon_{2t} \sim \mathcal{N}(\mathbf{0}, \sigma_{\epsilon_2}^2)$$

POPULATION SHOCKS

• Two types of population shocks:

$$\xi_t = \xi_{1t} + \xi_{2t}$$

where $\xi_t = \log \Xi_t$

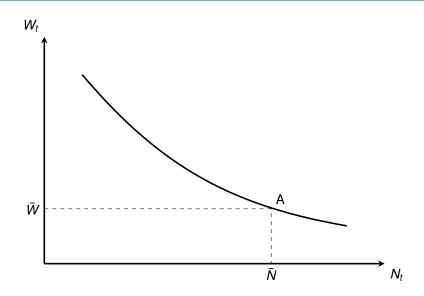
1. Plague shocks:

$$\exp(\xi_{1t}) \sim \left\{ egin{array}{ll} eta(eta_1,eta_2), & \mbox{with probability } \pi \ 1, & \mbox{with probability } 1-\pi \end{array}
ight.$$

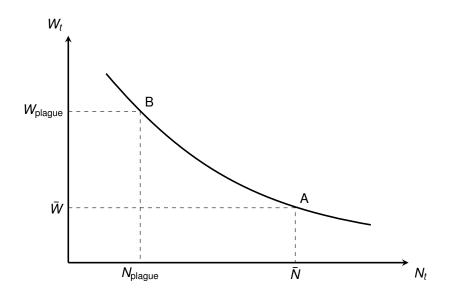
2. Symmetric shocks:

$$\xi_{2t} \sim \mathcal{N}(0, \sigma_{\xi_2}^2)$$

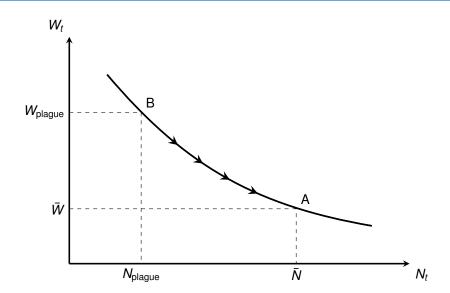
PLAGUE SHOCK

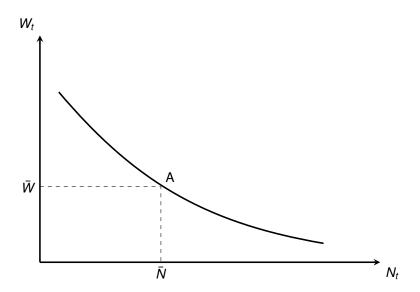


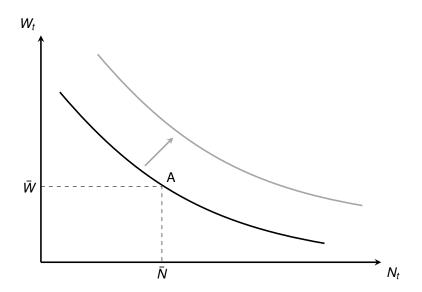
PLAGUE SHOCK

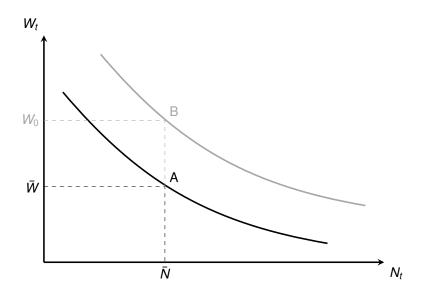


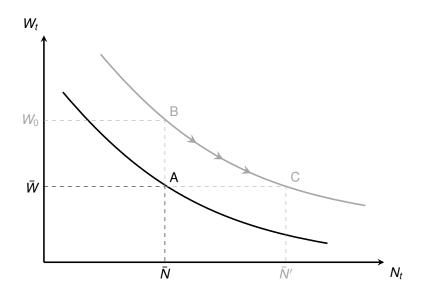
PLAGUE SHOCK









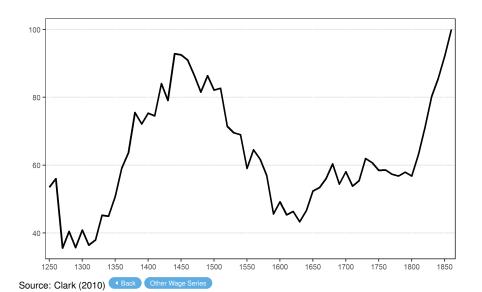


Data and Estimation

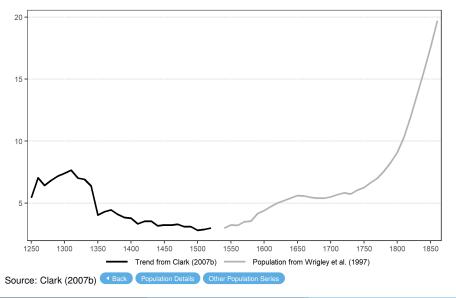
ESTIMATION

- We estimate the model using the following data:
 - Real wages of unskilled builders from Clark (2010)
 - Population from Clark (2007b)
 - Days worked from Humphries and Weisdorf (2019)
 - Rates of return on land and rent charges from Clark (2002, 2010)
 - Capital after 1760 from Feinstein (1988)
 - Land rents after 1760 from Clark (2002, 2010)
- Sample period: 1250-1860

REAL WAGES IN ENGLAND, 1250-1860



POPULATION DATA

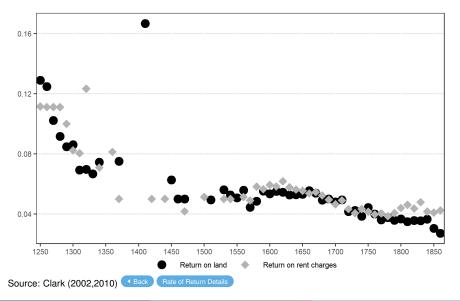


DAYS WORKED PER YEAR

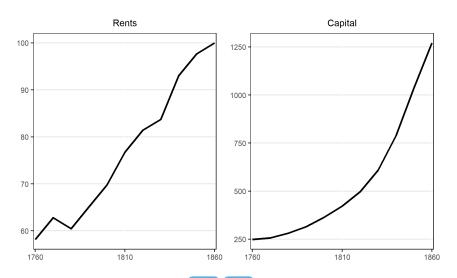


Bouscasse, Nakamura, Steinsson

RATES OF RETURN



LAND RENTS AND CAPITAL AFTER 1760



ESTIMATION METHOD

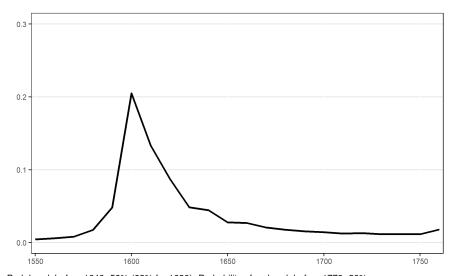
- We estimate the model using Bayesian methods
 - Hamiltonian Monte Carlo sampling (HMC)
 - Implemented using software package called Stan
- We choose highly dispersed priors for all parameters
- We allow for measurement error
- Allow for two breaks in productivity parameters μ , σ_1 , σ_2
 - Break in 1760 (Industrial Revolution / capital data available)
 - We allow for one additional break

METHOD FOR SELECTING BREAK DATE

- We estimate a mixture model
- Three regimes for μ , σ_1 , σ_2 :
 - 1250-1540: $\mu = \mu(1)$ • 1550-1760: $\mu = (1 - I)\mu(1) + I\mu(2)$ • 1770-1860: $\mu = \mu(3)$ (same for σ_1, σ_2)
- I is an indicator variable:
 - Switches from 0 to 1 when 1st break occurs
 - Multinomial distribution
 - Dirichlet prior with concentration vector $0.001 \times (1,...,1)$ (i.e., draws tend to be close to a corner)

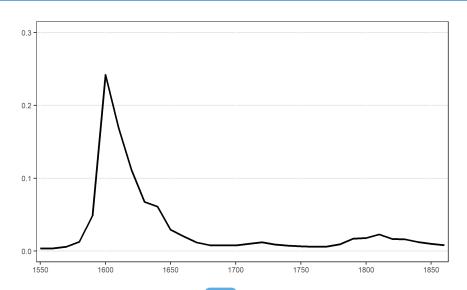
When Did Productivity Growth Begin?

POSTERIOR PROBABILITY OF BREAK DATE

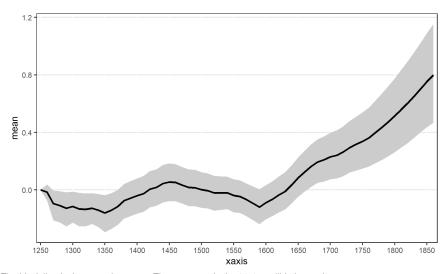


Prob break before 1640: 56% (68% for 1680). Probability of no break before 1770: 20%.

POSTERIOR PROBABILITY OF SINGLE BREAK



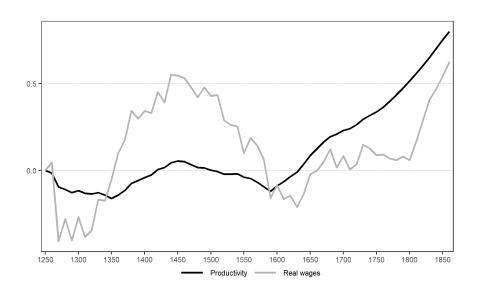
PRODUCTIVITY (\tilde{m}_t)



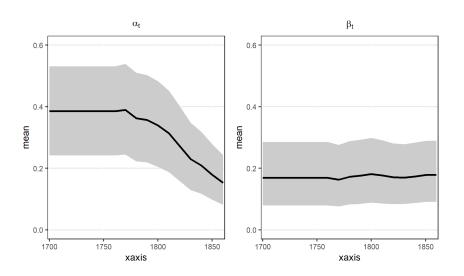
The black line is the posterior mean. The grey area is the 90% credible interval.

 $\mu_{<1600}=0.00,\,\mu_{1600-1760}=0.03,\,\mu_{>1760}=0.04.$ Parameter Estimates

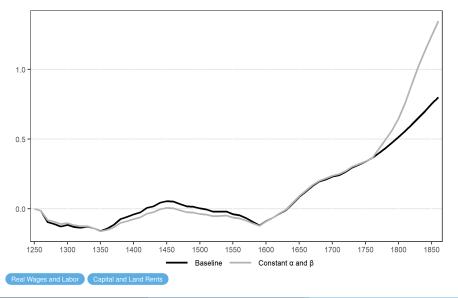
PRODUCTIVITY AND REAL WAGES



FALLING LAND SHARE AFTER 1760



PRODUCTIVITY AND FALLING LAND SHARE



ROBUSTNESS

- Constant days worked Results
- Other real wage series
- Broadberry et al. (2015) population estimates
- Different priors Results

Strength of Malthusian Population Force

MALTHUSIAN POPULATION FORCE

- After a population shocks (e.g., plague)
 - Wages rise
 - Increase in wages induces population growth
 - Increase in population reduces wages
- Population dynamics:

$$n_{t+1} = \left(1 - \frac{\gamma \alpha}{1 - \beta}\right) n_t + \text{constant.}$$

- Key parameters:
 - Response of population growth to real wages (γ)
 - Slope of labor demand curve $(\alpha/(1-\beta))$

MALTHUS PARAMETERS

	Mean	St Dev	2.5%	97.5%
$\overline{\gamma}$	0.09	0.02	0.05	0.13

- ullet Small γ implies that the Malthusian force was relatively weak
- Doubling of real income increased population growth rate by only 6% per decade
- Half-life of plague induced drops in the population pre-1760 was roughly 150 years
- Half-life rose as α_t fell after 1760, to 420 years by 1860

Population Parameters

Population Shocks

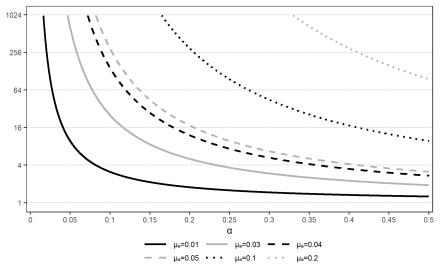
Demographic Transition

OVERWHELMING MALTHUS

- Simplistic View: Wages always return to subsistence in the long run in a Malthusian world
- Not true if productivity growth is positive
 - Productivity growth constantly pushing wages up
 - Malthusian population force constantly pushing wages down
- Steady state wage depends on strength of two opposing forces:

$$ar{\mathbf{w}} = rac{\mu}{lpha \gamma} + ext{constant},$$

Steady State Real Wage for different μ and α



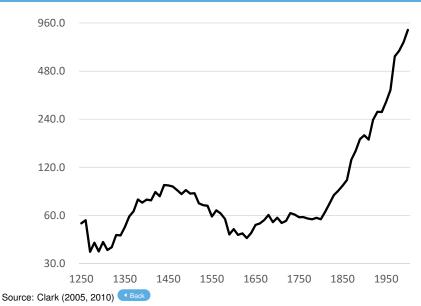
The figure has α on the x-axis and the steady state log real wage \bar{w} on the y-axis. Each line is for a different level of productivity growth.

Conclusion

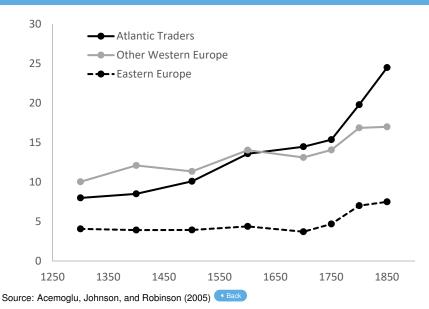
- New estimates of productivity for England from 1250-1860
 - Backed out from shifts in labor demand curve
 - Estimated using a Malthus model
- Main results:
 - Zero productivity growth before 1600
 - Productivity growth began in 1600: 3% per decade
 - Modest speed-up after 1760: 4% per decade
 - Falling land share allowed economy to grow faster after 1760
 - Weak Malthusian forces: doubling of wages increases population growth by 6% per decade

Appendix

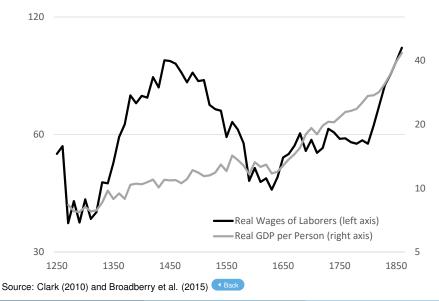
REAL WAGES IN ENGLAND, 1250-2000



URBANIZATION RATES, 1300-1850



REAL WAGES AND GDP PER PERSON



PRODUCTIVITY

Changing production function:

$$Y_t = A_t Z^{\alpha_t} K^{\beta_t} L_t^{1-\alpha_t-\beta_t},$$

- Consider change of units for labor: $\tilde{L}_t \equiv \psi L_t$
- Then production function becomes:

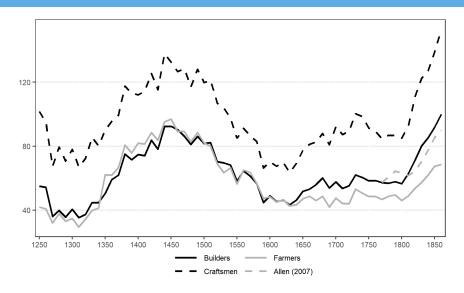
$$Y_t = A_t Z^{\alpha_t} K_t^{\beta_t} L_t^{1-\alpha_t-\beta_t} = \frac{A_t}{\psi^{1-\alpha_t-\beta_t}} Z^{\alpha_t} K_t^{\beta_t} \tilde{L}_t^{1-\alpha_t-\beta_t}.$$

• Is productivity A_t or $A_t/\psi^{1-\alpha_t-\beta_t}$?

FULL MODEL

$$\begin{split} & w_t &= \phi_t + \frac{1}{1-\beta_t} a_t - \frac{\alpha_t}{1-\beta_t} (d_t + n_t) - \frac{\beta_t}{1-\beta_t} \log \left(r_t + \delta \right) \\ & \phi_t &= \log \beta_t + \log \left(1 - \alpha_t - \beta_t \right) + \frac{\alpha_t}{1-\beta_t} Z - \left(\alpha_t + \beta_t \right) \lambda \\ & s_t &= w_t + n_t + d_t - z + \log \alpha_t - \log \left(1 - \alpha_t - \beta_t \right) \\ & k_t &= w_t + l_t - \log (r_t + \delta) + \log \beta_t - \log \left(1 - \alpha_t - \beta_t \right) \\ & n_t &= n_{t-1} + \omega + \gamma (w_{t-1} + d_{t-1}) + \xi_{1t} + \xi_{2t} \\ & m_t &= \hat{a}_t + \hat{\alpha}_t z + \hat{\beta}_t \bar{k}_t - \left(\hat{\alpha}_t + \hat{\beta}_t \right) (\bar{d}_t + \bar{n}_t) \\ & m_t &= \tilde{m}_t + \epsilon_{2t} \\ & \tilde{m}_t &= \mu + \tilde{m}_{t-1} + \epsilon_{1t} \\ & \exp(\xi_{1t}) \sim \left\{ \begin{array}{ll} \beta(\beta_1, \beta_2), & \text{with probability } \pi \\ 1, & \text{with probability } 1 - \pi \end{array} \right. \\ & \epsilon_{1t} \sim \mathcal{N}(0, \sigma_{\epsilon_1}^2), \quad \epsilon_{2t} \sim \mathcal{N}(0, \sigma_{\epsilon_2}^2), \quad \xi_{2t} \sim \mathcal{N}(0, \sigma_{\xi_2}^2) \end{split}$$

ALTERNATIVE REAL WAGE SERIES



METHODOLOGY FOR POPULATION

- Data on Population:
 - 1540-1860: Wrigley et al. (1997)
 - 1250-1520: Clark (2007): Panel of village and manor population estimates
- Clark (2007) constructs population series for 1250-1540
 - We cannot directly use this series
 - It embeds assumptions about evolution of productivity
- Use time fixed effects Clark estimates from village/manor data
- Allow for measurement error

METHODOLOGY FOR POPULATION

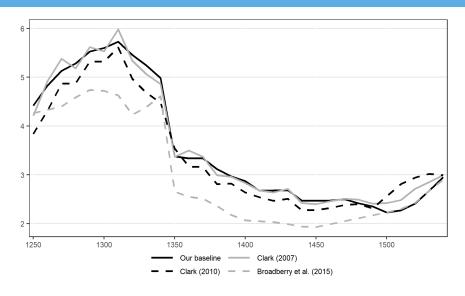
We assume:

$$n_t = \psi + \hat{n}_t + \iota_t^n$$

where

- n_t: True population
- \hat{n}_t : Measured population
 - 1250-1520: Clark's time fixed effects
 - 1540-1860: Wrigley et al. (1997) series
- ψ : Normalization constant
 - Zero after 1540
 - Estimate for pre-1540 period
- $\iota_t^n \sim t_{\nu_n}(0, \sigma_n^2)$ is measurement error

ALTERNATIVE POPULATION SERIES



DAYS WORKED PER YEAR

- Humphries and Weisdorf (2019):
 - New series on income of workers on annual contracts
 - Infer days worked by dividing annual contract payments by Clark's day wages
- Issue: Data is missing for the 1250, 1850 and 1860
- Infer missing data assuming that days worked follow a random walk

$$d_t = d_{t-1} + \eta_t$$
 where $\eta_t \sim \mathcal{N}(0, \sigma_d^2)$

Allow for measurement error in days worked

$$extbf{d}_t = ilde{ extbf{d}}_t + \iota_t^{ extbf{d}} \quad ext{where} \quad \iota_t^{ extbf{d}} \sim t_{
u_d}(0, ilde{\sigma}_d^2)$$

where d_t are true days worked and \tilde{d}_t are measured days worked

RATES OF RETURN DETAILS

- Rate of return on agricultural land: R/P
 R: rental payment, P: Price of land
- Rate of return on "rent charges": R/P
 R: annual payment, P: Price of rent charge
- Rent Charge: Perpetual nominal obligation secured by land or houses
- Each noisy measure of rate of return on capita:

$$r_t = ilde{r}_{it} + \iota_{it}^r \qquad ext{where} \qquad \iota_{it}^r \sim t_{
u_{ir}}(0, ilde{\sigma}_{ir}^2)$$

where r_t is true rate of return on capita, \tilde{r}_{tt} are noisy measures

• When return is missing: $r_t \sim \mathcal{N}_{(0,.2)}(r_{t-1}, 0.01^2)$

LAND RENTS AND CAPITAL DETAILS

- Capital only available after 1760 (Feinstein, 1988)
- We assume both series are measured with error:

$$s_t = ilde{s}_t + \iota_t^s \qquad ext{where} \qquad \iota_t^s \sim t_{
u_s}(0, ilde{\sigma}_s^2)$$

$$\emph{k}_t = ilde{\emph{k}}_t + \iota_t^\emph{k} \qquad \text{where} \qquad \iota_t^\emph{k} \sim \emph{t}_{
u_\emph{k}}(0, ilde{\sigma}_\emph{k}^2)$$

where s_t and k_t are true land rent and capital stock, \tilde{s}_t and \tilde{k}_t are noisy measures of land rents and the capital stock

PRIORS

Parameter	Prior	Parameter	Prior
α	<i>U</i> (0,2)	γ	<i>U</i> (−2, 2)
φ^{x}	$\mathcal{N}(0,100^2)$	ψ	$\mathcal{N}(10.86, 0.07^2)$
ω	$\mathcal{N}(0,1)$	μ	$\mathcal{N}(0,1)$
μ_{ξ_1}	$\mathcal{U}(0.5, 0.9)$	$ u_{\xi_1}$	$P_I(0.1, 1.5)$
π	$\mathcal{U}(0,0.5)$	δ	$\mathcal{N}_{(0,0.2)}(0.1,0.05^2)$
$\sigma^2_{\epsilon_1}$	$I\Gamma(3, 0.001)$	$\sigma^2_{\epsilon_2}$	$I\Gamma(3, 0.005)$
$\sigma^2_{\xi_2} \ \sigma^2_{d}$	$I\Gamma(3, 0.005)$	σ_n^2	$I\Gamma(3, 0.005)$
σ_d^2	$I\Gamma(3, 0.005)$	$ ilde{\sigma}_s^2$	$I\Gamma(3, 0.005)$
$ ilde{\sigma}_k^2$	$I\Gamma(3, 0.005)$	$ ilde{\sigma}_{\it ir}^2$	$I\Gamma(3, 0.005)$
ν_n^{-1}	$\mathcal{U}(0,1)$	$ u_d^{-1}$	$\mathcal{U}(0,1)$
$ u_{s}^{-1}$	$\mathcal{U}(0,1)$	ν_k^{-1}	$\mathcal{U}(0,1)$
$ u_{ir}^{-1} $	$\mathcal{U}(0,1)$		

Prior for ψ implies that pre-Black Death population was between 4.5 and 6 million with 95% prior probability.

RE-PARAMETRIZATION OF A BETA DISTRIBUTION

• The plague shocks follow the distribution:

$$\xi_{1t} \sim \left\{ egin{array}{ll} \log eta(eta_1,eta_2), & ext{with probability } \pi_t \\ 1, & ext{with probability } 1-\pi_t \end{array}
ight.$$

• The mean μ_{ξ_1} and pseudo sample size ν_{ξ_1} of the beta distribution are defined as:

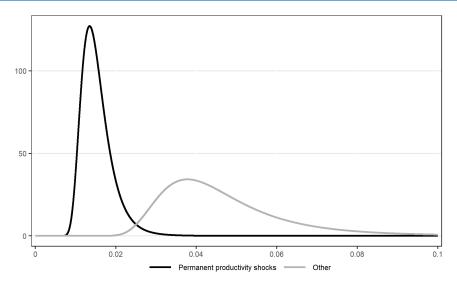
$$\mu_{\xi_1} = \frac{\beta_1}{\beta_1 + \beta_2}$$

$$\nu_{\xi_1} = \beta_1 + \beta_2$$

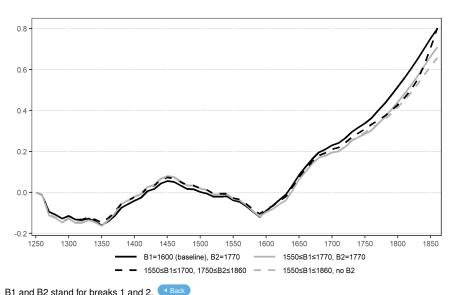
• As a flat prior, Gelman et al. (2013, p. 110) recommend:

$$\mu_{\xi_1} \sim \mathcal{U}(0,1)$$
 $u_{\xi_1} \sim \mathcal{P}_I(.1,1.5)$

PRIOR DENSITIES FOR STANDARD DEVIATIONS



POSTERIOR PROBABILITY OF BREAKS

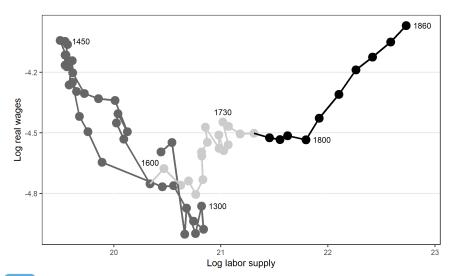


Bouscasse, Nakamura, Steinsson

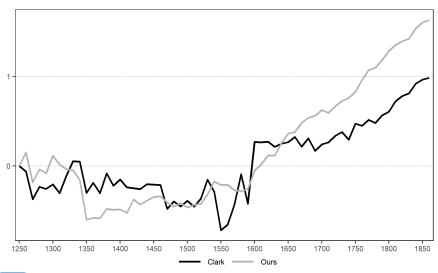
PRODUCTIVITY GROWTH

	Mean	St Dev	2.5%	97.5%
$\mu_{a,t<$ 1600	-0.00	0.01	-0.02	0.01
μ a,1600 \leq t $<$ 1770	0.03	0.01	0.01	0.04
$\mu_{\pmb{a},\pmb{t}\geq \pmb{1770}}$	0.04	0.01	0.02	0.07
$\sigma_{\epsilon_1,t<1600}$	0.04	0.01	0.02	0.06
$\sigma_{\epsilon_1,1600 \leq t < 1770}$	0.02	0.01	0.01	0.04
$\sigma_{\epsilon_1,t\geq 1770}$	0.02	0.01	0.01	0.04
$\sigma_{\epsilon_2,t<1600}$	0.06	0.01	0.04	0.08
$\sigma_{\epsilon_2,1600 \leq t < 1770}$	0.04	0.01	0.02	0.05
$\sigma_{\epsilon_2,t\geq 1770}$	0.04	0.01	0.02	0.06

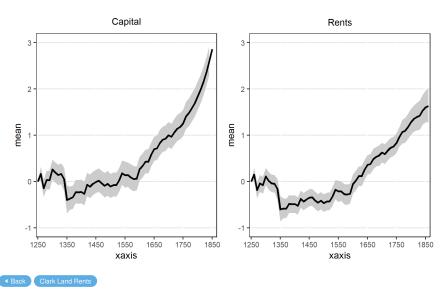
REAL WAGES AND LABOR SUPPLY



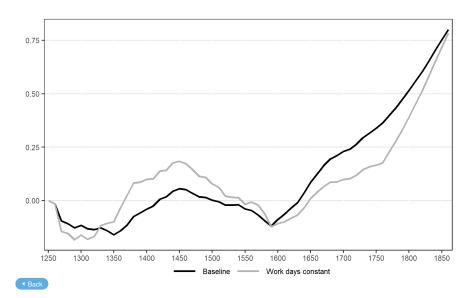
LAND RENTS



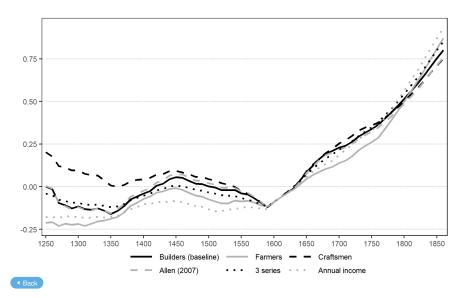
CAPITAL AND LAND RENTS



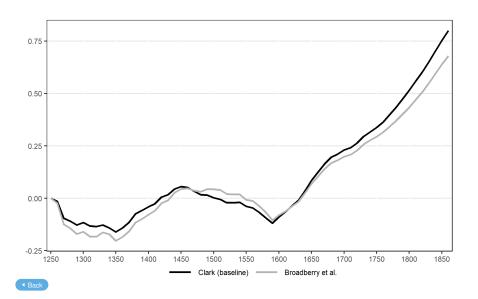
PRODUCTIVITY: CONSTANT DAYS WORKED



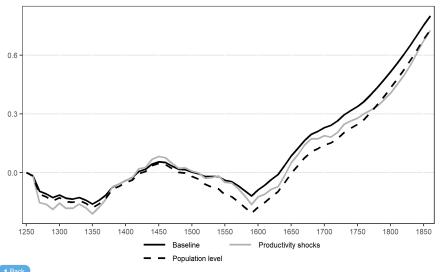
PRODUCTIVITY: OTHER REAL WAGE SERIES



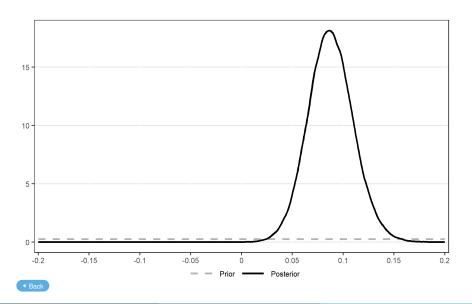
PRODUCTIVITY: ALTERNATIVE POPULATION SERIES



PRODUCTIVITY: ALTERNATIVE PRIORS



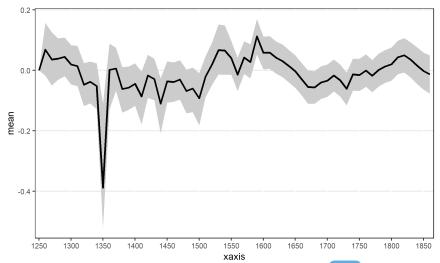
Prior and Posterior Densities for γ



POPULATION PARAMETERS

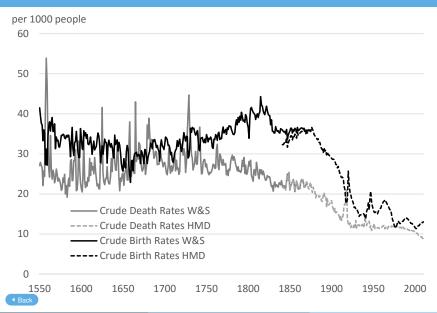
	Mean	St Dev	2.5%	97.5%		
Population Parameters						
$\pi_{t<$ 1680	0.08	0.07	0.01	0.32		
$\pi_{t\geq 1680}$	0.06	0.06	0.00	0.21		
μ_{ξ_1}	0.64	0.11	0.50	0.87		
$ u_{\xi_1}$	6.47	6.36	1.10	23.89		
σ_{ξ_2}	0.06	0.01	0.04	0.07		
Population Measurement Error Parameters						
$\sigma_{n,t<1540}$	0.04	0.01	0.02	0.06		
$\sigma_{n,t\geq 1540}$	0.03	0.00	0.02	0.04		
$\nu_{n,t} <$ 1540	9.30	27.59	1.16	64.21		
$\nu_{n,t\geq 1540}$	90.38	954.32	2.17	318.29		

POPULATION SHOCKS



The black line is the posterior mean. The grey area is the 90% credible interval

THE DEMOGRAPHIC TRANSITION



POPULATION EXPLOSION AFTER 1750

