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1. Introduction 

Economists have long recognized that the development of novel technologies is inexorably linked 

to economic growth. Many studies have sought to understand whether the benefits from adopting 

new technologies accrue primarily to inventors, early investors, highly skilled users, or to society 

more widely through, for instance, employment and income growth.2 Substantial concerns remain, 

however, about as to the implications of new technologies, including whether they contribute to 

income inequality (e.g., do technology-enabled jobs spread beyond college graduates?) and 

regional inequality (do technology jobs spread outside Silicon Valley?).3 

One key obstacle to resolving these questions is that it has proven difficult to measure the 

development and spread of multiple technological advances in a single framework and to 

systematically identify those innovations that affect jobs and businesses. In this paper, we use the 

full text of millions of patents and job postings and hundreds of thousands of earnings conference 

calls to make progress on this issue. We develop a flexible methodology that allows us to determine 

which (sets of) technological innovations most affected businesses over the past two decades, trace 

these back to the locations and firms where they emerged, and track their diffusion through regions, 

occupations, and industries over time. We then use our newly created data to establish key stylized 

facts about the development and diffusion of new technologies across space and skill levels. 

The first step of our analysis is to develop a methodology for systematically identifying one, two, 

and three-word phrases (unigrams, bigrams, and trigrams) associated with new technologies 

through a series of systematic rules, whose robustness we verify through various diagnostic tests. 

To this end, we intersect information from multiple large corpora of text. First, we use the full text 

of U.S. patents with application years between 1976 and 2014 to isolate phrases that appear in 

multiple patents but did not exist before 1970. That is, we isolate new language specific to 

influential innovations made in the past 40 years. Second, we search for these phrases in Wikipedia 

to identify which of these new phrases are primarily associated with pages describing new 

technologies, as opposed to newly recognized problems (such as “climate change”) or new 

management terms (such as “performance metrics”). This procedure identifies 1,899 new 

 
2 See, for example, Katz and Murphy (1992), Krusell et al. (2000), Piketty and Saez (2003), Autor et al. (2008), Goldin 
and Katz (2009), Acemoglu and Autor (2011), and Song et al. (2019). 
3 See Tyson and Spence (2017) and Vance (2022) for popular articulations of such concerns. 
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technology phrases, which we can group into 1,286 unique Wikipedia pages describing new 

technologies. We refer to these groups of new technology phrases as “technologies.” 

After establishing our list of new technologies, we then identify patents and job postings that 

mention these technologies. We use patent inventor addresses to identify the locations where each 

of the technologies was developed and patent application years to pinpoint the year in which the 

technology experienced the first large acceleration in patent references (its “emergence year”).  We 

then cross-reference our list of technology phrases with the full text of online job postings to 

identify 51 million jobs advertised between 2010 and 2019 that mention these technologies. These 

granular data uniquely allow us to track the spread of new technologies along a dimension of 

crucial importance to policymakers: jobs. In particular, we examine the evolution of the number, 

location, and skill requirements of job postings associated with these new technologies.  

In a final step, we use the full text of earnings conference calls held by listed firms between 2002 

and 2019 to flag those new technologies that disrupted business during this period, in the sense 

that they are referenced in at least 100 of these important conversations between firm executives 

and investors.  This last step yields 276 “disruptive” new technologies (unique Wikipedia pages). 

The most prominent of these new disruptive technologies include “cloud computing,” “smart 

phone,” and “machine learning.”  

Strikingly, these few disruptive technologies account for the lion’s share of the variation in our 

data: on average, each disruptive technology is mentioned in 141,633 job postings between 2010 

and 2019, whereas new technologies mentioned in less than ten earnings calls average only 1,165. 

In total, our disruptive technologies are mentioned in 39 million job postings (or about 77 percent 

of all job postings mentioning any new technology) and 33.1% of patents granted by the U.S. 

Patent and Trademark Office (USPTO) to domestic inventors with application years between 1976 

and 2014. In this sense, the few innovations that feature prominently in managers’ discussions are 

also the ones that are prominent in job postings and associated with the most widespread patenting 

activity. We therefore pay special attention to these disruptive technologies throughout our 

analysis. 

Our key results are as follows. 

First, the locations where new technologies are developed are geographically highly concentrated 

This concentration is particularly pronounced for disruptive technologies: 32.5% of patents 
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mentioning any new technology and 42.1% of patents mentioning a new disruptive technology 

emerge from just five urban areas: San Jose, San Francisco, New York, Seattle, and Boston.  

Based on early patenting activity around the time of each technology’s emergence year, we identify 

which urban areas housed the majority of early patenting for each of our new technologies. We 

term these urban areas “pioneer locations.”  

Again, these pioneer locations for new technologies are highly concentrated, particularly so for 

disruptive technologies, those with the biggest impact on businesses and job postings. Collectively, 

56.3% of the economically most impactful technologies come from just two U.S. locations, Silicon 

Valley and the Northeast Corridor. (Locations in California collectively host a remarkable 41.0% 

of pioneer locations of disruptive technologies.)  This extreme concentration is particularly 

important because new technologies alter the composition of the local job postings in their pioneer 

locations for long periods of time, as we show below.   

Second, despite this highly skewed initial distribution of pioneer locations, as technologies mature 

and the number of new jobs related to them grows, they gradually spread geographically. Our 

favored measure of geographic concentration, the coefficient of variation of the share of jobs 

associated with a new technology across the 917 core-based statistical areas (CBSAs) in the United 

States, drops by 18.5% in the first decade after its emergence. Nevertheless, the implied years to 

full dispersion across CBSAs is in excess of 50 years, well beyond the horizon of many individuals 

or policymakers. 

Third, while initial hiring is heavily biased towards high-skilled jobs, the mean required skill level 

of the jobs associated with new technologies declines over time, reflecting a broadening of the 

types of jobs that adopt a given technology. Specifically, we estimate that, in the year of the 

average technology’s emergence, 57.1% of the initial jobs relating to this new technology require 

a college degree – a substantial skill bias relative to 30.3% of respondents in the 2015 ACS4 that 

hold one. This gap declines by 0.23 percentage points per year, so that 30 years after a technology’s 

emergence year, on average about 50.2% of job postings relating to it still require a college degree.  

 
4 In the 2021 ACS, this proportion is somewhat higher, 36.4%. 
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Fourth, low-skill jobs associated with a given technology spread out across space significantly 

faster than high-skill jobs, which tend to remain concentrated for long periods of time within the 

pioneer locations that originally developed the technology.  

A key implication of these patterns is that new technologies appear to yield long-lasting benefits 

for the pioneer locations where they were originally developed. These locations host a 

disproportionate share of high-skilled jobs relating to these new technologies for about four 

decades after their year of emergence.  In short, this concentration of disruptive innovation in a 

handful of urban centers engenders large and persistent regional disparities in economic 

opportunity, giving a handful of U.S. locations a lasting advantage in high-skill job postings.  

To shed light on the mechanisms underlying these patterns, we study the context in which the new 

technology is mentioned within a given job posting. We find that much of the regional spread of 

new technologies is driven by low-skill jobs associated with their use, whereas jobs related to their 

research, development, and production (RDP) remain persistently concentrated in and around their 

pioneer locations. That is, our evidence suggests that pioneer locations that initially developed a 

technology retain a long-term advantage, because they retain the technology’s RDP for long 

periods of time. 

We also show evidence to suggest that some of the observed skill broadening of new technologies 

is driven by standardization that allows for the use of these technologies by lower-skill workers as 

the technology matures. By contrast, training and experience with the new technology do not 

appear to be major drivers of this process.  

We conduct a large number of robustness checks, replicating our main results using a wide range 

of different variations. For example, we repeat our analysis with phrases of different lengths (such 

as unigrams and trigrams), conduct a human audit of technology phrases and technologies, and use 

alternative methods for pinpointing pioneer locations and emergence years. Throughout all of these 

variations, our main findings remain unchanged. 

We note three main caveats to our interpretation. First, all of our results regarding jobs rely on the 

analysis of job postings. In this sense, they measure the characteristics of open positions, but not 

necessarily the characteristics of the jobs that get filled. Second, by its very nature, our data speak 

to job openings relating to novel technologies but not to the possible destruction of existing 

positions by these technologies. Finally, a third concern is what Merton (1968) termed 
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“obliteration by incorporation”: when a technology becomes so widely diffused that it is no longer 

mentioned specifically in job postings. For this reason, we focus on relatively recent technologies, 

rather than ones, such as electricity or air-conditioning, that have been around for so long that they 

became normalized.  

Our work builds on a large literature that studies the relationship between technology and labor 

markets. One strand of this literature studies the diffusion of technology. This literature has 

focused on patterns in a single specific (though important) new technology, from computers (Autor 

et al., 2003) to broadband (Akerman et al., 2015) to robots (Acemoglu and Restrepo, 2020) to 

artificial intelligence (Agrawal et al., 2019; Webb, 2020). Other studies have focused on specific 

innovations during important historical episodes (Griliches, 1957; Goldin and Katz, 1998; 

Squicciarini and Voigtlander, 2015; Caprettini and Voth, 2020). 5 Comin and Hobijn (2004, 2010) 

characterize the diffusion of 15 technologies across 166 countries, employing a variety of measures 

of technological utilization at the country level.6 We contribute to this literature by identifying 

hundreds of new technologies, pinpointing their geographic origins, and tracking their spreads 

across job postings, skill levels, and geographies within the United States. 

A second strand is the literature on technology and inequality. Many of these works have sought 

to estimate the skill bias of technical progress (e.g., Katz and Murphy, 1992; Krueger, 1993; 

Berman et al., 1994; Autor et al., 1998; Goldin and Katz, 2008; Autor et al., 2008; Michaels et al., 

2014; Song et al., 2019). The near-universal approach in this literature is to infer an increase in the 

demand for skilled labor over time from changes in observed wage differentials – in effect, 

documenting a change in the economy’s aggregate production function. Our work complements 

this literature by observing this skill bias of technical progress directly: for instance, 57.1% of 

early jobs involved with new technologies require a college degree.7   

Closely related, Caselli (1999), Acemoglu et al. (2012), and Acemoglu and Restrepo (2018) study 

theoretically the forces that drive automation, the substitution of capital for labor, and inequality. 

 
5 Recent work has examined the importance of supply and demand factors for the speed of diffusion (e.g., Popp, 2002; 
Acemoglu and Linn, 2004; Greenstone et al., 2010; Moser et al., 2014; Moscona, 2020; Arora et al., 2021). Mokyr 
(1992) and Gordon (2016) trace out the impact on economic development of a range of great inventions.  
6 A large, related literature studies the role of trade and multinational production in facilitating the diffusion of 
technology. Recent examples include Buera and Oberfield (2020) and Lind and Ramondo (2022). 
7 Notably, Goldin and Katz (1998) show that the introduction of new manufacturing processes during the early 19th 
century increased the demand for skilled labor. Krueger (1993) shows that workers who use computers at work earn 
higher wages.  
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A key result in this literature is that balance in the “race between man and machine” arises 

endogenously if the use of new technologies spreads from high-skill to low-skill occupations over 

time. We contribute by providing the first direct evidence that this skill broadening indeed occurs 

systematically for a broad range of technologies. In addition, this theoretical literature argues that 

one mechanism underpinning skill broadening is that new technologies evolve over time into a 

standardized form that can more readily be used by less educated workers. We provide empirical 

evidence supporting this standardization mechanism. 

A third broad literature examines clustering in entrepreneurial activity and innovation. A number 

of papers have highlighted persistent advantages in entrepreneurship (Glaeser et al., 2015) and 

innovation (Moretti, 2021) that certain urban areas enjoy and highlighted mechanisms such as 

employee mobility across new ventures (Gompers et al., 2005) and localized knowledge spillovers 

(e.g., Jaffe et al., 1993). We contribute to this literature by providing a systematic approach to 

identifying and studying pioneer locations. We characterize their distribution across the United 

States and show there is a general relationship between successful innovation, early employment 

in a new technology, and the long-term advantage that these locations enjoy in high-skill 

employment.  

Finally, our work adds to a growing literature in economics using text as data. A number of recent 

papers have used newspaper articles, patents, and firm-level communications to measure concepts 

that are otherwise hard to quantify (e.g., Hoberg and Phillips 2016; Baker et al., 2016; Hassan et 

al., 2019, 2021; Bybee et al., 2020; Handley and Li, 2020; Flynn and Sastry, 2020; Kelly et al., 

2021; and Sautner et al., 2023). We focus primarily on the full text of job postings, which has 

received relatively less attention.8 An important paper by Kogan et al. (2022) intersects 

information from patents and task descriptions to measure the direction of technical progress. Our 

work adds to this literature by introducing a flexible methodology for analyzing the origin and 

spread of innovations by intersecting multiple large corpuses of texts.  

The remainder of this paper is structured as follows. In Section 2, we discuss how we identify and 

characterize new technologies in the data.  Section 3 studies the spatial concentration of the 

development of new technologies. In Section 4, we explore the diffusion of activity across regions 

 
8 A notable exception is the work by Abis and Veldkamp (2020), who use job descriptions to identify financial analysis 
positions that leverage machine learning. 
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and the associated mechanisms. We present our analysis of the skill-broadening results in Section 

5. Section 6 examines diffusion across occupations, industries, and firms. Section 7 presents 

robustness checks. The final section concludes the paper. 

 

2. Identifying and Characterizing Technological Innovations 

Our first objective is to identify a list of phrases describing influential technological innovations 

developed since 1976.  

We use the term technological innovation in the sense of Schmookler (1966) and Jewkes et al. 

(1969), who distinguish technological from scientific innovation – the former being a set of 

specific and applied techniques, products, and processes (our focus here) while the latter is a set 

of general principles. This motivates our use of patents (as opposed to scientific research papers) 

as a text source.9 We further distinguish technological from managerial knowledge. While 

Syverson (2011) and Bloom et al. (2016) argue that managerial rather than technological 

knowledge can account for substantial differences in total factor productivity across firms, we 

deliberately focus on technological but not managerial knowledge when we require that the new 

language we isolate from patents describe technologies.10 By influential and developed since 1976 

we mean those innovations mentioned repeatedly in highly cited patents and those that went 

through a major acceleration in patenting activity after 1976.  

We now describe in more detail how we operationalize these concepts in the data. 

a. Step 1: Identify phrases associated with influential innovations 

We begin by examining patent filings with the USPTO. By law, patents must describe their 

technological innovation and (at least some) key ways in which it is applied.11 Because of the 

 
9 The U.S. patentability standard requires an invention not to be obvious “to a person having ordinary skill in the art” 
(35 U.S.C. 103), but not an abstract idea, law of nature, or natural phenomenon (35 U.S.C. 101). See the discussions, 
for example, by the Supreme Court in Alice Corp. v. CLS Bank International, 573 U.S. 208 (2014) at 216 and Mayo 
Collaborative Servs. v. Prometheus Labs., Inc., 566 U.S. 66 (2012) at 71. 
10 The OECD’s Oslo Manual (2005) elaborates on this distinction, providing many examples of what would and would 
not be included in the two categories. 
11 This requirement is stipulated in the legal concept of “reduction to practice,” 35 U.S.C. 112(a). 
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importance of the U.S. market, inventors worldwide typically file important discoveries with the 

USPTO.12 

We collect all utility patents awarded to U.S. inventors with application years between 1976 and 

2014, a total of approximately three million patents. We focus not just on the front page of the 

award, which has been the focus of much of the earlier analytic literature, but on the entire text of 

these patents. Representative parts of a patent are reproduced in Appendix Figure 1. For more 

details on this collection process refer to Section 1.1 of the Data Appendix. 

To reduce the dimensionality of this voluminous body of text, we remove stop words (such as “of,” 

“the,” and “from”) following Kelly et al. (2021) and Gentzkow et al. (2019) and represent each 

patent’s remaining text by a vector of all two-word combinations (“bigrams”) that appear at least 

twice in the patent, leaving us with 17 million unique bigrams. In our main specification, we focus 

on bigrams because they are less ambiguous than single-word keywords. For example, while words 

like “autopilot” or “cloud” could have a variety of colloquial meanings, “autonomous vehicle” and 

“cloud computing” are much less ambiguous (e.g., Tan at al., 2002; Bekkerman and Allan, 2004). 

In Section 7 (robustness), we show that our results extend readily to including unigrams (one-

word) and trigrams (three-word combinations), though unigrams generally appear to produce 

noisier results and trigrams add little to the analysis once bigrams are accounted for. 

We next seek to isolate those bigrams that are novel and associated with influential innovations. 

First, we focus our attention on bigrams associated exclusively with novel innovations by dropping 

“non-novel” bigrams that were in common use before 1970. To this end, we select all text dating 

prior to 1970 from the Corpus of Historical American English, a representative sample of text 

constructed by linguists from prominent sources (Davies, 2009) that reflects everyday use of 

English up to 1970. We then remove any bigram appearing in this source (for instance, “equipment 

used”) from our list of bigrams obtained from patents, leaving us with 1.5 million exclusively 

“novel” bigrams.  

 
12 About half of all patent applications to the USPTO are filed by residents of foreign countries (USPTO, 2020). This 
pattern reflects the fact that patent protection in a given nation depends critically on having a patent issued in that 
specific nation. Important discoveries (the focus of our analysis) are therefore disproportionately likely to be filed in 
major patent offices worldwide (Lanjouw et al., 1998).  
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Second, to identify bigrams associated with influential innovations, we retain only those novel 

bigrams that appear in patents accumulating a total of at least 1,000 patent class and year-

normalized citations.13, 14 This leaves us with 36,563 novel and influential bigrams from patents.  

b. Step 2: Identifying technological innovations using Wikipedia 

A review of these novel and influential bigrams from patents suggests they fall into three broad 

categories. Some describe technological innovations, such as “fingerprint sensor,” “monoclonal 

antibody,” or “OLED display.” Others refer to new (or increasingly visible) problems, such as 

“greenhouse gases,” “Parkinson’s disease,” or “carbon footprint.” Yet others refer to areas that 

may have seen substantial new developments or management attention but are not new 

technologies, such as “account management,” “performance metrics,” and “business model.” 

(Appendix Table 1 shows examples.) As discussed above, we want to focus on bigrams in the first 

category, not the other two. 

To isolate bigrams describing technological innovations, we employ Wikipedia entries. We first 

match each novel and influential bigram to a Wikipedia page by entering it into the Wikipedia 

search engine and selecting the highest-ranked entry if it mentions the bigram either in the title or 

the summary or it mentions the bigram at least 10 times in the body of the entry. Bigrams that do 

not meet these criteria (those without a Wikipedia page) are deleted.  

The second step exploits the standardized nature of Wikipedia page entries. Entries describing 

technological innovations tend to feature sections containing the words application(s), use(s), 

type(s), operation, characteristic(s), feature(s), device(s), technical, and commercial in their titles. 

(Appendix Figure 2 provides examples of two Wikipedia pages with these features.) By contrast, 

pages dedicated to new problems or management innovations tend to feature sections and/or titles 

that contain the words responses, mitigation, problems, causes, signs, symptoms, adverse effects, 

management, manager, risk assessment, business model, distribution model, customer, strategy, 

and service provider. To focus on bigrams associated with technological innovations, we thus 

 
13 Following Lerner and Seru (2022), normalized citations for a patent p are calculated as:  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑝𝑝

𝐴𝐴𝐴𝐴𝑔𝑔𝜏𝜏,𝑡𝑡(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑝𝑝′)
. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑝𝑝 is the number of citations is received as of 2018 by a patent filed in four-digit Combined Patent 
Classification (CPC) technology class τ in year t. 𝐴𝐴𝐴𝐴𝑔𝑔𝑇𝑇,𝐶𝐶(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑝𝑝′) is the average number of citations received by 
all patents filed in technology class τ in year t.  
14 For computational reasons, it is necessary to restrict to a subset of the 1.5 million novel bigrams before cross-
referencing with other corpuses (steps 2-4). However, where exactly we draw the boundary between influential and 
non-influential bigrams (1000 normalized citations) has little effect on our results, as discussed in Section 7. 
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retain only those that are matched with a Wikipedia page with at least one section from the former 

list, but none of the latter.  

This algorithm returns a list of 4,277 bigrams associated with influential technological innovations, 

which we can conveniently group by the 2,746 unique primary Wikipedia pages that they are 

associated with. For ease of reference, we refer to these bigrams as “technology bigrams” and their 

groupings as “technologies,” which we label by the Wikipedia page’s title.15 Appendix Table 1 

provides examples of bigrams that passed and failed this Wikipedia filtering. For further details 

on scraping and processing Wikipedia pages, refer to Section 1.3 of the Data Appendix.  

c. Step 3: Characterizing technologies using patents and earnings calls 

To learn more about when and where each technology was developed, we next cross-reference our 

list of technology bigrams with our corpus of patents.16 First, to obtain a measure for each 

technology’s age, we calculate for each bigram the first episode of accelerated patenting. In 

particular, we first calculate the number of cite-weighted patents (normalized as described in 

Section 2.a) mentioning the bigram filed in each calendar year. Due to the variability of the patent 

counts, we smooth the series by taking a centered five-year moving average. Finally, we mark the 

first year in which (a) the technology reaches 100 cite-weighted patents and (b) the next five years 

had at least 10% annual growth in the (smoothed) weighted patent filings. For ease of reference, 

we refer to this year as the bigram’s “emergence year.”  

This process is illustrated in Figure 1, which depicts the time series and the emergence year for 

four technology bigrams. Digital video, for instance, emerges in 1986, as the time series grows by 

at least 10% for five consecutive years through 1991.  Using this definition, we assign an 

emergence year after 1976 to 1,899 technology bigrams (1,286 technologies). The remaining 

bigrams exhibit no single five-year period of accelerated growth in our sample, and thus 

predominantly describe older technologies (such as diesel fuel and whey protein). In Section 7, we 

show our results are robust to using a range of other plausible approaches to defining each bigram’s 

 
15 We undertake a human audit to check each individual bigram and run robustness tests using this edited sample in 
Section 7. The bigrams deleted in the human audit are marked with asterisks in Appendix Table 3. 
16 When cross-referencing our technology bigrams with patents and other corpuses, we generally allow for all forms 
of the bigram, including singular, plural, and concatenations. We require the bigram to appear at least twice in the 
patent. 
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emergence year. The key is simply to obtain some meaningful distinction between older and newer 

innovations. 

Second, to identify regions pioneering the early development of a technology, we identify the 

CBSAs that collectively account for a majority of early patents mentioning the technology. In 

particular, for each technology bigram, we calculate the number of patents in each CBSA within 

the first ten years of the bigram’s emergence year. We then sort the CBSAs by the number of 

patents mentioning that bigram and denote those CBSAs with the most of these patents that 

collectively account for at least 50% of the total patents mentioning the technology bigram in this 

period as pioneer locations. Thus, if the top four CBSAs accounted for 25%, 15%, 12%, and 8% 

of the patents containing a bigram in this period, the first three would be coded as pioneer locations.  

Third, we can gauge the extent to which a given technology poses economic challenges or 

opportunities to incumbent firms by cross-referencing our list of technologies with the full text of 

321,373 corporate earnings calls held by 11,905 publicly held companies and compiled by 

Refinitiv EIKON between 2002 and 2019. Publicly traded firms hold quarterly earnings calls to 

discuss results and the companies’ prospects. These calls (and the transcripts that we analyze) 

consist of a presentation by management (typically the chief executive and/or chief financial 

officer) and then questions posed by investors and analysts with answers by the executives. They 

have been shown to be indicators of some of the most important issues facing these organizations 

(Bushee et al., 2003; Matsumoto et al., 2011; Hassan et al., 2019, 2021).17 To gauge the extent to 

which each technology features in the conversations at these large listed firms, we record the 

number of unique earnings calls in which each of our technologies is mentioned.  

Table 1 gives a flavor of these data. It shows the top technology, as measured by the number of 

earnings calls mentioning it, by year of emergence of the technology, as well as its associated 

bigrams. Top technologies emerging in the late 1970s and early 1980s include the hard disk drive, 

barcode reader, and personal computer. The mobile phone emerges in 1985, followed by digital 

video and debit cards. The 1990s brought machine learning and the hybrid electric vehicle. The 

top technologies from the 2000s include the smartphone, social networking, and the self-driving 

car. Taken together, these technologies appear to accurately reflect the changing nature of 

technological innovation over the past decades. Appendix Table 3 lists all new technologies that 

 
17 Some examples of mentions of bigrams are contained Appendix Table 2. 
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are mentioned in more than 100 earnings calls. While we make no claim of completeness, we argue 

they constitute perhaps the most representative sample of economically influential technological 

innovations constructed to date. 

Table 2 provides examples of the pioneer locations for a number of technology bigrams. For 

example, pioneer locations for machine learning (a technology that emerged in 1994 according to 

our measure) are New York, Seattle, San Jose, and San Francisco, whereas digital imaging’s 

pioneers are Rochester (Kodak’s headquarters), San Jose, San Francisco, and Fort Collins (the 

longtime home of Hewlett Packard’s desktop and peripherals business).  

Appendix Table 4 shows, for selected states, the technology where the state most dominated early 

innovation; that is, the technology where the state contributed the largest share of early patenting. 

The table again shows intuitive patterns.  For example, Massachusetts accounts for 13.6% of the 

early patenting in the technology “antibody-drug conjugate,” and similarly, Michigan accounts for 

49.9% in “electronic stability control.” 

These steps illustrate how, once we have identified a list of new technologies and their associated 

phrases, we can build a rich panel dataset of these technologies by identifying their mentions in 

other text sources. We expand on this theme next.  

d. Step 4: Cross-reference with job postings 

We finally cross-reference our list of technologies with the full text of online job postings, which 

we source from Burning Glass (BG). BG aggregates online job postings from online job boards 

(such as indeed.com), employer websites, and other sources into a de-duplicated database.  

We employ two datasets from Burning Glass. The first is a standardized dataset (used recently by 

Hershbein and Kahn, 2018; Deming and Noray, 2020; and Atalay et al., 2020), where each de-

duplicated job posting is geo-coded and assigned to a Standard Occupational Classification (SOC) 

code (the U.S. Bureau of Labor Statistics’ system of classifying occupations) and a North 

American Industry Classification (NAICS) code.18 The second dataset has thus far received less 

attention by researchers. It contains the raw unprocessed text of the job postings, which we use to 

 
18 We make extensive use of the former, which are available for 80% of all postings. Industry classifications are 
available for a more limited 41% of postings. We use industry data only in Section 6. The strings with firm names are 
available for 66% of all postings. 
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identify jobs involved with the research, development, production, or use of our technologies. 

Appendix Figure 3 displays some representative pages from a full BG database entry. 

We have data from BG for all available years, 2007 and 2010-2019, a total of roughly 200 million 

job postings. We drop 2007 jobs from our baseline analysis because Burning Glasses is missing 

data for 2008-09, though including the 2007 data has little impact on our results. 

We associate each posting with a skill level, location, industry, and firm as follows (for details, 

see Section 1.5 of the Data Appendix): Skill level. We construct a skill level for each six-digit SOC 

code (the most detailed level) given in BG by measuring the share of persons with a college degree, 

the share of persons with a PhD or a master’s degree, the average wage, and the average years of 

schooling in the American Communities Survey (ACS 2015 release), using respondents reporting 

their occupation as in that six-digit SOC code.19 Location. We use the county names provided by 

BG to uniquely assign job postings to one of the 917 CBSAs in the United States. Industry: We 

allocate a job posting to an industry using the four-digit NAICS code provided by BG.20 Firm: To 

allocate job postings to firms, we extend the methodology of Autor et al. (2020) and cluster 

employer strings associated with job postings together on the basis of top search results on 

Bing.com. For more details on the firm mapping, please refer to Section 3 of the Data Appendix. 

To identify job postings associated with each technology bigram, we simply check whether the job 

posting mentions that bigram and create an indicator variable that is equal to one if it does: 

𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝑔𝑔𝑛𝑛 𝐽𝐽𝐶𝐶𝐽𝐽𝐶𝐶,𝜏𝜏,𝐶𝐶 = 1�𝐽𝐽𝜏𝜏𝜖𝜖 𝐷𝐷𝐶𝐶,𝜏𝜏�, (1) 

where 𝐽𝐽𝜏𝜏 is a given technology bigram 𝜏𝜏 associated with one of our new technologies and 𝐷𝐷𝐶𝐶,𝜏𝜏 is 

the set of bigrams contained in job announcement i posted in year t. In our main specification, we 

exclude the first and last 50 words of the job posting from this set to avoid picking up mentions of 

the technology in a description of the firm, as opposed to the task to be performed by the employee, 

as we discuss below.   

To interpret what it means for a job posting to mention a technology, we conduct a human audit 

of 1,000 randomly selected technology job postings (see Appendix Table 6 for details). As 

 
19 For SOC codes in job postings where we do not find any persons surveyed in the ACS, we match them to the closest 
available SOC code in the ACS. For example, data for SOC Code 38-1967 were not available, so we match these 
observations to 38-1960. In total, the dataset includes 837 SOC codes. 
20 NAICS codes typically have six nested levels; the four-digit level is referred to as “industry group.” 
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expected, the vast majority of mentions relate to a task to be performed by the employee (91% if 

we trim the first and last 50 words, 80% otherwise). That is, job postings usually mention 

technologies when the job involves using, producing, or otherwise interacting with the technology. 

For example, a job ad with mention of “touch screen” (see Appendix Table 6) requires the worker 

to bend frequently to use the keys on a touch screen to enter text or data in a computer.  The 

remaining mentions are either unspecific (4% in our human audit), for example, mentioning that 

these technologies are available in the workspace, or refer to the company but not the job (the 

remaining 5% if we trim the first and last 50 words, 16% otherwise). 

For each of our 1,286 technologies, we thus have its year of emergence, a list of pioneer locations 

where the technology was invented, and a highly granular dataset of job announcements (indexed 

with a location, industry, occupation, skill level, firm, and year) that involve using, producing, or 

otherwise interacting with the technology. Most of our analysis focuses on aggregations of these 

granular data to the technology-time and the technology-location-time levels. Appendix Table 7 

provides summary statistics for each level of aggregation. However, the data also open the door 

for much more granular analyses of job postings for specific firms, locations, and occupations, as 

we discuss below (see Appendix Table 5 for an example). 

Of course, each of the four steps of our data construction can be implemented in different ways, 

which we highlight when exploring robustness in Section 7. For example, we may choose different 

thresholds for a technology’s emergence year, include or exclude unigrams or trigrams, and 

employ various human audits of the technologies identified by our algorithms. While each of these 

variations result in a slightly different sets of technologies and bigrams, we find they have little 

effect on our main findings below. It should be noted that a number of studies have used 

employment data from other sources that we do not explore here to understand the diffusion of 

technology. Among the most important of these are Tambe and Hitt (2012), Tambe (2014), and 

Tambe et al. (2020), who measure the skills of U.S. IT workers using resumes from Linked In. 

e. Disruptive technologies 

Figure 2 shows a binned scatterplot of the number of mentions in earnings calls over the number 

of job postings mentioning each of our 1,286 technologies. It shows two important patterns: First, 

both variables are highly correlated – the same new technologies that occupy the discussions of 

managers and investors in earnings calls are also most frequently mentioned in job postings. The 



 16 

R2 of a fitted regression line is 57.0%. Second, both distributions are heavy tailed (note the 

logarithmic scale on both axes), so that a small number of technologies drives the vast majority of 

the mentions in both job postings and earnings calls. The 276 technologies that are mentioned in 

more than 100 earnings calls account for about 39 million job postings (or about 77 percent of all 

job postings mentioning any new technology).  

For ease of reference, we refer to this highly impactful group as “disruptive” new technologies 

(Christensen, 1997; Rogers, 1962), in the sense that these new technologies appear to pose enough 

of an opportunity or challenge to listed firms to take a significant amount of airtime in their 

quarterly earnings calls. We pay special attention to this group throughout our analysis.21 It 

includes all the examples from Table 1 (smartphone, machine learning, hybrid vehicles…). On 

average, each disruptive technology is mentioned in 141,633 job postings.  

The figure also shows examples of “intermediate” and “non-disruptive” new technologies – those 

with between 10 and 100 and fewer than 10 earnings call mentions, respectively. The former 

(intermediate) group includes video compression, the pulse oximeter, and the liquid 

chromatograph. On average, each technology in this group is associated with 26,128 job postings. 

The latter (non-disruptive) group includes the ultrasonic horn, suction filtration, and NMOS 

transistors, with on average 1,165 job postings.22,23  

 

3. Spatial Concentration of New and Disruptive Technologies 

We first describe the spatial distribution of innovative activity associated with our new 

technologies. Table 3 examines the regional concentration of patents that mention new 

technologies. Panel A lists the top five CBSAs (in column 3) and their share of innovative activity 

 
21 In this sense, our notion of disruption is notably broader than Schumpeter’s (1942) theory of creative destruction, 
which also requires the devaluation or destruction of existing wealth. 
22 Note that our notion of technology as an “applied technique, product, or process” naturally recognizes the NMOS 
transistor as a separate technology from the smartphone, even though the latter might contain or even require the 
former. Similarly, in the context of job postings, there is a clear distinction between a job task requiring use of a 
smartphone and a job task involving NMOS transistors. In this sense, we are using language, which naturally generates 
different terms for different technologies that workers and firms interact with, to measure a technology’s economic 
importance in job postings and earnings calls. These notions of economic importance are thus also quite distinct from 
broader notions of scientific importance, where understanding electricity and transistors are prerequisites to building 
smartphones.  
23 Appendix Figure 4 shows the average number of job postings for each category of technology. 
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(in column 2), broken down by disruptive, intermediate, and non-disruptive new technologies and 

then for patents mentioning any new technology. It shows two major stylized facts.  

First, relative to the distribution of the population and the educated workforce, the development of 

new technologies is regionally concentrated. Of the 917 CBSAs, the top five collectively account 

for 33.3% of patents mentioning a new technology. As such, the development of new technologies 

is notably more concentrated than the distribution of college graduates (22.5%) and the overall 

workforce (18.9%).24 

Second, this concentration increases when we condition on patents that mention a disruptive new 

technology, where the top five CBSAs (San Jose, San Francisco, New York, Seattle, and Boston) 

represent a striking 42.1% of all patents. By way of comparison, intermediate patents, which less 

frequently appear in earnings calls, have 34.0% in the top five CBSAs, while non-disruptive 

patents have 30.4%. The most commercially impactful innovations thus also have the most 

geographically concentrated origins. Notably, only one of the largest CBSAs for disruptive 

patents – New York – is on the top five list for employment, highlighting how population size is 

not the primary correlate of disruptive patenting share. 

In the same vein, Figure 3 shows the distribution of pioneer CBSAs – the urban areas that account 

for a majority of early patenting of each of our disruptive technologies. Panel A of Figure 3 

presents these patterns in map form; and Panel B presents them in a bar chart showing CBSAs’ 

share of all pioneer locations. In Panel B, we combine San Jose-Sunnyvale-Santa Clara, CA and 

San Francisco-Oakland-Hayward, CA as Silicon Valley, which accounts for 28.7% of all pioneer 

locations. Jointly, all California CBSAs account for about 41.0% of all pioneer locations. Major 

cities in the Northeast Corridor, New York-Newark-Jersey City, Boston-Cambridge-Newton, 

Washington-Arlington-Alexandria, and Philadelphia-Camden-Wilmington, jointly account for 

27.6% of all pioneer locations. The top two clusters alone – Silicon Valley and the Northeast 

Corridor – thus account for 56.3% of all pioneer locations. This result highlights the concentration 

of disruptive innovative activity within America over the last decades. 

These pioneer locations for disruptive new technologies tend to have highly educated workforces 

and a high density of university activity. For each CBSA-disruptive technology pair (e.g., “smart 

 
24 The table also reveals disruptive technologies are more patent intensive. We can compute 2,434 (1,044,351/429) 
patents per bigram for disruptive innovations, as opposed to 612 for intermediate and 319 for non-disruptive ones. 
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phone” and the San Jose CBSA), Appendix Figure 5 presents binned scatter plots of patents 

mentioning each technology in the ten years prior to the emergence date (per capita, normalized 

by total CBSA population) and regional characteristics. In the top left panel, the x-axis is the share 

of workforce with a college degree; in the top right, the share with a post-graduate degree; and on 

the bottom, the log of university assets per capita. In all cases, there is a strong association between 

measures of education/university presence and disruptive patents per capita. For example, CBSAs 

at the 75th percentile of university assets per capita file 153% more disruptive patents per capita 

than those at the 25th percentile. We also compute these for non-disruptive technologies. 

Interestingly, these associations tend to be significantly stronger for disruptive than non-disruptive 

patenting (although they are positive for both categories). Regions with a greater research 

university presence or a more educated workforce are thus significantly more likely to be involved 

in the early development of disruptive technologies.25  

We show evidence below that this concentration of disruptive innovation in a handful of urban 

centers engenders large and persistent regional disparities in economic opportunity, as measured 

by job postings in local labor markets. In this sense, a handful of U.S. locations appear to have a 

comparative advantage in developing technologies that disrupt firms and labor markets.  

   

4. Diffusion across Regions – Region Broadening and Pioneer Advantage 

We next seek to understand the diffusion of new technologies in job postings across regions.  

To understand the geographic spread of technology job postings, we define the normalized share 

of job postings in CBSA 𝑇𝑇 mentioning a technology bigram 𝜏𝜏 in year 𝐶𝐶: 

𝑁𝑁𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝑛𝑛𝐶𝐶𝑁𝑁𝑇𝑇𝑁𝑁 𝑠𝑠ℎ𝐶𝐶𝑁𝑁𝑇𝑇𝑐𝑐,𝜏𝜏,𝐶𝐶 =
∑ 𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝑔𝑔𝑛𝑛 𝐽𝐽𝐶𝐶𝐽𝐽𝐶𝐶𝑖𝑖𝑐𝑐 𝐶𝐶,𝜏𝜏,𝐶𝐶 /∑ 𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝑔𝑔𝑛𝑛 𝐽𝐽𝐶𝐶𝐽𝐽𝐶𝐶 𝐶𝐶,𝜏𝜏,𝐶𝐶

#𝐽𝐽𝐶𝐶𝐽𝐽𝑠𝑠𝑐𝑐,𝐶𝐶/#𝐽𝐽𝐶𝐶𝐽𝐽𝑠𝑠𝐶𝐶
. (2) 

The numerator measures the share of all jobs relating to a given technology 𝜏𝜏 at a given point in 

time t that are located in 𝑇𝑇; and the denominator is the share of location 𝑇𝑇 in the overall U.S. labor 

market at t. 𝑁𝑁𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝑛𝑛𝐶𝐶𝑁𝑁𝑇𝑇𝑁𝑁 𝑠𝑠ℎ𝐶𝐶𝑁𝑁𝑇𝑇𝑐𝑐,𝜏𝜏,𝐶𝐶, therefore, measures the regional over- or under-representation 

 
25 This finding matches the large literature on the geographical concentration of innovation and its connections to 
university activity, such as Jaffe (1989), Jaffe et al. (1993), Zucker et al. (1998), and Furman and MacGarvie (2007). 
Moretti (2021) illustrates these effects by examining inventor moves to larger innovation clusters, showing that they 
experience significant increases in inventive productivity. (This result was hinted at in Forman et al. (2016) as well.) 
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of job postings associated with each technology bigram relative to the distribution of overall open 

jobs. Values above one denote over-representation and below one under-representation.26  

In Figure 4, we present a series of maps displaying the spread of job postings mentioning new 

disruptive technologies. The blue circles identify the same pioneer locations as in Figure 3, but 

now superimpose purple dots that show the intensity of the normalized share of job postings 

relating to these new disruptive technologies 0-5, 6-10, 11-20, and 21-30 years after the disruptive 

technology’s year of emergence.  Darker dots correspond to a higher normalized share of jobs.  

Two patterns stand out. First, as time goes by, jobs relating to disruptive technologies gradually 

spread across space (region broadening). Second, there is a remarkable alignment between the 

CBSAs that pioneer early development in disruptive technologies and the CBSAs that host their 

early employment. Even after accounting for differences in the size of the local labor market, early 

employment is strongly concentrated in the same places where the technology was originally 

developed (pioneer advantage). We next substantiate these two patterns formally. 

a. Region broadening 

We first examine the overall geographic dispersion of technology job postings. To this end, we 

calculate the coefficient of variation of the normalized share of technology job postings by dividing 

the standard deviation of 𝑁𝑁𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝑛𝑛𝐶𝐶𝑁𝑁𝑇𝑇𝑁𝑁 𝑠𝑠ℎ𝐶𝐶𝑁𝑁𝑇𝑇𝑐𝑐,𝜏𝜏,𝐶𝐶 across locations c in year 𝐶𝐶 by its mean in year 𝐶𝐶 

for each technology bigram 𝜏𝜏.27 If technologies are uniformly spread out across CBSAs, then the 

normalized share takes a value of 1 for each CBSA, and the coefficient of variation calculated 

across CBSAs is 0. The average coefficient of variation in our sample of disruptive technology 

bigrams is 5.70, which suggests that technology job postings relating to disruptive technologies 

are on average highly concentrated compared to, for example, the coefficient of variation for the 

normalized share of the local population that holds a college degree (2.90). 

Using a regression framework, Table 4 examines the evolution of this coefficient of variation over 

the technology’s life cycle. Panel A of this table reports results from regressions of the form: 

𝐶𝐶𝐶𝐶𝜏𝜏,𝐶𝐶 =   𝛼𝛼0 + 𝛽𝛽𝑅𝑅𝑅𝑅�𝐶𝐶 − 𝐶𝐶0,𝜏𝜏� +  𝛿𝛿𝜏𝜏 +  𝜀𝜀𝜏𝜏,𝐶𝐶 , (3) 

 
26 Throughout, we cap this variable at the 99th percentile of non-zero observations. 
27 Appendix Table 7 summarizes the data used in this and subsequent regression analyses. 
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where  𝐶𝐶𝐶𝐶𝜏𝜏,𝐶𝐶 is the coefficient of variation across CBSAs for technology bigram τ in year t, and 

�𝐶𝐶 − 𝐶𝐶0,𝜏𝜏� is the number years since emergence of technology bigram τ in year 𝐶𝐶0,𝜏𝜏 (capped at 30 

years, given we have little data for technologies older than 30 years). 𝛿𝛿𝜏𝜏 denotes a full set of 

technology bigram fixed effects, which we constrain to sum to zero, so that the intercept 

𝛼𝛼0 measures the average coefficient of variation at the year of emergence.28 The slope coefficient, 

𝛽𝛽𝑅𝑅𝑅𝑅, measures the speed of decay of this concentration with each passing year since emergence. 

Panel A, column 1 reports estimates for disruptive technologies. Columns 2 and 3 report results 

for all new technologies, without and with bigram fixed effects, respectively. Throughout, we 

cluster standard errors at the technology level (the unit of observation is a technology bigram). 

In column 1, we find that the coefficient of variation, on average, decreases by 0.068 (s.e.=0.026) 

for every year since its emergence year. Job postings mentioning disruptive technologies slowly, 

but significantly, spread across space. On average, at the year of emergence of a disruptive 

technology, the coefficient of variation is 5.58 (significantly greater than 0). With each additional 

year since emergence, on average, this coefficient of variation decreases by 0.068 points (or 

1.22%). Taking these estimates at face value suggests that disruptive technology job postings take 

82 years to fully disperse across the United States. 

Figure 5 shows this pattern graphically using a binned scatterplot: a technology’s job postings are 

geographically highly concentrated in the early years after its emergence. Within 30 years, this 

geographic concentration drops by about a third (36.6%). Interestingly, the figure also shows this 

process of spread, measured in the pooled set of technologies, is close to linear in the data.29  

In column 2 of Table 4, we show this pattern is almost identical when we include the long tail of 

intermediate and non-disruptive technologies in our sample. Appendix Table 18 tests explicitly for 

differences in the rate of spread between disruptive and non-disruptive technologies, finding few 

 
28 Because the coefficient of variation, as well as some of the other constructed moments used in the following tables, 
become noisy with insufficient data, we take steps in the regressions to down-weight technologies that are mentioned 
in relatively few job postings. First, we weight observations by the square root of the total number of job postings 
mentioning that technology, capped at 100, meaning that technologies with more than 10,000 postings receive full 
weight, while those with less than 10,000 postings are weighted by their square root. Second, in regressions not limited 
to disruptive technology bigrams, we exclude technology bigrams with less than 1,000 job postings. In practice, these 
adjustments have little impact on our estimates (see Section 7). 
29 Appendix Table 8 includes a quadratic term and shows it is indistinguishable from zero. Additional specification 
tests suggest the relationship is closer to linear than log in the data. Consistent with the literature on S-curves, which 
studies the speed of adoption of a given technology (Griliches, 1957), we do find significant concavity in the rate of 
spread when conditioning only on variation within technologies (column 3 of Appendix Table 8). 
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significant differences. In column 3 of Table 4, when conditioning only on within-technology 

variation, we find a somewhat faster rate of spread. With each additional year, the coefficient of 

variation falls by -0.153 (s.e.=0.012) or 1.85% – implying 54 years to full dispersion.  

Panel B of Table 4 shows similar results (following the same specification as column 3 of Panel 

A) using alternative measures of geographic concentration as dependent variables: the mean 

normalized share of a technology’s job postings in the top five CBSAs relative to the mean 

normalized share across all CBSAs, the percentage of CBSAs with a normalized share of a 

technology’s job postings of less than 10% (that is, the representation of CBSAs with almost no 

activity associated with that bigram), and the sum of squared deviations of the normalized share 

from 1 (similar to the Herfindahl-Hirschman Index). The consistent pattern is for a slow decline 

of concentration, however measured: all three measures fall with time, but again imply time 

periods in excess of 50 years to full dispersion. This is a strikingly slow rate of convergence, given 

that the typical political cycle is around five years, and most Americans work for less than 50 

years. 

b. Pioneer advantage 

Table 5 formally explores the second pattern: pioneer advantage. We quantify the advantage that 

pioneering regions (CBSAs that account for a majority of the initial patenting in a technology) 

retain in that technology’s job postings, even as region broadening occurs. Panel A reports results 

from the specification: 

𝑁𝑁𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝑛𝑛𝐶𝐶𝑁𝑁𝑇𝑇𝑁𝑁 𝑠𝑠ℎ𝐶𝐶𝑁𝑁𝑇𝑇𝑇𝑇,𝜏𝜏,𝐶𝐶 =   𝛼𝛼0 + 𝛽𝛽𝑃𝑃 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑁𝑁𝑐𝑐,𝜏𝜏 +  𝛽𝛽𝐷𝐷 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑁𝑁𝑐𝑐,𝜏𝜏�𝐶𝐶 − 𝐶𝐶0,𝜏𝜏� + 𝛿𝛿𝑐𝑐 +  𝛿𝛿𝜏𝜏 +  𝛿𝛿𝐶𝐶 +  𝜀𝜀𝑐𝑐,𝜏𝜏,𝐶𝐶  (4) 

where 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑁𝑁𝑐𝑐,𝜏𝜏 is a dummy variable denoting the pioneer status of the CBSA; 𝛿𝛿𝑐𝑐, 𝛿𝛿𝜏𝜏, 𝛿𝛿𝐶𝐶 denote 

CBSA, technology bigram, and year fixed effects respectively. Columns 1 and 2 examine job 

postings mentioning disruptive technologies; columns 3 and 4 show results for all technologies. 

In column 1, we see that the pioneer locations associated with a disruptive technology retain a 

significant pioneer advantage on average. More specifically, the normalized share of technology 

job postings is 31.1 percentage points higher in its pioneer locations on average throughout the 

sample period. Column 2 shows that this advantage is much larger in the year of emergence (108.4 

percentage points), but then decreases significantly over time, on average by 3.2 percentage points 

per year or 2.9% (0.032/1.084). The initial advantage of the pioneering locations for job postings 
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relating to the disruptive technologies they develop thus lasts for decades, with an implied 34 years 

to zero advantage.30 

In column 3, we include all technologies and find an almost identical pattern – albeit with a 

somewhat larger point estimate for the pioneer advantage at the year of emergence of 1.321 

(s.e.=0.254). In column 4, we look at technology job postings in the neighborhood of pioneer 

locations by adding a dummy for CBSAs within 100 miles of a pioneer location, 

𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑁𝑁 𝑁𝑁𝑇𝑇𝐶𝐶𝑔𝑔ℎ𝐽𝐽𝐶𝐶𝑁𝑁𝑐𝑐,𝜏𝜏, and its interaction with the number of years since the emergence of the 

technology. The estimates suggest that some of the pioneer advantage spills over to these adjacent 

communities, with a 15.8 percentage point higher normalized share in the year of emergence. 

Again, this advantage appears to decay over time, though the decay is not statistically 

distinguishable from zero. 

c. Mechanisms  

Given the extreme regional concentration of disruptive technologies’ pioneer locations, and the 

long-term advantage in jobs these regions appear to enjoy, a key question is why this advantage 

appears to be so persistent. We take two steps to better understand the mechanisms behind this 

persistence: First, we examine the skill requirements of the jobs spreading across space. Second, 

we analyze the words around those in which the new technology is mentioned in the job posting 

to learn about whether the job is involved with developing or using the new technology.  

Pioneer advantage in high- vs low-skill jobs 

We first analyze differential rates of spread of high- versus low-skill jobs relating to disruptive 

new technologies. To compute a job posting’s skill requirement, we use the 6-digit SOC code 

allocated to the job posting by Burning Glass and assign it the average level of college education 

respondents report in the 2015 ACS for that occupation.31, 32  

Columns 1 and 2 of Panel A of Table 6 report results from the specification: 

 
30 In Appendix Table 9, we test the robustness of our results to the addition of interacted fixed effects. We find that 
decay rates of pioneer advantage are similar across these specifications.  
31 As an example, Appendix Table 10 shows the list of top occupations by share of job postings for some of our top 
technologies. Also see Section 2 of the Data Appendix for details. 
32 The BG data also includes an indicator for college requirement for a subset of observations. However, since this 
subset is quite limited, we prefer using SOC codes to generate this variable. 
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log (𝐶𝐶𝐶𝐶𝜏𝜏,𝐶𝐶
𝑠𝑠 ) =  𝛼𝛼0𝑠𝑠 +  𝛾𝛾1𝑠𝑠�𝐶𝐶 − 𝐶𝐶0,𝜏𝜏� +   𝛿𝛿𝜏𝜏 + 𝜀𝜀𝜏𝜏,𝐶𝐶, 𝑠𝑠 ∈ {𝐻𝐻, 𝐿𝐿}                                   (5) 

where 𝐶𝐶𝐶𝐶𝜏𝜏,𝐶𝐶
𝑠𝑠   is the coefficient of variation of the normalized share of technology job postings 

across CBSAs, as in Section 4.a, calculated separately for 𝑠𝑠𝜖𝜖{𝐻𝐻, 𝐿𝐿} – high-skill jobs (H) and low-

skill jobs (L).  For the purposes of this exercise, we define high-skilled jobs as those which are 

classified in occupations with more than a 60% college-educated share in the 2015 ACS (28.4% 

of all jobs on BG) and low-skilled jobs as those with under a 30% share (42.5% of all jobs). 

Column 1 reports results for high-skill jobs, and column 2 reports results for low-skill jobs. To 

facilitate the direct comparison of differential rates of spread between these two types of jobs, we 

take logs of the dependent variable so that the slope coefficient is now directly informative about 

the percentage decline in the coefficient of variation per year.33 

We find that the geographic concentration of low-skill jobs (in column 2) decreases 1.2 percentage 

points or 40% (0.042/0.030 - 1) faster than that of high-skill jobs (in column 1). This difference is 

statistically significant at the 1% level. Figure 6, Panel A shows this differential decay graphically, 

this time also including across-technology variation (without technology bigram fixed effects). 

Again, low-skill technology job postings spread at a significantly faster rate.  

This pattern is similarly prominent when analyzing pioneer location advantage. In columns 1 and 

2 of Panel B of Table 6, we repeat the regression specification in column 2 of Table 5, but now 

separate between high- and low-skill jobs (all definitions are as above). We find that the pioneer 

advantage in a technology’s job postings is significantly more persistent for high-skill jobs than 

for low-skill jobs. While the former decays at 2.4% per year, the latter erodes at a relatively fast 

3.6%. These estimates imply it takes 41 years for a pioneer location’s advantage in high-skill jobs 

to erode, whereas that for low-skill jobs lasts only 28 years. (Both results are again almost identical 

when we repeat these estimations for all of the new technologies in Appendix Table 19.) 

Taken together, this evidence suggests that the overall geographic spread of technology jobs is 

driven by low-skill jobs, while high-skill jobs take significantly longer to spread across space. That 

is, the pioneer locations involved with the early development of a technology tend to retain a 

significant and very long-lasting advantage in high-skill job postings relating to that technology.  

 
33 Results are almost identical when we return to the linear specification of Table 4 and compare the ratios of the slope 
coefficients to constant terms. See Appendix Table 11. 
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Research, Development, and Production 

While there are a number of hypotheses that can be offered for these patterns, our text-based 

methodology allows us to look carefully at one leading explanation: the movement of new jobs 

from technology research, development, and production (RDP) to technology use.  

The text in the job announcements contains rich information to distinguish these two types of jobs. 

For example, a job posting involved with a technology’s RDP might state “you will be designing 

the graphics module for our virtual reality training system,” while one involved with a 

technology’s use might read “the role will involve assisting customers and selling tickets from your 

smart tablet in the entrance of the cinema.” (Additional examples in Appendix Figure 6.) 

To systematically identify the cases that involve RDP of new technologies, we use an iterative 

procedure that combines an unsupervised learning algorithm with some human judgment to 

identify word patterns associated with RDP job postings. The first step is developing a set of 

plausible keywords (generated by the authors) that are commonly used when describing positions 

relating to the RDP of new technologies (“research and,” “and develop,” “and development,” 

“customization of,” “to build,” and “to design”). We then use an embedding vector algorithm 

trained on earnings calls to identify other phrases (unigrams and bigrams) that were used in similar 

context to these keywords – in effect, using the embedding model like a custom-trained 

thesaurus.34 For each of these suggested phrases, we examine ten excerpts from job postings to 

check for false positives. We then add to our initial list those suggested phrases that had at least 

eight true positives (no more than two false positives). After updating the list, we go through the 

steps again iteratively – now asking the embedding model for phrases proximate in vector space 

to the union of already selected phrases – until we have exhausted all useful suggestions that meet 

the threshold of eight out of 10 true positives.  Appendix Table 12 lists the full set of selected 

phrases.  

Using this classification, we systematically flag all job postings that mention a new technology 

within 15 words of one of our RDP keywords and categorize all others under “use.” To verify the 

 
34 Specifically, we use the Word2Vec Python package Gensim trained on earnings calls (sourced as noted above) from 
2002 to 2019. For the training process, we used the default parameters: 200 dimensions, ignoring words that appear 
fewer than 50 times, and a context window of 15 words. We train on earnings calls, instead of job postings, because 
this type of language model tends to perform poorly when trained on short texts. 
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accuracy of the resulting classification, we conduct a human audit of 1,000 randomly sampled 

technology job postings. We assign team members to read and classify these job postings into 

either RDP or use of the associated technology. In this random sample, we are able to correctly 

classify 63.1% of technology RDP postings and 68.1% of technology use postings. With this 

distinction in hand, we calculate the coefficient of variation of the normalized share of technology 

job postings for each disruptive technology and year separately for the RDP and use job postings.  

Columns 3 and 4 of Table 6 (Panel A) examine the differential spread of these two different types 

of technology job postings, estimating region broadening separately for each group. Again, we see 

large differences: technology-using job postings spread out 94.4% (=0.035/0.018-1) faster than 

postings that involve technology research, production, and development jobs. This difference is 

significant at the 1% level. 

We find a similar pattern for the pioneer advantage in RDP job postings. Columns 3 and 4 of Panel 

B in Table 6 re-estimate regression specification (4) and calculate the advantage of pioneer CBSAs 

in technology job postings that involve the RDP and use of new technologies. We find that pioneer 

advantage in job postings involving the use of new technologies is smaller initially (with a constant 

term suggesting 147.2% more such jobs in the pioneer location in the year of emergence) and 

dissipates significantly over time (-0.038, s.e.=0.014). By contrast, RDP job postings are more 

concentrated in pioneer locations initially (213.8% higher in the year of emergence), and the decay 

rate is statistically indistinguishable from zero (though negative and in a similar range as other 

estimates in the table). (see also Figure 6, Panel B.) 

Taken together, these findings suggest that technologies remain highly concentrated in their 

research, development, and production in the original pioneer location, using highly skilled 

employees for these activities, but spread out in their application, where lower-skilled employees 

are utilized. To consider the example of smart phones, these continue to be developed primarily in 

Silicon Valley by graduate school- and PhD-educated employees, but jobs involving their use have 

spread out across the U.S., including positions for sales, repair, maintenance, and utilization, often 

undertaken by non-college-educated employees. That is, pioneer locations that initially developed 

a technology appear to retain a long-term advantage in high-skilled jobs, because activities relating 

to the technology’s RDP remain in that location for long periods of time. 
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5. Skill Broadening 

We next turn to examining the skill bias of technology job postings over time. We find a significant 

high-skill bias in new technologies initially. Over time, the share of lower-skilled job postings 

mentioning the technology increases, albeit at a relatively slow rate.  

We compute the average skill requirement of job postings associated with a particular technology 

bigram at a point in time by examining the occupational composition of these job postings:  

𝑆𝑆𝑆𝑆𝐶𝐶𝑛𝑛𝑛𝑛𝜏𝜏,𝐶𝐶 =  
∑ 𝑁𝑁𝑜𝑜,𝑡𝑡

𝜏𝜏  χo,2015𝑜𝑜

∑ 𝑁𝑁𝑜𝑜,𝑡𝑡
𝜏𝜏

𝑜𝑜
      (6) 

where 𝑁𝑁𝐶𝐶,𝐶𝐶
𝜏𝜏  is the number of Burning Glass job postings mentioning bigram τ that are in SOC code 

o at time t, and  χo,2015 is the average skill level for occupation o, as measured by the 2015 ACS. 

For example, if for a technology bigram 𝜏𝜏 in year 𝐶𝐶 all associated job postings are in an occupation 

𝐶𝐶, then its skill level equal to the average skill level of workers in occupation o in the ACS. 

Table 7 uses a regression framework to describe the evolution of the skill level of job postings 

associated with new technologies. The specification is identical to equation (3): 

𝑆𝑆𝑆𝑆𝐶𝐶𝑛𝑛𝑛𝑛𝜏𝜏,𝐶𝐶 =   𝛼𝛼0,𝑆𝑆𝑅𝑅 + 𝛽𝛽𝑆𝑆𝑅𝑅�𝐶𝐶 − 𝐶𝐶0,𝜏𝜏�+   𝛿𝛿𝜏𝜏 + 𝜀𝜀𝜏𝜏,𝐶𝐶  , (7) 

but now we use the average skill required for jobs associated with technology bigram τ in year t 

as the dependent variable. The intercept 𝛼𝛼0,𝑆𝑆𝑅𝑅 denotes the average skill level of the technology’s 

job postings in its year of emergence, 𝐶𝐶0,𝜏𝜏. The slope (𝛽𝛽𝑆𝑆𝑅𝑅) denotes this skill level’s average speed 

of decay with each passing year since emergence. Column 1 of Panel A reports results for 

disruptive new technologies. Columns 2-4 again include all new technologies.  

In column 1, we find that, on average, 57.1% of job postings mentioning a new technology require 

a college degree at the year of emergence of the technology. As such, jobs associated with a new 

technology are significantly skill biased, particularly when compared with the share of the U.S. 

workforce that holds a college degree – about one third. At the same time, this skill content of a 

technology’s job postings is significantly downward sloping over time. With each additional year 

since emergence, it falls by 0.228 (s.e.=0.092) percentage points on average, implying a rate of 

skill broadening of 0.40% (=-0.228/57.078) per year.  

Figure 7 shows this evolution graphically using a binned scatterplot. Although the pattern of skill 

broadening is clearly visible, it is worth noting that 30 years after the year of emergence, the 
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average college requirement is still 50.2%, far above the average rate of college attainment in the 

U.S. population, as noted above. In this sense, new technologies persistently generate a 

disproportionate share of employment opportunities for high-skill workers for very long periods 

of time. Column 2 of Table 7 shows almost identical results when we include all technologies in 

the sample.  

One possible concern with these results is that the types of jobs advertised online (as opposed to 

in printed newspapers) could be changing over time.35 To address this concern, Column 3 shows 

the coefficient of interest is almost unchanged when including time fixed effects (-0.218, 

s.e.=0.100), so that our findings cannot be explained by an increasing share of low-skilled jobs 

being advertised online. Appendix Table 13 expands on this theme by estimating skill bias and 

broadening separately for two sub-samples (2010-2015 and 2016-2019), with almost identical 

results in each case.  

In column 4, we introduce technology bigram fixed effects and now find a larger negative slope (-

0.493, s.e.=0.036), but also a larger constant term (63.898, s.e.=0.840).36 Taken at face value, the 

two estimates imply that new technologies take 68.08 years to reach the average level of college 

education among the U.S. workforce (30.3% in the 2015 ACS). In other words, the skill bias of a 

given new technology on average takes several generations to dissipate. 

Panel B of Table 7 repeats this estimation using alternative measures of skill. It shows that, in the 

year of emergence, jobs in a new technology on average require 15.5 years of schooling, 22.6% of 

them require a post-graduate degree, and they pay an average wage of $75,521 (measured in 2015 

dollars). All three skill indicators again decay significantly over time, at rates that would imply 

77.6, 78.0, and 69.7 years to reach the average years of schooling, rate of post-graduate education, 

and wage of the U.S. population reported in the ACS. 

 
35 Appendix Figure 9 describes the overall volume and the composition of Burning Glass (BG) job postings over time. 
Panel A shows that BG job postings have increased about one-to-one with job postings captured in the U.S. Bureau 
of Labor Statistics’ Job Openings and Labor Turnover Survey (JOLTS). Panel B shows that the average skill level 
associated with BG job postings has fallen over time at about 0.7% per year. Panels C and D show that the volume of 
BG job postings by occupation (pooled across years and by year) is associated one-to-one with employment observed 
in that occupation, indicating that BG has been consistently representative of U.S. employment.  
36 Note that, due to the linear form of our estimating equation, the within-technology-and-time variation is effectively 
degenerate, so that we cannot simultaneously introduce technology and time fixed effects. In this sense, there is no 
way of distinguishing cohort from time effects, as is common in such analyses (see Hall et al., 2007). 
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All of these variations show (1) that job postings mentioning new technologies are strongly high-

skill biased initially and (2) this skill bias decays significantly over time, albeit at a relatively slow 

rate, so that the skill bias of jobs associated with new technologies persists for multiple decades.  

Both findings intersect with important branches of the literature studying the relationship between 

technology and inequality. First, they show direct evidence of the high-skill bias of new 

technologies, adding to a large literature that infers this skill bias from observed wage premia (e.g., 

Katz and Murphy, 1992). The findings suggest in a dramatic way that new technologies contribute 

to persistent inequalities between high- and low-skilled workers and, because pioneer locations of 

disruptive technologies are highly concentrated, also engender persistent inequalities across space. 

In this sense, innovation has a profound effect on regional disparities in economic opportunity.  

Second, our finding of skill broadening provides direct evidence for a key assumption in the 

literature on automation: that the comparative advantage of high-skill workers in a new task erodes 

as the technology matures, pulling lower-skilled workers into working with a new technology over 

time. It is this key assumption that leads to balance in the “race between man and machine” in 

Acemoglu and Restrepo (2018) and the related literature. Our evidence suggests this skill 

broadening indeed occurs in the data.  

a. Mechanisms 

Given these results, a key question is why skill broadening occurs in practice. The literature has 

suggested at least two, possibly complementary, channels. The first is standardization of new 

technologies – where research and customization become less important as new technologies 

mature and become standardized. That is, the new technology evolves over time into a standardized 

form that can more readily be used by less educated workers (Acemoglu et al., 2012; Acemoglu 

and Restrepo, 2018). The second is training – over time, less educated workers may acquire 

experience or training that allows them to use new technologies, even if they do not have high 

levels of formal education (Nelson and Phelps, 1966; Galor and Moav, 2000).  

Again, analyzing the context of the mention of the new technology within a given job posting can 

shed some light on these mechanisms. To this end, we use our keyword-based approach to 

systematically flag those job postings that mention a given new technology in conjunction with a 

requirement of training or experience with that technology (starting with seed phrases “training 

in,” “knowledge of,” “experience with,” “familiar with,” “knowhow of,” and “proficiency in”); 
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and we again use the same iterative procedure combining our embedding vector model with human 

reading to settle on a list of keywords (shown in Appendix Table 14).  

Appendix Figure 7 shows the proportion of RDP jobs declines significantly over time, so that more 

mature technologies have a lower share of jobs involved with RDP. At the same time, these RDP 

technology jobs skew heavily on the side of higher college requirements. That is, as one might 

expect, the most educated workers are the ones conducting research, development, and production 

of technologies. These plots are thus consistent with theories that, as technologies mature, their 

jobs move from those involving RDP to ones that simply use the technology.  

By contrast, Appendix Figure 8 shows that the share of technology job postings that require 

training or experience in that technology is relatively stable throughout the life cycle of the 

technology, without a significant upward or downward trend as the technology ages. At the same 

time, these training requirements are positively, not negatively, associated with college 

requirements, so that training in a new technology and formal education appear to be complements, 

not substitutes in our data. 

To assess to what extent these two channels can account for new technologies’ skill broadening 

over time, Table 8 separately adds both as controls, to assess to what extent their inclusion can 

attenuate the estimated coefficient, 𝛽𝛽𝑆𝑆𝑅𝑅. Column 1 reproduces our estimate from column 1 of Panel 

A, Table 7 for comparison (-0.228, s.e.=0.92). Column 4 shows that controlling for the share of 

RDP jobs in the same technology attenuates this estimate by about a quarter to -0.177 (s.e.=0.075). 

Columns 2 and 3 shows similar, albeit somewhat smaller, attenuations when controlling separately 

for the share of R&D job postings and the share of job postings relating to production.37 We 

conclude that technologies’ transition from a focus on RDP towards a focus on use can account 

for part of the skill broadening we observe in the data. 

By contrast, column 5 shows that controlling for the share of that technology’s jobs that require 

training or experience in the technology results in no attenuation whatsoever of our estimate of 

𝛽𝛽𝑆𝑆𝑅𝑅. In this sense, changes in training and experience in the technology cannot account for the 

pattern of skill broadening observed in the data. 

 
37 For the sub-topic of research and development we start with the seed phrases “research and,” “and develop,” “and 
development,” and “customization of” – a subset of our RDP seed keywords above – and proceed in the same manner. 
The remainder of the RDP keywords constitute the “produce” category. 
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We tentatively conclude that training and experience does not appear to be a substitute for formal 

education when it comes to required qualifications for jobs in new technologies, as measured in 

job postings. Instead, some of the observed skill broadening can indeed be accounted for by 

standardization of the technology over time. 

 

6. Diffusion across Occupations, Industries, and Firms 

Before exploring the robustness of our main findings, we highlight the power of the data that we 

have developed to also characterize the spread of new technologies across other dimensions.  

To assess the rate at which technologies spread across occupations, firms, and industries, we 

extend the definition of 𝑁𝑁𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝑛𝑛𝐶𝐶𝑁𝑁𝑇𝑇𝑁𝑁 𝑠𝑠ℎ𝐶𝐶𝑁𝑁𝑇𝑇𝑐𝑐,𝜏𝜏,𝐶𝐶 to NAICS four-digit industries, SOC six-digit 

occupations, and firms for each technology (𝜏𝜏) and time (𝐶𝐶), calculating the normalized share of 

job postings in each industry, occupation, and firm that mention a given new technology.38 We 

then measure the coefficient of variation of 𝑁𝑁𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝑛𝑛𝐶𝐶𝑁𝑁𝑇𝑇𝑁𝑁 𝑠𝑠ℎ𝐶𝐶𝑁𝑁𝑇𝑇𝑐𝑐,𝜏𝜏,𝐶𝐶 across the segments.   

Because the number of firms posting job advertisements online expands over time, we stratify our 

firm-technology-year sample by including only firms that post at least one job in each of our 

sample-years, before calculating the coefficient of variation.39 This step focuses attention on 

10,231 larger firms, which on average post 1,628 jobs per year, effectively excluding variation 

coming from small and medium-sized businesses.  

Spread across firms, occupations, and industries. Table 9, Panel A shows the results of a 

regression of the coefficient of variation calculated for each technology (𝜏𝜏) and time (𝐶𝐶) on the 

year since emergence. Column 4 shows our already established results for locations for 

comparison.40 We find that while there is a decline in concentration as measured by coefficient of 

variation for all four segments, there is a relatively (and significantly) larger decline across 

locations and firms (columns 4 and 3) than across industries and occupations (columns 2 and 1). 

 
38 While the former two variables are included in the BG data (in each case, we use the finest level of disaggregation 
available from BG), the latter relies on our own matching algorithm described in Section 2. 
39 Hershbein and Kahn (2018) discuss this fact in some detail. The general increase in coverage of the BG data over 
time should not affect any of our main results. We discuss robustness to various weighting schemes in detail in Section 
7. 
40 In order to avoid calculating coefficients of variation for unreasonably sparse data, we only keep those technology 
x year observations with at least 100 postings with industry coverage. This issue arises because BG provides NAICS 
codes for only 41% of all postings, as noted above.  
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While the coefficient of variation declines on average by 1.8% and 1.6% per year for CBSAs and 

firms, respectively, the corresponding declines are 0.7% and 0.4% for occupations and industries, 

respectively.41 In fact, in Column 1, this rate of decline across industries is statistically 

indistinguishable from zero. 

Advantages for pioneer firms and industries. Following our procedure for pioneer locations, we 

define pioneer industries and firms for each technology as those with the most assigned patents in 

the ten years after the technology’s emergence year that collectively account for 50% of the 

matched patents in a given new technology. (See Section 3 of the Data Appendix for details on 

how we match patents to large firms and industries – matching patents to occupations makes little 

sense, so that we do not calculate pioneer occupations.) Appendix Table 15 shows the top pioneer 

industry for a selection of technologies. For example, the top pioneer industry for “hybrid electric 

vehicle” is “motor vehicle manufacturing” (accounting for 56% of early patents).  

In Table 9, Panel B, we explore the initial hiring advantage of pioneer firms and industries by 

estimating specification (4) for these additional dimensions. The table shows that pioneering firms 

have a strong initial advantage in job postings, with a 2,093% higher normalized share of job 

postings at the year of emergence for pioneer firms.  Over time, this advantage again degrades 

significantly, at a rate of 2.3% per year. Consistent with the results in Panel A, this rate of decline 

is statistically indistinguishable from zero for industries. 

Taken together, this evidence suggests new technologies initially generate hiring that is highly 

localized by location, firm, and industry. Over time, this hiring disperses, particularly across 

locations and across firms. Looking in more depth on a within-firm basis at the dynamics around 

the location of innovation and job creation is a fertile avenue for future exploration. 

 

7. Robustness Checks and Extensions 

Finally, we conduct a broad range of robustness exercises to assess to what extent judgments we 

have made could have affected our primary results: “concentration in the development of 

 
41 Decay rate across CBSAs is 0.017 (0.005), 0.012 (0.003), and 0.004 (0.002) higher than industries, occupations and 
firms, respectively. These coefficients are statistically significant at the 1%, 1%, and 10% level, respectively. 
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disruptive technologies,” “region broadening,” “pioneer-location advantage,” “skill broadening,” 

and “differential region-broadening by skill level.”  

To this end, we first re-trace our four steps of data construction to reexamine each of the main 

decisions we made in this automated process. In each case, we alter one aspect of the process, re-

create our entire dataset, and re-run our main analyses. Table 10 reports the main estimates of 

interest, where the first line of each panel reproduces the results of our baseline specification for 

comparison. 

Influential patents (Step 1 in Section 2). When isolating new bigrams associated with influential 

innovations, we retained only those that appear in patents accumulating a total of at least 1,000 

weighted citations. Having some such threshold is necessary to maintain computational feasibility 

(to avoid having to cross-reference 1.5 million novel bigrams to Wikipedia and our other text 

sources). However, Panel A of Table 10 shows our results are almost invariant to altering this 

threshold. The panel shows four variations, with cutoffs ranging from 1,250 to 2,000, each 

producing almost identical results.42  

Phrase length (Step 1 in Section 2). Our methodology easily extends to including trigrams, in 

addition to bigrams in the analysis. Repeating our steps 1-4 for trigrams adds 328 technology 

trigrams. 262 of these simply add another phrase to the set of bigrams already associated with a 

given technology (Wikipedia title) in our data. Perhaps the only substantive additions are “real 

time communications” and “injection molding machine” (see Appendix Table 16). 

Adding unigrams is slightly more complicated due to their sheer number (about 2 million pass the 

threshold of 1,000 cite-weighted patents, simply because unigrams are more frequent than 

bigrams). To keep the number of candidate unigrams manageable, we focus on those with more 

than 100 mentions in earnings calls. Doing so adds 200 new technology unigrams, 53 of which 

again simply add another phrase to the set of phrases associated with a given disruptive technology 

already identified in our bigram-based analysis. Appendix Table 17 shows examples among the 

147 remaining unigrams. Overall, as expected, the unigram-based approach appears significantly 

noisier, with some clear false positives (“billable,” “internets”) and names in the mix (“USPS”). 

 
42 The reason for this stability is apparent in Appendix Figure 10, which shows a strong correlation between the number 
of cite-weighted patents and job postings in which a technology is mentioned across all novel bigrams (i.e., including 
bigrams with few cite-weighted patents). That is, variations in our minimum citations cutoff will on average tend to 
remove technologies that have little traction in the labor market.  



 33 

Nevertheless, broadening our approach in this way also yields some substantive additions, 

including, for example, “mRNA” and “Bluetooth.”   

Re-running our analyses including these sets of unigrams and trigrams again has no significant 

effects on our results. 

Human audit (Step 2 in Section 2). Rather than relying fully on our Wikipedia filter to determine 

whether or not a novel and influential bigram describes a technology (as opposed to increasingly 

visible problems or management techniques), we also conducted a human audit, where team 

members read through each Wikipedia title – technology bigram pair and removed all of those 

where the match appeared erroneous (e.g. “OS-level virtualization” matched to “programs 

running”) and those where either the Wikipedia title or the technology bigram did not describe a 

technology according to the team member’s judgment (e.g. “adverse event”). Appendix Table 3 

marks each of the disruptive technologies dropped under this audit (altogether 63 of 276 disruptive 

technologies). Doing so again has a negligible effect on our estimates.  

Emergence years (Step 3 in Section 2). Our baseline approach to defining a technology’s 

emergence year requires that technologies are mentioned in at least 100 cite-weighted patents prior 

to their year of emergence. Two variations in Panel D loosen (one cite-weighted patent) and tighten 

(200 cite-weighted patents) this requirement. A third variation abandons this approach altogether 

and instead fixes the emergence year as the first year in which the technology reaches 50% of its 

maximum cite-weighted patents achieved by a technology bigram in our sample. All of these 

variations again have a negligible effect on our main results. 

Note that each of these variations in the robustness checks above alters the list of new technologies 

we uncover in small ways. For example, “fracking” may only show up in our data if we explicitly 

allow for unigrams, in addition to bigrams. Similarly, requiring 2,000 rather than 1,000 cite-

weighted patents before including a new bigram from patents in our first step of data construction 

will obviously shorten the list of new technologies we produce. Our measure of success is thus not 

to always produce the one true list of new technologies that arose in the past 40 years. Such an 

absolutely true list does not exist. Instead, the key is that our language-based approach produces a 

list of technologies that is representative of new technologies in a statistical sense. The fact that all 

of the variations above produce very similar econometric results is evidence that we meet this bar. 
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Alternative weighting schemes (Step 4 in Section 2). Because the coefficient of variation, as well 

as other constructed moments at the technology-time level, become noisy with insufficient data, 

our baseline specifications down-weight technologies that are mentioned in relatively few job 

postings. Panel E repeats all analyses with (i) unweighted regressions, (ii) without the requirement 

of a minimum number of mentions in job postings, and (iii) with weights proportional to the natural 

logarithm of the number of job postings associated with the technology. Finally, we re-run our 

entire analysis after collapsing technology bigrams at the technology (Wikipedia title) level. 

Again, none of these variations materially affect our results. 

Representativeness of the BG sample. To further address any concerns relating to the possibly 

changing composition of the BG data over time, Appendix Table 13 shows additional variations 

of Table 7, Panel A, column 2 where we (i) include the 2007 data and (ii) estimate our baseline 

coefficient separately for two sample periods (2010-2015 and 2016-2019).  

Standard errors. We also explore the robustness of the results relative to the treatment of the 

standard errors. These examine again the four regressions that were analyzed in Table 10. We 

explore in Table 11 the impact on the standard errors of different clustering approaches: clustering 

the observations not by associated Wikipedia entries (“technologies”), but rather by the individual 

technology bigram, the year, and (in the case of the regression from Table 5) the CBSA, state, and 

the interaction between the CBSA and the associated Wikipedia entry. We also present 

bootstrapped standard errors, drawn from 1,000 replications with replacement. The changes have 

little effect on the significance of the results.  

 

8. Conclusion 

Policymakers in many parts of the world devote enormous energy to fostering nascent 

technologies, ranging from efforts to support academic research to luring start-ups from other cities 

and nations. Such infant industry strategies are often predicated on the notion that early advantages 

in innovation and employment will yield lasting benefits for regions, particularly in the form of 

high-quality employment. 

Using the full text of patents, job postings, and earnings conference calls, we introduce in this 

paper an approach to understand which new technologies affect jobs and businesses and to trace 
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their diffusion across regions, industries, occupations, and firms. We can then map the spread of 

new technologies in these dimensions, focusing on the hiring associated with each important 

innovation.  

We highlight first that the locations where economically highly impactful technologies are 

developed are geographically highly concentrated, with a handful of urban areas contributing the 

bulk of the early patenting and early employment within new technologies. One striking figure is 

that 56% of the pioneering locations for the most economically impactful technologies are in two 

parts of the U.S. – Silicon Valley and the Northeast Corridor. Second, despite this initial 

concentration, jobs relating to new technologies spread out geographically. But this rate of 

diffusion is extremely slow, happening over several decades rather than in just a few years. Locally 

developed technologies continue to offer long-lasting benefits for jobs in their pioneer locations 

for multiple decades. Third, jobs relating to new technologies are highly skill biased – 57% of the 

initial jobs associated with a given new technology require a college degree. Over time, the mean 

required skill levels of the new jobs decline, albeit at a very slow pace. Fourth, low-skill jobs 

associated with the use of a given new technology spread out geographically significantly faster 

than high-skill ones, so that the pioneer locations where the technology was invented host a 

disproportionate share of high-skilled jobs relating to that new technology for several decades after 

its year of emergence.   

Combined with the extreme spatial concentration of the economically most impactful innovation, 

this pioneer advantage engenders large and persistent regional disparities in economic opportunity, 

giving a handful of U.S. locations a lasting advantage in high-skill jobs.  

Beyond these core results of our analysis, the development and spread of new technologies are key 

objects of interest in multiple fields of economics. As we suggest in Section 6, these techniques 

developed here should have applications for studies of firm-level technological adoption and 

implementation. More generally, we hope the text-to-data techniques we develop and data that we 

provide as part of this paper may prove useful in addressing a range of additional research 

questions in the study of economic growth, inequality, entrepreneurship, and firm dynamics. 
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Table 1 – Top technologies by year 

Emergence year Wikipedia title (technology) Technology bigrams 

1979 Hard disk drive hard disk; disk drive 

1980 Barcode reader barcode reader; code reader; code scanner; barcode scanner 

1981 Laser diode emitting laser; diode laser; semiconductor laser; laser diode 

1982 Personal computer personal computer 

1983 Flat-panel display panel display; flat panel 

1984 User interface user interface 

1985 Mobile phone mobile telephone; cellular telephone; phones mobile; cellular 
phone; mobile phone; cell phone 

1986 Facial recognition system frt system; recognition software; recognition system; recognition 
technology; facial recognition 

1987 Digital video digital video 

1988 Model organism animal model 

1989 Mobile device held computer; computer device; handheld computer; mobile 
device 

1990 Debit card cards debit; card debit; debit card 

1991 Flash memory flash device; nand flash; flash memory 

1992 Machine learning learning algorithm; machine learning 

1993 Financial instrument financial instrument 

1994 Active users active user 

1995 Hybrid electric vehicle hybrid electric 

1996 Digital content digital content 

1997 Multicore processor multi core; core processor 

1998 Information privacy data protection 

1999 Unmanned aerial vehicle aerial vehicle; unmanned aerial 

2000 Transaction account transaction account 

2001 Smartphone smart phone 

2002 Online game online game 

2003 Social networking service networking site; social networking 

2004 Electronic discovery electronic format 

2005 LED circuit led driver 

2006 Augmented reality augmented reality 

2007 Self-driving car autonomous vehicle 

Notes: This table reports the top technology by number of mentions in earnings calls (in column 2) for every year 
of emergence between 1976 and 2007 (in column 1). Column 3 lists the associated technology bigram(s). For the 
year of emergence 1999, the most frequent technology in earnings calls was “adverse event.” We replace “adverse 
event” (as it gets dropped in our human audit) with the next most frequent technology, “unmanned aerial vehicle.”  
See Section 2.c of the main text for details. 

  



 

Table 2 – Examples of technologies and pioneer locations  

Machine Learning (1992)   Digital Imaging (1992) 

CBSA State Pct. 
Patents 

 CBSA State Pct. 
Patents 

New York-Newark-Jersey City NY-NJ-PA 24%  Rochester NY 18% 
Seattle-Tacoma-Bellevue WA 13%  San Jose-Sunnyvale-Santa Clara CA 12% 
San Jose-Sunnyvale-Santa Clara CA 12%  San Francisco-Oakland-Hayward CA 7% 
San Francisco-Oakland-Hayward CA 9%  Fort Collins CO 6% 

    Greeley CO 5% 
       Worcester MA-CT 4% 

       

Hybrid Electric (1995)  Smart Phone (2001) 

CBSA State Pct. 
Patents 

 CBSA State Pct. 
Patents 

Detroit-Warren-Dearborn MI 33%  San Francisco-Oakland-Hayward CA 18% 
Ann Arbor MI 10%  San Jose-Sunnyvale-Santa Clara CA 18% 
Indianapolis-Carmel-Anderson IN 8%  Seattle-Tacoma-Bellevue WA 6% 

    New York-Newark-Jersey City NY-NJ-PA 5% 
    Los Angeles-Long Beach-Anaheim CA 4% 

              

Notes: The table shows pioneer CBSAs (in column 1), along with their state (in column 2) and the percentage of early cite-weighted 
patents accounted for by these CBSAs (in column 3) for a sample of four example technology bigrams – “machine learning,” “digital 
imaging,” “hybrid electric,” and “smart phone.” Early patents are defined as patents filed within ten years of the emergence year of 
technology. Each technology bigram’s emergence year is given in parentheses. See Section 2.c of the main text for details. 

 

 

  



 

Table 3 – Geographic concentration of patents, skill, and employment 

 Total Number Share Top 5 CBSAs Top 5 CBSAs 

 (1) (2) (3) 

Panel A: Geographic concentration of U.S. patents 

Disruptive 1,044,351 42.1% 

San Jose-Sunnyvale-Santa Clara CA 
San Francisco-Oakland-Hayward, CA 

New York-Newark-Jersey City, NY-NJ-PA 
Seattle-Tacoma-Bellevue, WA 

Boston-Cambridge-Newton, MA-NH 

Intermediate 364,054 34.0% 

San Jose-Sunnyvale-Santa Clara CA 
New York-Newark-Jersey City, NY-NJ-PA 

San Francisco-Oakland-Hayward, CA 
Los Angeles-Long Beach-Anaheim, CA 
Boston-Cambridge-Newton, MA-NH 

Non-Disruptive 215,395 30.4% 

New York-Newark-Jersey City, NY-NJ-PA 
San Jose-Sunnyvale-Santa Clara CA  

San Francisco-Oakland-Hayward, CA 
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 

Chicago-Naperville-Elgin, IL-IN-WI 

All New Technologies 1,623,800 33.3% 

San Jose-Sunnyvale-Santa Clara, CA 
San Francisco-Oakland-Hayward, CA 

New York-Newark-Jersey City, NY-NJ-PA 
Los Angeles-Long Beach-Anaheim, CA 
Boston-Cambridge-Newton, MA-NH 

All Patents 3,146,114 32.4% 

San Jose-Sunnyvale-Santa Clara CA 
New York-Newark-Jersey City, NY-NJ-PA 

San Francisco-Oakland-Hayward, CA 
Los Angeles-Long Beach-Anaheim, CA 

Chicago-Naperville-Elgin, IL-IN-WI 

Most Cited 1,044,351 32.7% 

San Jose-Sunnyvale-Santa Clara CA 
San Francisco-Oakland-Hayward, CA 

New York-Newark-Jersey City, NY-NJ-PA 
Los Angeles-Long Beach-Anaheim, CA 

Chicago-Naperville-Elgin, IL-IN-WI 

Panel B: Geographic concentration of skill and employment 

College Graduates 51.5 million 22.5% 

New York-Newark-Jersey City, NY-NJ-PA 
Los Angeles-Long Beach-Anaheim, CA 

Chicago-Naperville-Elgin, IL-IN-WI 
Washington-Arlington-Alexandria, DC-VA-MD-WV 

San Francisco-Oakland-Hayward, CA 

Employed 156.5 million 18.9% 

New York-Newark-Jersey City, NY-NJ-PA 
Los Angeles-Long Beach-Anaheim, CA 

Chicago-Naperville-Elgin, IL-IN-WI 
Dallas-Fort Worth-Arlington, TX 

Houston-The Woodlands-Sugar Land, TX 

Notes: This table reports the concentration of patents, skill, and employment across CBSAs in the U.S. The measures 
of skill and employment are obtained from the 2015 American Communities Survey. A patent is considered 
disruptive/intermediate/non-disruptive if it mentions at least one bigram associated with disruptive/intermediate/non-
disruptive technologies more than once.  The row “Most Cited” shows the geographic concentration of the 1,044,351 
patents with the most normalized citations for comparison. This number is chosen to equal the number of patents 
mentioning a disruptive technology. CBSAs in bold are those in the top five for disruptive patents. 

  



 

Table 4 – Region broadening 

Panel A: Main specifications  
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡 

Sample EC>=100  All 

  (1)  (2) (3) 
𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝐶𝐶𝑉𝑉𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡 -0.068***  -0.065*** -0.153***  

(0.026)  (0.024) (0.012) 
Constant 5.577***  6.212*** 8.269*** 
  (0.645)  (0.585) (0.271) 
R-squared 0.019  0.013 0.825 
N 4,270  8,347 8,347 
Bigrams 428  835 835 
Bigram FE NO  NO YES 
Std. Errors (cluster) Wiki Title  Wiki Title Wiki Title 

Years to zero CV 82.12  95.52 54.07 
Panel B: Alternative measures of geographic concentration  

 
𝑁𝑁𝑐𝑐,𝜏𝜏,𝑡𝑡
𝑇𝑇𝑇𝑇𝑇𝑇−5

𝑁𝑁𝑐𝑐,𝜏𝜏,𝑡𝑡
𝐴𝐴𝐴𝐴𝐴𝐴  𝑃𝑃𝐶𝐶𝐶𝐶. (𝑁𝑁𝑐𝑐,𝜏𝜏,𝑡𝑡 ≤ 0.1) �(𝑁𝑁𝑐𝑐,𝜏𝜏,𝑡𝑡 − 1)2

𝑖𝑖

 

 (1) (2) (3) 
𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝐶𝐶𝑉𝑉𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡 -1.724*** -1.117*** -173.965**  

(0.136) (0.088) (77.247) 
Constant 88.781*** 95.514*** 13,650.448*** 
  (3.181) (2.063) (1,808.008) 
R-squared 0.846 0.922 0.679 
N 8,347 8,347 8,347 
Bigrams 835 835 835 
Bigram FE YES YES YES 
Std. Errors (cluster) Wiki Title Wiki Title Wiki Title 

Years to zero CV 51.49 85.48 78.47 

Notes: This table reports the results from regressions at the technology bigram x year level. The dependent variable 
is a measure of the geographic concentration of a given technology bigram’s job postings in a given year. The 
independent variable – years since emergence – is the number of years that have elapsed since the technology’s 
year of emergence. Panel A reports results using our baseline measure of geographic concentration – the coefficient 
of variation of the normalized share of a technology bigram’s job postings across CBSAs. Panel B reports results 
using three alternative measures of geographic concentration – the mean normalized share of a technology’s job 
postings in the top five CBSAs relative to the mean normalized share across all CBSAs, the percentage of CBSAs 
with a normalized share of a technology’s job postings of less than 10% (that is, the representation of CBSAs with 
almost no activity associated with that bigram), and the sum of squared deviations of the normalized share from 1 
(similar to the Herfindahl-Hirschman Index). Column 1 of Panel A is restricted to the sample of technology bigrams 
that appear in at least 100 earnings calls. The other regressions use all technology bigrams that appear in at least 
1000 job postings in our sample. Observations are weighted by the square root of the total number job postings 
mentioning that technology in that year, capped at 100. The normalized share of job postings is capped at the 99th 
percentile of non-zero observations. Standard errors are clustered by Wikipedia title (technology). All 
specifications indicate fixed effects used. Years to zero CV are calculated by dividing the constant by the coefficient 
estimate on the years since emergence. 

 

 

 



 

 

 

 

Table 5 – Pioneer location advantage in technology hiring 

 𝑁𝑁𝐶𝐶𝑉𝑉𝑚𝑚𝑉𝑉𝑁𝑁𝐶𝐶𝑁𝑁𝐶𝐶𝑁𝑁 𝑆𝑆ℎ𝑉𝑉𝑉𝑉𝐶𝐶𝑐𝑐,𝜏𝜏,𝑡𝑡 
Sample: 𝐸𝐸𝐶𝐶𝜏𝜏 ≥ 100  All 

 (1) (2)  (3) (4) 
𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑐𝑐,𝜏𝜏 0.311*** 1.084***  1.321*** 1.282*** 
 (0.076) (0.309)  (0.254) (0.243) 
𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑐𝑐,𝜏𝜏 ∗ 𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝑚𝑚𝜏𝜏,𝑡𝑡  -0.032**  -0.035*** -0.034*** 
  (0.013)  (0.011) (0.010) 
𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉 𝑁𝑁𝐶𝐶𝐶𝐶𝑚𝑚ℎ𝑏𝑏𝐶𝐶𝑉𝑉𝑐𝑐,𝜏𝜏     0.158*** 
     (0.057) 
𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉 𝑁𝑁𝐶𝐶𝐶𝐶𝑚𝑚ℎ𝑏𝑏𝐶𝐶𝑉𝑉𝑐𝑐,𝜏𝜏 

∗ 𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝑚𝑚𝜏𝜏,𝑡𝑡 
    -0.004 

     (0.003) 
R-squared 0.038 0.038  0.030 0.030 
N 3,965,122 3,965,122  7,751,024 7,751,024 
Bigrams 428 428  835 835 
Bigram FE YES YES  YES YES 
CBSA FE YES YES  YES YES 
Year FE YES YES  YES YES 
Std. Errors (cluster) Wiki Title Wiki Title  Wiki Title Wiki Title 
𝑅𝑅𝑉𝑉𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝑁𝑁𝐶𝐶𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶 𝑝𝑝𝐶𝐶𝑉𝑉 𝑦𝑦𝐶𝐶𝑉𝑉𝑉𝑉  -0.029  -0.027 -0.026 
  (0.005)  (0.003) (0.003) 
Implied years to zero advantage  33.88  37.74 38.26 

Notes: This table reports results from regressions of the 𝑁𝑁𝐶𝐶𝑉𝑉𝑚𝑚𝑉𝑉𝑁𝑁𝐶𝐶𝑁𝑁𝐶𝐶𝑁𝑁 𝑆𝑆ℎ𝑉𝑉𝑉𝑉𝐶𝐶𝑐𝑐,𝜏𝜏,𝑡𝑡 (for each CBSA x technology bigram x year) on a 
dummy indicating the pioneer status of the CBSA and the interaction of this dummy with the number of years that have elapsed since 
the bigram’s emergence. The dummy variable 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉 𝑁𝑁𝐶𝐶𝐶𝐶𝑚𝑚ℎ𝑏𝑏𝐶𝐶𝑉𝑉𝑐𝑐,𝜏𝜏 takes value one for non-pioneer CBSAs that are within 100 
miles of the technology’s pioneer locations. Columns 1 and 2 are restricted to the sample of technology bigrams that appear in at 
least 100 earnings calls. The other regressions use all technology bigrams that appear in at least 1000 job postings in our sample.  
Observations are weighted by the square root of the total number job postings mentioning that technology in that year, capped at 100. 
The normalized share of job postings is capped at the 99th percentile of non-zero observations. All specifications indicate fixed effects 
used. Standard errors are clustered by Wikipedia title (technology). The rate of decline per year is calculated as 𝛽𝛽𝐷𝐷

𝛽𝛽𝑃𝑃
, where 𝛽𝛽𝑃𝑃 is the 

coefficient on 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑐𝑐,𝜏𝜏 and 𝛽𝛽𝐷𝐷 is the coefficient of 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑐𝑐,𝜏𝜏 ∗ 𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝑚𝑚𝜏𝜏,𝑡𝑡. 

  



 

Table 6 – Mechanisms: Spread of high vs. low-skill jobs;  
Spread of research, development, and production jobs vs. use jobs 

Panel A: Region-broadening regressions 
 log (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)𝜏𝜏,𝑡𝑡 
 EC>=100 
 (1) (2)  (3) (4) 

Sample: High-Skill 
Job Postings 

Low-Skill Job 
Postings  RDP Job 

Postings 
Use Job 
Postings 

𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝐶𝐶𝑉𝑉𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡 -0.030*** -0.042***  -0.018*** -0.035*** 
 (0.003) (0.004)  (0.003) (0.003) 
R-squared 0.847 0.848  0.804 0.904 
N 4,188 4,188  3,380 3,380 
Bigram FE YES YES  YES YES 
Std. Errors (cluster) Wiki Title Wiki Title  Wiki Title Wiki Title 
Panel B: Pioneer advantage regressions 
 𝑁𝑁𝐶𝐶𝑉𝑉𝑚𝑚𝑉𝑉𝑁𝑁𝐶𝐶𝑁𝑁𝐶𝐶𝑁𝑁 𝑆𝑆ℎ𝑉𝑉𝑉𝑉𝐶𝐶𝑐𝑐,𝜏𝜏,𝑡𝑡 

 EC >= 100 
 

(1) (2)  (3) (4) 

Sample: High-Skill 
Job Postings 

Low-Skill Job 
Postings  RDP Job 

Postings 
Use Job 
Postings 

𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑐𝑐,𝜏𝜏 1.074*** 0.939***  2.138*** 1.472***  
(0.279) (0.282)  (0.650) (0.324) 

𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑐𝑐,𝜏𝜏 ∗  𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝑚𝑚𝜏𝜏,𝑡𝑡 -0.026** -0.034***  -0.046 -0.038***  
(0.012) (0.012)  (0.032) (0.014) 

R-squared 0.019 0.014  0.007 0.046 
N 4,348,921 4,251,374  3,965,122 3,965,122 
Bigram FE YES YES  YES YES 
CBSA FE YES YES  YES YES 
Year FE YES YES  YES YES 
Std. Errors (cluster) Wiki Title Wiki Title  Wiki Title Wiki Title 
𝑅𝑅𝑉𝑉𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝑁𝑁𝐶𝐶𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶 𝑝𝑝𝐶𝐶𝑉𝑉 𝑦𝑦𝐶𝐶𝑉𝑉𝑉𝑉 -0.024 -0.036  -0.022 -0.026 
  0.006 0.003  0.009 0.004 
Implied years to zero advantage 41.30 27.62  46.48 38.74 

Notes: This table reports region-broadening regressions at the technology x year level (Panel A) and pioneer advantage regressions 
at the technology bigram x year x CBSA level (Panel B). Columns 1 and 2 show separate regressions for high-skill (column 1) and 
low-skill (column 2) job postings. Column 3 shows regressions for research, development, and production-related job postings (RDP); 
column 4 for job postings relating to the use of the technology. For definitions of these concepts, see Section 4.c of the main text. All 
specifications use technology bigrams that appear in at least 100 earnings calls. Observations are weighted by the square root of the 
total number job postings mentioning that technology in that year, capped at 100. All specifications indicate fixed effects used. 
Standard errors are clustered by Wikipedia title (technology). Panel A reports results from regressions of 
𝑁𝑁𝐶𝐶𝑚𝑚(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)𝜏𝜏,𝑡𝑡 on the number of years since the technology’s year of emergence. In a stacked specification, the 
difference between coefficient on 𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝐶𝐶𝑉𝑉𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡 in columns 1 and 2 is -0.013 (S.E. = 0.004, p-val. = 0.001). The 
difference between the coefficient on 𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝐶𝐶𝑉𝑉𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡 in columns 3 and 4 is -0.017 (S.E. = 0.003, p-val = 0.000). Both 
differences are thus statistically distinguishable from zero. Panel B reports results from regressions of the 𝑁𝑁𝐶𝐶𝑉𝑉𝑚𝑚𝑉𝑉𝑁𝑁𝐶𝐶𝑁𝑁𝐶𝐶𝑁𝑁 𝑌𝑌ℎ𝑉𝑉𝑉𝑉𝐶𝐶𝑐𝑐,𝜏𝜏,𝑡𝑡 
(for each CBSA, bigram, and year) on a dummy indicating pioneer status of the CBSA and on the interaction of this dummy with the 
number of years that have elapsed since bigram’s emergence. The normalized share of job postings is capped at the 99th percentile of 
non-zero observations. In a stacked specification, the difference between estimates of  Rate of decline per year in columns 1 and 2 is 
0.011 (S.E. = 0.005, p-val = 0.026), while the difference between 𝛽𝛽𝐷𝐷 (coefficient of 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑐𝑐,𝜏𝜏  ×  𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝐶𝐶𝑉𝑉𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡) is 
0.022 (S.E. = 0.011, p-val = 0.056). Similarly, the difference between Rate of decline per year in columns 3 and 4 is 0.004 (S.E. = 
0.007, p-val = 0.518), while the difference between 𝛽𝛽𝐷𝐷 (coefficient of 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑐𝑐,𝜏𝜏  ×  𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝐶𝐶𝑉𝑉𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡) is 0.008 (S.E. = 
0.026, p-val = 0.752). The rate of decline per year is calculated as 𝛽𝛽𝐷𝐷

𝛽𝛽𝑃𝑃
, where 𝛽𝛽𝑃𝑃 is the coefficient on 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑐𝑐,𝜏𝜏 and 𝛽𝛽𝐷𝐷 is the 

coefficient of 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑐𝑐,𝜏𝜏 ∗ 𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝑚𝑚𝜏𝜏,𝑡𝑡. 

 

 



 

 
 
 

Table 7 – Skill broadening 

Panel A: Main specifications 
 

𝑆𝑆ℎ𝑉𝑉𝑉𝑉𝐶𝐶 𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝑚𝑚𝐶𝐶 𝐸𝐸𝑁𝑁𝐸𝐸𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝑁𝑁𝜏𝜏,𝑡𝑡 ∗ 100 

Sample EC >= 100  All 

  (1)  (2) (3) (4) 

Constant 57.078***  59.095*** 57.475*** 63.898*** 
 (2.135)  (1.794) (2.294) (0.840) 

𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝐶𝐶𝑉𝑉𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡 -0.228**  -0.288*** -0.218*** -0.493*** 

 (0.092)  (0.079) (0.100) (0.036) 

R-squared 0.017  0.019 0.024 0.910 

N 4,270  8,347 8,347 8,347 

Bigrams 428  835 835 835 

Year FE NO  NO YES NO 

Bigram FE NO  NO NO YES 

Standard Errors (cluster) Wiki Title  Wiki Title Wiki Title Wiki Title 

Implied years to average skill 117.23  100.03 124.37 68.08 

Panel B: Alternative measures of skill 
 (1) (2) (3) 

  𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝐶𝐶𝐶𝐶 
 𝑆𝑆𝐶𝐶ℎ𝐶𝐶𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝑚𝑚𝜏𝜏,𝑡𝑡 

𝑆𝑆ℎ𝑉𝑉𝑉𝑉𝐶𝐶 𝑃𝑃𝐶𝐶𝑌𝑌𝐶𝐶 
 𝐺𝐺𝑉𝑉𝑉𝑉𝑁𝑁𝐸𝐸𝑉𝑉𝐶𝐶𝐶𝐶𝑌𝑌𝜏𝜏,𝑡𝑡 ∗ 100 𝐴𝐴𝐴𝐴𝐶𝐶𝑉𝑉𝑉𝑉𝑚𝑚𝐶𝐶  𝑊𝑊𝑉𝑉𝑚𝑚𝐶𝐶𝜏𝜏,𝑡𝑡 

Constant 15.504*** 22.617*** 75,521.317*** 

  (0.047) (0.456) (840.562) 
𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝐶𝐶𝑉𝑉𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡 -0.024*** -0.149*** -505.134*** 

 (0.002) (0.020) (35.986) 

R-squared 0.915 0.905 0.889 

N 8,347 8,347 8,347 

Bigrams 835 835 835 

Bigram FE YES YES YES 

Std. Errors (cluster) Wiki Title Wiki Title Wiki Title 

Implied years to average skill 77.59 78.03 69.72 

Notes: This table reports results from regressions at the technology bigram x year level. The dependent variable is a measure of 
the average skill requirement of a technology bigram’s job postings in a given year. The independent variable is the number of 
years that have elapsed since the technology’s emergence. The dependent variable in Panel A is the average share of job postings 
mentioning technology bigram 𝜏𝜏 in year 𝐶𝐶 that require a college degree. Panel B shows results corresponding to column 4 of 
Panel A for alternative measures of skill associated with technology bigram job postings: average years of schooling (column 1), 
share of post-graduates (in column 2), and average wage (in column 3). Column 1 of Panel A is restricted to the sample of 
technology bigrams that appear in at least 100 earnings calls. The other regressions use all technology bigrams that appear in at 
least 1000 job postings in our sample. Observations are weighted by the square root of the total number job postings mentioning 
that technology in that year, capped at 100. All specifications indicate fixed effects used. Standard errors are clustered by 
Wikipedia title (technology). The row “Implied years to average skill” is determined by −(𝐶𝐶𝐶𝐶𝐶𝐶𝑌𝑌𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶 −
𝐴𝐴𝐴𝐴𝐶𝐶𝑉𝑉𝑉𝑉𝑚𝑚𝐶𝐶 𝑃𝑃𝐶𝐶𝑝𝑝𝐸𝐸𝑁𝑁𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝐶𝐶𝑁𝑁𝑁𝑁)/𝛽𝛽𝑆𝑆𝑆𝑆�𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝐶𝐶𝑉𝑉𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡�, where 𝐴𝐴𝐴𝐴𝐶𝐶𝑉𝑉𝑉𝑉𝑚𝑚𝐶𝐶 𝑃𝑃𝐶𝐶𝑝𝑝𝐸𝐸𝑁𝑁𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝐶𝐶𝑁𝑁𝑁𝑁 represents the weighted 
average skill of the US population according to the 2015 ACS Survey. 

 

 



 

 

Table 8 – Skill broadening mechanisms: Research, development, and production and training jobs 

 𝑆𝑆ℎ𝑉𝑉𝑉𝑉𝐶𝐶 𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝑚𝑚𝐶𝐶 𝐸𝐸𝑁𝑁𝐸𝐸𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝑁𝑁𝜏𝜏,𝑡𝑡 

Sample EC >= 100 

 (1)  (2) (3) (4)  (5) 
𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝐶𝐶𝑉𝑉𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡 -0.228**  -0.193** -0.186** -0.177**  -0.232*** 

 (0.092)  (0.076) (0.076) (0.075)  (0.081) 
𝑆𝑆ℎ𝑉𝑉𝑉𝑉𝐶𝐶 𝐶𝐶𝐶𝐶 𝑅𝑅&𝐷𝐷 𝑃𝑃𝐶𝐶𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑌𝑌𝜏𝜏,𝑡𝑡   1.038***     

   (0.123)     
𝑆𝑆ℎ𝑉𝑉𝑉𝑉𝐶𝐶 𝐶𝐶𝐶𝐶 𝑃𝑃𝑉𝑉𝐶𝐶𝑁𝑁𝐸𝐸𝐶𝐶𝐶𝐶 𝑃𝑃𝐶𝐶𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑌𝑌𝜏𝜏,𝑡𝑡    0.388***    

    (0.078)    
𝑆𝑆ℎ𝑉𝑉𝑉𝑉𝐶𝐶 𝐶𝐶𝐶𝐶 𝑅𝑅𝐷𝐷𝑃𝑃 𝑃𝑃𝐶𝐶𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑌𝑌𝜏𝜏,𝑡𝑡     0.384***   
     (0.071)   
𝑆𝑆ℎ𝑉𝑉𝑉𝑉𝐶𝐶 𝑇𝑇𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚 𝑅𝑅𝐶𝐶𝑅𝑅𝐸𝐸𝐶𝐶𝑉𝑉𝐶𝐶𝑁𝑁𝜏𝜏,𝑡𝑡       0.270*** 
       (0.048) 
𝐶𝐶𝐶𝐶𝐶𝐶𝑌𝑌𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶 57.078***  52.565*** 51.803*** 51.246***  52.795*** 
  (2.135)  (1.841) (2.009) (1.998)  (2.070) 
R-squared 0.017  0.206 0.202 0.215  0.136 
N 4,270  4,270 4,270 4,270  4,270 
Standard Errors (Cluster) Wiki Title  Wiki Title Wiki Title Wiki Title  Wiki Title 

Notes: This table reports results from regressions at the technology bigram x year level. Column 1 replicates the specification in 
Table 7, Panel A, column 1. Columns 2-5 add additional controls: the share of the technology’s job postings relating to research 
and development (column 2), the share of the technology’s job postings relating to the technology’s production (column 3), the 
share of the technology’s job postings relating to research, development, and production (column 4), and the share of the 
technology’s job postings requiring training in the technology (column 5). The regressions are restricted to the sample of technology 
bigrams that appear in at least 100 earnings calls. Observations are weighted by the square root of the total number job postings 
mentioning that technology in that year, capped at 100. All specifications indicate fixed effects used. Standard errors are clustered 
by Wikipedia title (technology). 

 

  



 

Table 9 – Broadening and pioneer advantage across different dimensions 

Panel A: Broadening 
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡 
 (1) (2) (3) (4) 
 Industries Occupations Firms CBSAs 
𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝐶𝐶𝑉𝑉𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡 -0.018 -0.056*** -0.354*** -0.153*** 
 (0.017) (0.015) (0.038) (0.012) 
Constant 4.928*** 8.136*** 22.042*** 8.269*** 
 (0.400) (0.351) (0.890) (0.271) 
R-squared 0.817 0.763 0.919 0.825 
N 4,970 8,347 4,580 8,347 
Bigrams 497 835 458 835 
Bigram FE YES YES YES YES 
Std. Errors (cluster) Wiki Title Wiki Title Wiki Title Wiki Title 
Mean 4.52 6.83 13.78 4.69 
𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝒐𝒐𝒐𝒐 𝒅𝒅𝑹𝑹𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝑹𝑹 𝒑𝒑𝑹𝑹𝒑𝒑 𝒚𝒚𝑹𝑹𝑹𝑹𝒑𝒑 -0.004 -0.007 -0.016 -0.018 
 (0.003) (0.002) (0.001) (0.001) 
Years to zero CV 405.50 279.11 62.21 54.07 

Panel B: Pioneer advantage 
 𝑁𝑁𝐶𝐶𝑉𝑉𝑚𝑚𝑉𝑉𝑁𝑁𝐶𝐶𝑁𝑁𝐶𝐶𝑁𝑁 𝑆𝑆ℎ𝑉𝑉𝑉𝑉𝐶𝐶𝑛𝑛,𝜏𝜏,𝑡𝑡 

 (1) (2) (3) 
 Industries Firms CBSAs 
𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑛𝑛,𝜏𝜏 6.504*** 20.935*** 1.321*** 
 (1.751) (4.883) (0.254) 
𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑛𝑛,𝜏𝜏 ∗  𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝑚𝑚𝜏𝜏,𝑡𝑡 -0.082 -0.489*** -0.035*** 
 (0.074) (0.185) (0.011) 
R-squared 0.043 0.009 0.030 
N 1,515,850 49,854,895 7,751,024 
Bigrams 497 458 835 
Bigram FE YES YES YES 
CBSA FE YES YES YES 
Year FE YES YES YES 
Std. Errors (cluster) Wiki Title Wiki Title Wiki Title 
𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝒐𝒐𝒐𝒐 𝒅𝒅𝑹𝑹𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝑹𝑹 𝒑𝒑𝑹𝑹𝒑𝒑 𝒚𝒚𝑹𝑹𝑹𝑹𝒑𝒑 -0.013 -0.023 -0.027 
 (0.008) (0.004) (0.003) 
Implied years to zero advantage 79.32 42.81 37.74 

Notes: This table reports results from broadening regressions (in Panel A) and pioneer advantage regressions 
(in Panel B) along four dimensions: 1) industries, 2) occupations, 3) firms, and 4) locations (CBSAs). In Panel 
A, we regress coefficient of variation calculated over 𝑁𝑁𝐶𝐶𝑉𝑉𝑚𝑚𝑉𝑉𝑁𝑁𝐶𝐶𝑁𝑁𝐶𝐶𝑁𝑁 𝑆𝑆ℎ𝑉𝑉𝑉𝑉𝐶𝐶𝑛𝑛,𝜏𝜏,𝑡𝑡 for each bigram and year where 
n is an industry (in column 1), occupation (in column 2), firm (in column 3). and location (in column 4). Panel 
B reports results from regressions of the 𝑁𝑁𝐶𝐶𝑉𝑉𝑚𝑚𝑉𝑉𝑁𝑁𝐶𝐶𝑁𝑁𝐶𝐶𝑁𝑁 𝑌𝑌ℎ𝑉𝑉𝑉𝑉𝐶𝐶𝑛𝑛,𝜏𝜏,𝑡𝑡 on the pioneer status of 𝐶𝐶 and the interaction 
of the pioneer status with the year since the technology bigram’s emergence. As in Panel A, 𝐶𝐶 is an industry 
(in column 1), firm (in column 2), and location (in column 3). The regressions use all technology bigrams that 
appear in at least 1000 job postings in our sample. All specifications are weighted by the square root of the 
total number job postings mentioning that technology in that year, capped at 100. The normalized share is 
capped at 99th percentile of non-zero observations. All specifications indicate fixed effects used. Standard 
errors are clustered by Wikipedia title (technology). Note that the number of bigrams changes across 
specifications, depending on data availability on firms and industries in job postings. To test whether estimated 
coefficients are different across dimensions, we estimate stacked regressions using the same specifications as 
in Panels A and B, where we interact fixed effects with indicators for each dimension. In Panel A, the absolute 
rate of decline across CBSAs is 0.017 (0.005)***, 0.012 (0.003)***, and 0.004 (0.002)* higher across than 
industries, occupations, and firms, respectively. In Panel B, the absolute rate of decline in pioneer advantage 
across CBSAs is 0.014 (0.007)* higher than across industries and 0.003 (0.005) higher than across firms.  
Similarly, the coefficient of 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑛𝑛,𝜏𝜏 is 19.614 (6.604)*** and 5.183 (1.659)*** higher for firms and 
industries than for CBSAs. For the coefficient on  𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑖𝑖,𝜏𝜏 ∗  𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝑚𝑚𝜏𝜏,𝑡𝑡, the estimated differences 
are 0.454 (0.247)* and 0.047 (0.702) between CBSAs and, respectively, firms and industries. 



 

Table 10 – Robustness checks: Alternative samples and specifications 

 Share of Top-5 CBSAs Coefficient of Variation log(Coefficient of Variation) Normalized Share Share College Educated 
 (1) (2) (3) (4) (5) 

 Concentration of 
Innovation Region Broadening Region Broadening by Skill Rate of decline in 

Pioneer Persistence Skill Broadening 

 [Table 3, Panel A, row 
1 col. 2] [Table 4, Panel A, col. 3] [Table 6, Panel A, col. 1, 2] [Table 5, col. 2] [Table 7, Panel A, col. 4] 

Estimate/Coefficient: Share of Top-5 CBSAs 𝛽𝛽𝑅𝑅𝑆𝑆 𝛽𝛽𝑅𝑅𝑆𝑆
𝐻𝐻𝑖𝑖𝐻𝐻ℎ 𝑠𝑠𝑠𝑠𝑖𝑖𝐴𝐴𝐴𝐴 −  𝛽𝛽𝑅𝑅𝑆𝑆𝐿𝐿𝑇𝑇𝐿𝐿 𝑠𝑠𝑠𝑠𝑖𝑖𝐴𝐴𝐴𝐴 𝛽𝛽𝐷𝐷/𝛽𝛽𝑃𝑃 𝛽𝛽𝑆𝑆𝑆𝑆 

Panel A: Influential patents      
Baseline: At least 1,000 cite-wt. patents 42.1% -0.153*** -0.013*** -0.029*** -0.493*** 
  (0.012) (0.004) (0.005) (0.036) 
At least 1,250 cite-wt. patents 42.2% -0.150*** -0.012*** -0.029*** -0.488*** 
  (0.012) (0.004) (0.005) (0.037) 
At least 1,500 cite-wt. patents 42.4% -0.146*** -0.012*** -0.029*** -0.500*** 
  (0.012) (0.004) (0.005) (0.038) 
At least 1,750 cite-wt. patents 42.5% -0.146*** -0.011*** -0.029*** -0.501*** 
  (0.013) (0.004) (0.005) (0.040) 
At least 2,000 cite-wt. patents 42.5% -0.147*** -0.011** -0.029*** -0.494*** 
  (0.013) (0.004) (0.006) (0.040) 
      
Panel B: Phrase Length       
Baseline: Bigrams 42.1% -0.153*** -0.013*** -0.029*** -0.493*** 
  (0.012) (0.004) (0.005) (0.036) 
Bigrams and trigrams 42.0% -0.127*** -0.013*** -0.029*** -0.492*** 
  (0.015) (0.004) (0.005) (0.032) 
Bigrams, trigrams, and unigrams 
(disruptive only) 

37.0% -0.106*** -0.011*** -0.029*** -0.498*** 
 (0.008) (0.002) (0.003) (0.034) 

      
Panel C: Human Audit    
Baseline: Bigrams 42.1% -0.153*** -0.013*** -0.029*** -0.493*** 
  (0.012) (0.004) (0.005) (0.036) 
Human-audited bigrams  
(disruptive only) 

44.3% -0.142*** -0.015*** -0.025*** -0.574*** 
 (0.019) (0.005) (0.009) (0.061) 
     

Panel D: Alternative emergence years    
Baseline: At least 100 cite-wt. patents 42.1% -0.153*** -0.013*** -0.029*** -0.493*** 
  (0.012) (0.004) (0.005) (0.036) 
At least 1 cite-wt. patent 41.9% -0.157*** -0.014*** -0.030*** -0.465*** 
  (0.011) (0.004) (0.003) (0.034) 
At least 200 cite-wt. patents 42.2% -0.154*** -0.015*** -0.031*** -0.511*** 
  (0.013) (0.004) (0.005) (0.042) 
50% of total cite-wt. patents 39.2% -0.144*** -0.012*** -0.034*** -0.466*** 
  (0.009) (0.004) (0.011) (0.027) 
      
Panel E: Alternative weighting schemes    
Baseline: min(100, sqrt(# postings)) NA -0.153*** -0.013*** -0.029*** -0.493*** 
  (0.012) (0.004) (0.005) (0.036) 
Unweighted regression NA -0.194*** -0.012*** -0.026*** -0.532*** 



 

  (0.014) (0.004) (0.004) (0.043) 
All bigrams with job postings NA -0.209*** -0.012*** -0.020*** -0.490*** 
  (0.014) (0.002) (0.003) (0.046) 
Log-wt: min(100, log(# postings)) NA -0.178*** -0.013*** -0.027*** -0.515*** 
  (0.013) (0.004) (0.004) (0.039) 
Bigrams collapsed into technologies NA -0.156*** -0.013*** -0.025*** -0.490*** 
  (0.010) (0.003) (0.005) (0.033) 

Notes: This table reports robustness checks to our primary (“Baseline”) results. Panel A reports robustness to changing the threshold for defining bigrams associated 
with “influential innovations.” In the baseline, we retain only those that appear in patents accumulating a total of at least 1,000 weighted citations. The panel shows 
four variations, with cutoffs ranging from 1,250 to 2,000 citations. Panel B presents results from extending our sample to include technology trigrams and unigrams. 
In the baseline, we include only technology bigrams. The row “Bigrams and trigrams” includes trigrams along with technology bigrams in the analysis, while the 
row “Bigrams, trigrams, and unigrams (disruptive only)” further adds unigrams. While adding unigrams, we restrict the sample to only disruptive ones (those 
appearing in 100 or more earning calls). In Panel C, “Human audited bigrams (disruptive only)”, we rely on human reading to determine whether or not a bigram 
describes a technology, instead of the Wikipedia filter. We report results from including only those technology bigrams that survived the human auditing process and 
are associated with disruptive technologies. Panel D reports results from variations in defining emergence years. In the baseline, the emergence year is defined as the 
first year in which (a) 100 citation-weighted patents associated with that technology had been already applied for and (b) where the next five years had 10% annual 
growth in (smoothed) weighted patenting. The rows “At least 1 cite-wt. patent” and “At least 200 cite-wt. patents” explore changing the threshold from 100 cite-
weighted patents in (a) to at least one cite-weighted patent and at least 200 cite-weighted patents, respectively. The row “50% of total cite-wt. patents” changes our 
definition of emergence years completely: the emergence year of a given bigram is defined as the first year when 50% of maximum peak of citation-weighted patent 
counts is realized. Panel E presents robustness to changing weighting schemes in regressions. Baseline regressions are weighted by the square root of the total number 
job postings mentioning that technology in that year, capped at 100. The row “Unweighted regression” replicates baseline regressions with equal weights for each 
observation. The row “All bigrams with job postings” performs unweighted regressions with all bigrams that are mentioned by at least one job posting. The row 
“Log-wt” weights observations by the log of the number of postings observed for each technology bigram in a given year, capped at 100.  The last row “Bigrams 
collapsed into technologies” replicates our results when all bigrams associated with a given Wikipedia title (technology) are collapsed into the technology. See the 
original regressions for full details.



 

Table 11 – Robustness checks: Alternative specifications of standard errors 

 Coefficient of 
Variation 

Coefficient of 
Variation 

Normalized 
Share 

Share College 
Educated 

 (1) (2) (3) (4) 
 Region 

Broadening 

Region 
Broadening by 

Skill 

Pioneer 
Persistence Skill Broadening 

 [Table 4, Panel 
A, col. 3] 

[Table 6, Panel 
A, col 1,2] [Table 5, col. 2] [Table 7, Panel A, 

col. 4] 
𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝐶𝐶𝑉𝑉𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡 (High Skill in col. 3) -0.153 -0.030  -0.493 

[baseline] Cluster, Wikipedia Title level (0.012) *** (0.003) ***  (0.036) *** 
Cluster, Bigram level (0.009) *** (0.002) ***  (0.028) *** 

Cluster, Year level (0.016) *** (0.004) ***  (0.042) *** 
Bootstrap (1,000 replications) 

 
(0.009) *** (0.002) ***  (0.029) *** 

𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝐶𝐶𝑉𝑉𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡(𝐿𝐿𝐶𝐶𝐿𝐿 𝑆𝑆𝑆𝑆𝐶𝐶𝑁𝑁𝑁𝑁)  -0.042   
[baseline] Cluster, Wikipedia Title level  (0.004) ***   

Cluster, Bigram level  (0.003) ***   
Cluster, Year level  (0.003) ***   

Bootstrap (1,000 replications) 
 

 (0.003) ***   

𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑖𝑖,𝜏𝜏   1.084  
[baseline] Cluster, Wikipedia Title level   (0.309) ***  

Cluster, Bigram level   (0.259) ***  
Cluster, Year level   (0.080) ***  

Cluster, CBSA level   (0.202) ***  
Cluster, State level   (0.201) ***  

Cluster, CBSA-Wikipedia Title levels   (0.309) ***  
Bootstrap (1,000 replications) 

 
  (0.254) ***  

𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑖𝑖,𝜏𝜏 ∗ 𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝐶𝐶𝑉𝑉𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡   -0.032  
[baseline] Cluster, Wikipedia Title level   (0.013) **  

Cluster, Bigram level   (0.011) ***  
Cluster, Year level   (0.004) ***  

Cluster, CBSA level   (0.008) ***  
Cluster, CBSA-Wikipedia Title levels   (0.013) **  

Cluster, State level   (0.008) ***  
Bootstrap (1,000 replications) 

 
  (0.011) ***  

𝛽𝛽(𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑖𝑖,𝜏𝜏 ∗ 𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝐶𝐶𝑉𝑉𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡)
/𝛽𝛽(𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑖𝑖,𝜏𝜏) 

   
-0.029 

 

[baseline] Cluster, Wikipedia Title level   (0.005) ***  
Cluster, Bigram level   (0.004) ***  

Cluster, Year level   (0.001) ***  
Cluster, CBSA level   (0.004) ***  

Cluster, CBSA-Wikipedia Title levels   (0.005) ***  
Cluster, State level   (0.003) ***  

Bootstrap (1,000 replications)   (0.004) ***  
Bigram FE YES YES YES YES 
Skill FE NA YES NA NA 
CBSA FE NA NA YES NA 
Year FE NA NA YES NA 

Notes: This table the reports results from varying specifications for standard errors corresponding to coefficient estimates for our main results – region 
broadening, region broadening by skill, pioneer persistence and skill broadening. The statistical significance of coefficients is indicated by the asterisks next 
to each parenthesis. For the results in Columns 1, 2, and 4, we report standard errors clustered at the Wikipedia title level (baseline), bigram level, and year 
level. In Column 3, we report standard errors clustered at the Wikipedia title level (baseline), bigram level, year level, CBSA level, state level, and CBSA x 
Wikipedia title level (double-cluster). To cluster CBSAs into the state level, we assign CBSAs that are shared by more than one state to the state with lowest 
FIPS number. For each result, in the last row, we report bootstrapped standard errors for each specification.  Bootstrapped standard errors are computed 
based on 1,000 replications with replacement from the original sample. Re-sampling was done at the bigram-level (sampling bigram-blocks with ten years 
of observations). See the original regressions for full details. 



Figure 1– Examples of emergence year definition
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Notes: The figure shows four examples of attribution of emergence years. In each example, the time series plots the smoothed number of cite-weighted patents associated with the technology by year of 

application of the patent. For each bigram, we mark the emergence year as the first year in which (a) the technology reaches 100 cite-weighted patent applications and (b) where the next five years had at 

least 10% annual growth in the (smoothed) series for each bigram. For more details, refer to Section 2.c.



Notes: The figure shows a binned scatterplot at the technology bigram level of the number of the number of earnings calls that mention a given technology 

(y-axis) against the number of job postings that mention the technology bigram (x-axis). Some examples are labeled next to their bins.
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Figure 2 – Earnings calls and job postings for new technologies

“Disruptive”
(429 bigrams)

“Intermediate”
(595 bigrams)

“Non-disruptive”
(875 bigrams)

Coef.: 0.478

S.E.: 0.009

R-squared: 0.570



Figure 3 – Distribution of pioneer locations

Panel A: Pioneer Locations Panel B: Distribution of Pioneer Locations

Notes: This figure shows the distribution of pioneer CBSAs. Panel A displays as blue circles CBSAs that are pioneer locations for at least one disruptive 

bigram. The size of the circles is proportional to the share of technology bigrams for which the CBSA is a pioneer location. Panel B shows a plot of the 

percentage of technology bigram-pioneer location pairs accounted for by each CBSA, for the top 16 CBSAs. We combine the CBSAs San Jose-Sunnyvale-

Santa Clara, CA and San Francisco-Oakland-Hayward, CA, and  label the region as Silicon Valley. Similarly, we combine New York-Newark-Jersey City, 

Boston-Cambridge-Newton, Washington-Arlington-Alexandria, and Philadelphia-Camden-Wilmington, and label the region as the Northeast Corridor.
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Figure 4 – Geographic diffusion of technology job postings, by year since emergence

Years since emergence: 0-5 Years since emergence : 6-10

Years since emergence : 21-30Years since emergence: 11-20

Notes: This figure plots maps with pioneer locations and job postings associated with technology bigrams by year since technology bigram emergence. Pioneer locations are marked with solid blue 

circles and technology job postings are in solid purple circles. For each CBSA and emergence year, we calculate the share of technology bigrams for which the CBSA records a non-negligible 

presence of technology jobs (Normalized sharec,τ,t ≥ 10%) and denote a higher share of technology bigrams with a darker color. For example, the first map plots the share of technologies with a 

normalized share of technology job postings greater than 10% for each CBSA between zero and five years since the emergence of the technology. The second map replicates this picture for six to 

ten years after emergence, and so forth. The sample for this map only contains technologies that appear in at least 100 earnings calls.
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Figure 5 – Geographic concentration of technology job postings across CBSAs, by year since emergence

Coefficient: -0.068

S.E.: 0.026

R-square: 0.019

Notes: This figure shows a binned scatter plot at the technology bigram x year level of the coefficient of variation (CV) of the normalized share of technology job postings over time. We 

calculate the CV of the normalized share of technology job postings by dividing the standard deviation of Normalized Sharec,τ,t across locations c in year t by its mean in year t for each 

technology bigram τ. Each dot represents the weighted average of the CV (calculated across technologies) for each year since emergence, where the weight is the square root of the number of job 

postings for a bigram in a year, capped at 100. The circle sizes are proportional to the same weight. The regression line in the plot corresponds to a regression of the CV on year since emergence, 

as in Table 4, Panel A, column 1. We only include technology bigrams that appear in at least 100 earnings calls. Observations in and after the year of emergence are included.



Figure 6 – Geographic concentration relative to year since emergence, by skill and type of job posting
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Notes: This figure plots a binned scatter plot at the technology bigram x year x job type 

level of the log of the coefficient of variation (CV) of the normalized share of bigram job 

postings relative to the year since emergence, by job type (RDP and use). The CV is 

calculated as the ratio of standard deviation to the mean of the normalized share across 

CBSAs for each technology bigram x year x job type triplet. The red dots represent RDP-

related postings, and the blue dots represent use-related postings. The fitted lines weigh 

observations by the square root of the total number of postings for a technology bigram 

in a year, capped at 100.

Panel A: Geographic concentration by skill Panel B: Geographic concentration by use/research, develop and production

Notes: This figure plots a binned scatter plot at the technology bigram x year x skill 

category level of the log of the coefficient of variation (CV) of the normalized share of 

bigram job postings relative to the year since emergence, by skill-level of job posting 

(high and low). The CV is calculated as the ratio of standard deviation to the mean of the 

normalized share across CBSAs for each technology bigram x year x skill category 

triplet. The red dots represent high-skill postings, and the blue dots represent low-skill 

postings. The fitted lines weigh observations by the square root of the total number of 

postings for a technology bigram in a year, capped at 100.

Coefficient Low): -0.022 (0.006)

Coefficient (High):  -0.015 (0.005)

Coefficient (Low– High): -0.008 (0.004)

Coefficient (Use): -0.016 (0.005)

Coefficient (RDP):  -0.010 (0.004)

Coefficient (Use – RDP): -0.007 (0.004)
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Figure 7 - Share of technology job postings requiring a college education, by year since emergence

Notes: This figure shows a binned scatter plot at the technology bigram x year level of the share of technology postings requiring a college education by year since emergence. 

The share of college-educated postings for each technology bigram x year observation is measured as discussed in Section 5. Each dot represents a weighted average over 

technology bigrams of the share for each year since emergence, where the weight is the square root of the number of postings for a bigram in a year, capped at 100. The circle 

sizes are proportional to the same weight. The regression line in the plot corresponds to a regression of share of college-educated postings on the year since emergence as in 

Table 7, Panel A, column 1. We only include technology bigrams that appear in at least 100 earnings calls.

Coefficient: -0.228

S.E.: 0.092

R-square: 0.017
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Data Appendix 

 

We process four sources of text data, and then combine them with U.S. government data to conduct 

our analyses.  

 

1. Text Sources 

1.1 Patents 

We download two separate sets of data for about six million utility patents, applied for at the U.S. 

Patent and Trademark Office (USPTO) between 1976 and 2014 and granted by 2018. First, we 

download full patent text XML files from the USPTO website. Second, we download processed 

patent variables, such as assignee names, inventor names and location, application and award year, 

citations (through 2018), and the primary CPC class, all from PatentsView.org. We restrict our 

sample to the sample of patents filed by U.S. inventors, about one-half of these awards.  

We map the FIPS county identifier provided for inventors of each patent to Core-Based Statistical 

Areas (CBSAs), using a crosswalk provided by the U.S. Census Bureau. For patents with multiple 

inventor CBSAs, we assign the patent to each CBSA. We also standardize citation counts to control 

from truncation and time differences: we divide citations for each patent by the average number 

of citations for patents with a primary assignment to the same four-digit Combined Patent 

Classification (CPC) patent class and application year.  

A typical patent award has six text sections: (1) title, (2) abstract, (3) background, (4) summary, 

(5) detailed description, and (6) claims. After we remove stop words (such as “of,” “the,” and 

“from”) following Kelly et. al. (2021) and Gentzkow et. al. (2019), we combine text from all of 

these sections into one large text string by appending all available text sections. We then break this 

large text string down into two-word combinations or bigrams. During this process, we use only 

those bigrams which are mentioned at least twice in a patent.  

1.2 Corpus of Historical American English 

The Corpus of Historical American English (COHA) is a collection of 116,759 documents 

published between 1880 and 1970. We download COHA from www.english-corpora.org/coha. These 
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include fiction and non-fiction books and newspaper and magazine articles. As with patents and 

earnings calls, we decompose these documents into about 400 million unique bigrams. 

1.3 Wikipedia pages 

For each of our 36,563 novel and influential bigrams, we search on Wikipedia using the Wikipedia 

search functionality.  We then download the full text of the first suggested Wikipedia page using 

the Wikpedia Python API (Wikipediaapi). For each of these Wikpedia pages, we store separately 

the title, the section headings, and the text of each section. While counting bigrams in Wikipedia, 

we count singular, plural, and unigram versions of these bigrams. For example, when counting 

`smart phone’, we include counts for “smart phone,” “smarts phone,” “smart phones,” 

“smartphone,” “smartphones,” “smartsphone,” and “smartsphones.” We follow the same approach 

when we count these bigrams in other corpora.  

1.4 Earnings conference call transcripts 

From Refinitiv EIKON, we collect the complete set of 321,189 English-language transcripts of 

earnings conference calls held from 2002 through 2019. Out of these, we drop 5,552 transcripts 

because we could not reliably match them to a company name in Compustat. We obtain a total of 

11,992 firms and 301,294 firm x quarter observations. We count our bigrams in the full text of 

these earnings calls and collect the number of earnings calls that each of our bigrams is mentioned 

in. 

1.5 Burning Glass job postings 

From Burning Glass (BG), we obtain about 200 million job postings posted online in the U.S. 

Similar to patents, job postings data comes in two sets. The first contains the full text coded in 

XML files, while the second contains processed information about each job posting (such as 

occupation codes). We undertake minimal processing of job postings’ textual data: (1) removing 

non-letter sections of job postings; (2) removing the top 50 and bottom 50 words from each job 

posting, as mentioned in Section 2; and (3) as a consequence of step (2), excluding any job posting 

with less than 100 words. We then perform word counts over the remaining text.  As before, while 

counting bigrams in Burning Glass, we count singular, plural and unigram versions of these 

bigrams. For example, when counting “smart phone,” we include counts for “smart phone,” 
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“smarts phone,” “smart phones,” “smartphone,” “smartphones,” “smartsphone,” and 

“smartsphones.” We follow the same approach when we count these bigrams in other corpora. 

 

2. Merging Burning Glass Occupations with American Community Survey (2015) 

We obtain occupation and location demographic variables from the 2015 American Community 

Survey (ACS), downloaded on March 9, 2020. We examine respondents who are at least 25 years 

old, and report at least one year of schooling and a non-zero annual wage. We calculate the “share 

of college-educated people” in a particular occupation by dividing the number of people who report 

a particular occupation and have at least three years of college education by the total number of 

people who report the occupation. We calculate the “share of post-graduates” in a particular 

occupation by dividing the number of people who report a particular occupation and have at least 

a masters’ degree by the total number of people who report the occupation. We calculate the 

average wage in the occupation by taking an average over all annual incomes of people reporting 

a particular occupation. As for locations, we calculate skill levels using reported locations in the 

ACS and following the same methodology as for occupations. We also obtain population data for 

each CBSA from the ACS by performing a sample-weighted count of people who reported to live 

in a certain CBSA.  

We merge the occupation level data from the ACS with occupation level aggregates in BG using 

six-digit SOC codes. Data on some six-digit SOC codes are reported in aggregated form in the 

ACS: for example, data on the occupational code 17-2021 (agricultural engineers) are reported as 

17-20XX, along with class 17-2031 and others. In these cases, we map the six-digit SOC codes in 

BG to their aggregated values in the ACS.  

As we do for occupations, we calculate share of college-educated people for CBSAs by dividing 

the number of people who report a particular CBSA as their residence in the ACS and have at least 

three years of college education by the total number of people in the CBSA. Other skill measures 

are calculated similarly. 

  

3. Matching job postings to occupations, locations, industries and firms 
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Burning Glass codes job postings into occupations (Standard Occupational Classification (SOC) 

codes), locations (counties), and industries (North American Industrial Classification Codes). BG 

also extracts an employer name with these job postings. 

There are 836 occupations with six-digit SOC codes and 312 industries with NAICS Codes in the 

sample. We map counties in the BG data to CBSAs and use them as the unit for our geographical 

analysis. We do so by using the crosswalk made available by National Bureau of Economic 

Research (NBER). In this process, we lose about 2.8% of the job postings.  

In order to assign firms to job postings, we use the employer strings provided by BG, which are 

available for 42.1% of job postings. Furthermore, these employer strings are not standardized or 

cleaned. For example, there are employer strings of the form “Tesla Motors Gigafactory,” “About 

Tesla,” and “Tesla Incorporated.” We generate firm identifiers from these raw employer strings 

using a modification of the process in Autor et. al. (2020): 

1) We search the raw employer string on Bing.com and store the top five search result 

links. For instance, for the employer string “Tesla Incorporated,” we get 

https.www.tesla.com, https://en.wikipedia.org.wiki/tesla-inc, 

https://www.britannica.com/topic/tesla-motors, 

https://www.bloomberg.com/quote/tsla/us, https://www.marketwatch.com/ 

investing/stock/tsla. 

2) We group two employer strings under a single identifier if they share at least two out 

of top five links in common with each other.    

Using this process, we group together 477,583 employer strings in BG into 329,158 unique firm 

identifiers. 

We also match these employers to patent assignees using string matching. We implement the 

following modified “Term Frequency — Inverse Document Frequency” (tf-idf) algorithm. To do 

so, we: 

a. Decompose employer and assignee strings into 5 letter combinations. For example, 

“Alphabet” is broken into:  “alpha,” “lphab,” “phabe,” and “habet.” 

b. Calculate a term frequency, which is the frequency of the five letter combination in the 

string. In our example of “Alphabet,” each combination uniquely appears in the strings. 
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We calculate an inverse document frequency (idf), which is inverse of the frequency with 

which the combination appears in all strings of assignees and BG employers. 

c. We combine the term frequency (tf) with an inverse document frequency (idf) to obtain a 

vector of combinations for each string: 

𝑣𝑣𝑠𝑠,𝑐𝑐 = 𝑡𝑡𝑡𝑡𝑐𝑐,𝑠𝑠 ∗ 𝑖𝑖𝑖𝑖𝑡𝑡𝑐𝑐 

where 𝑡𝑡𝑡𝑡𝑐𝑐,𝑠𝑠 is the term frequency of the 5-letter combination c in string s, 𝑖𝑖𝑖𝑖𝑡𝑡𝑐𝑐is the inverse 

document frequency of each combination, and 𝑣𝑣𝑐𝑐,𝑠𝑠is the value attributed to each 

combination separately for every string.  

d. Finally, we normalize each vector 𝒗𝒗𝑠𝑠so that the norm is 1. We then calculate similarities 

between two strings 𝑠𝑠 and 𝑠𝑠′using dot product of their respective normalized vectors. 

𝑖𝑖𝑠𝑠,𝑠𝑠′ =  𝒗𝒗𝒔𝒔.𝒗𝒗𝒔𝒔′ 

e. We match two strings if 𝑖𝑖𝑠𝑠,𝑠𝑠′ ≥ 0.75. 

A human audit of these matches resulted in an 86% accuracy rate. 

 

4. University Data 

We download data on U.S. research universities from the U.S. National Science Foundation’s 

Higher Education Expenditure on R&D (HERD) survey, which collects detailed statistics on 

research expenditure by these universities, and from the Integrated Postsecondary Education Data 

System (IPEDS) surveys provided by the U.S. Department of Education’s National Center for 

Education Statistics (NCES). From these datasets, we construct the following variables: 

1) Number of research universities in a CBSA: HERD provides details of universities which 

spend more than $150,000 in research. We map university zip codes, provided as a part of 

university addresses, to CBSAs using a crosswalk provided by U.S. Census Bureau. 

Finally, we count the number of research universities in a CBSA to construct our variable. 

2) University assets in a CBSA: IPEDS provides details of finances for most post-secondary 

educational institutions in the U.S. As with 1) above, we assign these universities to CBSAs 

and then aggregate their assets over CBSAs.  



 

  

Appendix Tables and Figures 
 

Appendix Table 1 – Examples of novel influential bigrams from patents that pass and fail the 
Wikipedia technology bigram criteria 

Technologies (pass) Non-technologies (fail) 
antigen binding account manager 
based solutions active directory 
branched chain airway pressure 
cell lines aqueous phase 
cloud computing business model 
communication channel customer care 
computer network customer relationship 
data quality customer requests 
data sources dosage form 
disk drive email address 
distributed computing hardware software 
fiber optic healthcare provider 
global positioning homeland security 
internet explorer host computer 
machine learning identity theft 
microsoft office image data 
mobile devices management software 
monoclonal antibody mission critical 
multiple access performance management 
optical fiber performance metrics 
personal computer pharmaceutical composition 
polymerase chain pressure differential 
positioning system retail environment 
programmable logic risk management 
scripting languages search criteria 
semiconductor devices service offerings 
temperature sensor software engineering 
user interface transitory computer 
vapor deposition uninterruptible power 
wireless technology window assembly 

Notes: This table lists examples of bigrams that pass (technologies) or fail (non-
technologies) the Wikipedia filter. All examples are among the top 100 bigrams in terms 
of citation-weighted patent counts or number of job postings. Failure examples are sampled 
to reflect different sources of rejection in the Wikipedia filter. 



 

Appendix Table 2 – Technology excerpts from earnings calls 

Company EC month Excerpt 

Ambarella Inc 4/2018 
results that are many times higher in terms of processing performance per watt In March we successfully demonstrated to 
customer and investors our fully| AUTONOMOUS VEHICLE or embedded vehicle autonomy on Silicon Valley Road 
EVA navigated various traffic scenarios presented by Silicon Valleys challenging urban environment The fully autonomous 

Cloudera Inc 4/2019 
combined company road map which we rolled out in March of this year During this period of uncertainty we saw increased 
competition from the| PUBLIC CLOUD |vendors Second the announcement in March of Cloudera Data Platform our new 
hybrid and multicloud offering created significant excitement within our customer base CDP 

NVIDIA Corp 7/2015 
lot of very exciting development and were working with a lot of them because we have a platform that was really designed 
to fuse| COMPUTER VISION |cameras from all around the car as well as radars and LIDARS and sonars and be able to do 
path planning and all of 

Proto Labs Inc 1/2015 
orders in addition we added capacity to our manufacturing facility in europe in we completed our first acquisition 
purchasing fineline an| ADDITIVE MANUFACTURING |or 3D printing company based in raleigh north carolina the 
acquisition was completed last april and is highly complementary to proto labs roughly of our customers use 

Cellectar Biosciences 
Inc 10/2017 

collaboration with Acunova Therapeutics each provide these types of strategic benefits Avicenna provides us with the 
unique opportunity to collaborate with experts in the antibody| DRUG CONJUGATE |or ADC field Not only does this 
provide the opportunity to work with a very promising small molecule payload but it also allows 

L-3 Communications 
Holdings Inc 10/2002 

metal detectors where they always make you take your shoes off This is a passive scanner as I told some of you It uses| 
MILLIMETER WAVE |It is nonintrusive and causes no harm or disease It will guarantee you won’t have a weapon on you 
of any kind or be 

InvenSense Inc 7/2016 
as they strive to enable improved locationbased services and mapping user experience A significant opportunity for 
increasing our mobile content is UltraPrint our ultrasonic| FINGERPRINT SENSOR |I am very pleased to report that we 
are on track with the development of this gamechanging technology and have successfully passed several technology 

SunPower Corp 10/2006 
then be able to participate in the global electricity market which is measured in the form of trillion We have direct control 
over the solar cell and| SOLAR PANEL |portions of the value chain the technology core of the value chain that represents 
to of total installed costs in these 

Donnelley Financial 
Solutions Inc 4/2018 

speed and improve both the quality and consistency of business results for our clients in capital markets through the 
introduction of| MACHINE LEARNING |and artificial intelligence we will improve the efficiency of XBRL tagging and 
align with the efforts at the SEC to move from documents to data This investment 

Notes: This tables presents examples of earning calls excerpts (in column 3) with 25 words before and after the mention of a technology bigram, with the firm (in column 1) and the 
date of the earnings call (in column 2). 

 

 



 

Appendix Table 3 – List of Wikipedia titles associated with disruptive technology bigrams, by mentions in earnings calls 

Mobile device Bank account* Music Player Daemon* Genetic marker Electronic discovery 
Mobile phone Solar panel Laser diode Combined Charging System Linux powered device 
Adverse event* Communication channel Nearfield communication Vertical launching system Drug design 
User interface Software defined radio Power semiconductor device Low Pin Count Viral vector 
Financial instrument* Predictive modelling* Thermography Ion channel Growth medium* 
Smartphone Semiconductor device Heat treating Plasma display Sensor fusion 
Wireless network Single instruction multiple data Performance appraisal* Computer network Pattern recognition 
Active users* Domain name* Microsoft Access* Electronic stability control Input device* 
Flat panel display Barcode Client computing Wireless sensor network Video capture 
Digital content* Project delivery method* Dataspaces Search algorithm* Display device 
Combination therapy Distributed antenna system Leased line* Active noise control Gesture recognition 
Digital video Sport utility vehicle Dental implant Urine collection device Caregiver* 
Model organism Payment card Multifunction printer* Tunable laser Policy entrepreneur* 
Monoclonal antibody Minimally invasive procedure Tablet computer Fingerprint* Autonomous system Internet 
Data source name* Extremely high frequency Semiconductor memory Channel access method Emergency Broadcast System* 
Keypad Central processing unit DNA sequencing Peritoneal dialysis Oriented strand board 
Social networking service Location based service Optical module Error detection and correction Variable computer science* 
Digital camera Lithium ion battery Software versioning Erotic target location error* Robotic arm 
Wireless LAN Microsoft Windows* User profile Electronic game Image organizer 
Wireless Unstructured data* Data loss* Computer simulation Barcode reader 
Transaction account Compression seal fitting* USB flash drive Transdermal patch Soulseek 
Flash memory LED circuit Touchpad File format* Optical medium 
Data communication Baseband* Powder coating Semiconductor device fabrication* Epidermal growth factor 
Networking hardware Digital image processing Rapid prototyping Dynamic random access memory Cloud computing 
Information privacy* Video clip* Continuous glucose monitor Internet filter Western blot 
Online game Multilayer perceptron* Hematopoietic stem cell 

transplantation 
Motion capture Windowing system 

Hard disk drive Airborne early warning and control Mental chronometry* Solar thermal energy Reduced relative clause* 
Video game console Cell site Serverless computing* Speed networking Email 
Mobile computing Laptop Liquid crystal display Atomic layer deposition  
Digital television Data model* Silicon germanium Fluid dynamics  
Media Player Windows* Network virtualization Data store Drug eluting stent  
VLC media player* File system* Aggregate data* Meta analysis*  
Virtual reality Unmanned aerial vehicle Ecommerce Channel blocker  
Immortalized cell line Portable media player Data type* Typical versus maximum 

performance* 
 

Personal computer Multicore processor Google Search* Flexible electronics  
Nature based solutions* Effective dose radiation* Light emitting diode SMS  
Selective Service System* Web feed Server computing Video editing  
Network operating system LED lamp Component based software 

engineering 
Digital signature  

Digital imaging Facial recognition system Software distribution Electrooptical sensor  
Programming tool Printing Microcontroller Identity verification service  
Data quality* Antibody drug conjugate Fiberoptic cable Selective serotonin reuptake 

inhibitor 
 



 

Self driving car Insulin pump List of search engines CMOS  
Passive optical network Voicemail Push technology Optical disc drive  
Augmented reality Speech recognition Machine learning Magnetic resonance imaging  
Smart card Satellite navigation device Data file* Amazon Relational Database 

Service 
 

Card security code Building automation Thermometer Programming language*  
Power electronics User activity monitoring Software architecture Computer data storage  
Text messaging Data integrity Dendritic cell* Medical imaging  
Home automation Programmable logic device Therapeutic drug monitoring Ventricular assist device  
Receptor antagonist Web query Genetic engineering Dry powder inhaler  
Instant messaging Flow cytometry Da Vinci Surgical System* Network switch  
Multimedia Messaging Service Virtual private network Mesh networking Urine test strip  
Coiled tubing Desktop computer Epidermal growth factor receptor Label printer  
Digital subscriber line Network monitoring Monoclonal antibody therapy Distributed computing  
Systems architecture* Audio file format* Communication protocol* Physical media  
OS level virtualization* Lithium battery Neural network Glucose meter  
Software Updater Global Positioning System Docking station Electronic program guide  
Patch computing Visitor Based Network Recombinant DNA Adeno associated virus  
Expected value* Active site* Duty cycle* List of copy protection schemes*  
Agent based model Memory card Mass spectrometry Debit card  
Data access object* Gallium nitride Data compression* Laser scanning  
Hybrid electric vehicle Load balancing computing Cruise control Intensive care unit*  

Notes: This table lists all technologies (Wikipedia titles) associated with technology bigrams which are mentioned in at least 100 earnings calls. * next to a technology indicates that 
it is dropped in human audit described in Section 7.



 

 

Appendix Table 4 – Top technologies by pioneer states, by share of early patenting 

Region Division State Name Title Pct. Early 
Patents 

Year of 
Emergence 

(1) (2) (3) (4) (5) (6) 

Northeast 

New 
England 

Connecticut Label printer 6.19 1986 
Massachusetts Antibody-drug conjugate 13.58 1998 
New Hampshire Computer data storage 14.3 1992 

Mid 
Atlantic 

New Jersey Transaction account 19.45 2000 
New York Digital imaging 16.95 1992 
Pennsylvania Machine learning 17.12 1992 

Midwest 
East North 

Illinois Ventricular assist device 12.59 1983 
Indiana Hybrid electric vehicle 8.61 1995 
Michigan Electronic stability control 49.93 1996 
Ohio Da Vinci Surgical System 17.5 2005 
Wisconsin Peritoneal dialysis 15.55 1990 

West North  
Minnesota Optical disc drive 14.15 1991 
Missouri Sensor fusion 24.64 1996 

South 

South 
Atlantic 

Florida Dental implant 12.87 1987 
Georgia Oriented strand board 8.34 1991 
Maryland Adeno-associated virus 13.28 1994 
North Carolina Gallium nitride 24.36 1993 
Virginia Selective Service System 7.25 1990 

East South Tennessee Lithium battery 4.79 1986 
West South Texas Coiled tubing 51.74 1988 

West 

Mountain 

Arizona Cruise control 4.71 1993 
Colorado Network monitoring 23.1 1991 

Idaho Dynamic random-access 
memory 10.11 1991 

Utah Fluid dynamics 5.62 1993 

Pacific 
California Continuous glucose monitor 73.55 1996 
Oregon Multifunction printer 29.59 1997 
Washington Distributed computing 25.99 1987 

Notes: This table reports top technology (in column 4) by share of early patenting for a sample of states (in column 3). We report the 
corresponding census division in column 2, and the census region in column 1. The sample of states are those which file at least 50,000 
patents during our sample period. In column 6, we report the share of early patenting, calculated as 𝑆𝑆ℎ𝑉𝑉𝑉𝑉𝐶𝐶 𝐸𝐸𝑉𝑉𝑉𝑉𝑁𝑁𝑦𝑦 𝑃𝑃𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝜏𝜏,𝑠𝑠 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝐸𝐸 𝑃𝑃𝐸𝐸𝑡𝑡𝑃𝑃𝑛𝑛𝑡𝑡𝑠𝑠𝜏𝜏,𝑠𝑠

∑𝑗𝑗𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝐸𝐸 𝑃𝑃𝐸𝐸𝑡𝑡𝑃𝑃𝑛𝑛𝑡𝑡𝑠𝑠𝜏𝜏,𝑗𝑗
 for every technology 𝜏𝜏 and state 𝑌𝑌. We drop the titles “policy entrepreneur,” “caregiver,” and “reduced relative clause” 

that pass the Wikipedia criteria of technology bigrams but are removed in the human audit of technology bigrams. 
 
 
 
 

 



 

Appendix Table 5 – Top occupations for technology - “Machine Learning” 

Occupations Pct. “Machine 
Learning” postings Total Job Postings 

Computer and Information Research Scientists 40.83              179,636  

Astronomers 3.33                10,236  

Life Scientists, All Other 2.41                27,691  

Computer Hardware Engineers 2.38                91,259  

Statisticians 2.31              193,339  

Computer Science Teachers, Postsecondary 2.24                34,221  

Operations Research Analysts 1.80              874,226  

Database Administrators 1.62          1,110,414  

Social Science Research Assistants 1.56                53,040  

Biological Scientists, All Other 1.55                97,722  

Software Developers, Applications 1.50          6,963,792  

Physical Scientists, All Other 1.21                12,176  

Engineering Teachers, Postsecondary 1.17                13,606  

Social Scientists and Related Workers, All Other 1.15                59,306  

Detectives and Criminal Investigators 1.11              130,801  

Biomedical Engineers 1.06                17,543  

Computer and Information Systems Managers 1.04              205,267  

Financial Specialists, All Other 1.03              290,386  

Architectural and Engineering Managers 1.01              586,301  

Computer Occupations, All Other 1.00          6,172,457  

Notes: This table lists the top occupations (in column 1) by the share of postings that are associated with technology 
“Machine Learning” (in percent, in column 2). Column 3 reports the total job postings for the occupation. The 
technology “Machine Learning” refers to Wikipedia title “Machine learning” and the associated bigrams “machine 
learning” and “learning algorithms.” 

 

 

 

 

 



 

Appendix Table 6 – Human audit results of technology job postings 

Panel A: Audit results 
Audit Use Produce Total 
Describes company  6% 10% 16% 
Describes task 46% 34% 80% 
Neither NA NA 4% 
Panel B: Audit results after clipping top 50 and bottom 50 words 
Audit Use Produce Total 
Describes company  2% 2% 4% 
Describes task 55% 36% 91% 
Neither NA NA 5% 
Panel C: Examples excerpts 

Produce 

“we are looking for a ux developer to join our fast growing team our 
mission is to make your interactions with touchscreens more 
interesting more natural and more engaging we have developed a novel 
haptic touchscreen technology that not only tracks the fingertips but 
controls what they feel”  

Use 

“duties of this job the employee is required to occasionally use clarity 
of vision at approximately feet or more stoop bend the body downward 
and forward by the spine at the waist frequently use a keyboard, key 
touch screen, or mouse to enter text or data into a computer” 

Neither 

“our super cool office space which doesn’t feel like an office is 
designed with our employees in mind techy surroundings a great 
outdoor space with Wi-Fi hookups for your laptop plus Bluetooth 
capabilities for music streaming we enjoy cultivating a supportive and 
all around positive culture that keeps our employees happy this will be 
a place you will want to come to everyday” 

Notes: This table presents the results from a human audit of Burning Glass technology job postings. As a part of the human audit, we classify 
each of 1,000 randomly sampled job postings into two ways: 1) whether the technology reference in the job posting refers to the company or 
the task content of the job posting, and 2) whether the job describes the use or the production of the technology. See the main text for details. 
In Panel A, we perform the audit on the original text of job postings for a smaller set of 100 postings. In Panel B, we clip the text of job postings 
by 50 words at the top and bottom, resample 1,000 postings, and then repeat the audit.  Panel C provides examples of job postings classified 
under the “use,” “produce,” and “neither” categories.  

 

 

 

 

 

 

 



 

Appendix Table 7 – Summary statistics 

  (1) (2) (3) (4) (5) (6) 
Variable N Mean SD p25 p50 p75 
Panel A: Technology bigrams 
Postings  1,899  26633.79 127987.98 45.00 534.00 6440.00 
Earnings Calls  1,899  132.86 471.41 1.00 13.00 85.00 
Cite wt. Patents  1,899  4643.53 7289.85 1506.59 2513.45 5140.56 
Emergence Year  1,899  1991.54 5.28 1989 1991 1994 
# Pioneers  1,899  5.90 2.60 4 6 7 

        
Panel B: Technology bigram by year  
Tech Postings  15,498  3370.21 15528.70 18 111 920 
Coefficient of Variation  15,498  5.70 4.67 2.47 4.10 7.44 
Share College Educated  15,512  54.82 13.06 47.29 56.46 63.26 
Wage  15,512  62062.27 10910.91 55217.73 63263.68 69452.33 
Share Research Postings  15,512  1.75 3.71 0.00 0.00 2.01 
Share Produce Postings  15,512  5.36 9.55 0.00 0.00 7.74 
Share RDP Postings  15,512  5.81 10.12 0.00 0.00 8.48 
Share Knowledge Postings  15,512  7.50 11.84 0.00 0.00 12.23 

        
Panel C: CBSA by technology bigram by year  
Total Postings  17,634,114  20670.29 81760.65 1252 2825 8897 
Tech Postings  17,634,114  2.96 67.09 0.00 0.00 0.00 
Normalized Share  14,391,504  0.58 2.77 0.00 0.00 0.28 

Notes: This table shows summary statistics – the number of observations, mean, standard deviation, 25th percentile, median and 75th percentile - for variables used in the analyses of the paper. Panel A 
reports statistics for our sample of technology bigrams. Panel B reports summary statistics for our datasets at the technology bigram x year level, which are used in region broadening (Table 4) and skill 
broadening (Table 7) regressions. Panel C reports summary statistics for our CBSA x technology bigram x year data used in pioneer advantage regressions in Table 5. The normalized share of bigram jobs 
in all panels is calculated as  𝑁𝑁𝐶𝐶𝑉𝑉𝑚𝑚𝑉𝑉𝑁𝑁𝐶𝐶𝑁𝑁𝐶𝐶𝑁𝑁 𝑌𝑌ℎ𝑉𝑉𝑉𝑉𝐶𝐶𝑐𝑐,𝜏𝜏,𝑡𝑡 = 𝑠𝑠ℎ𝐸𝐸𝐸𝐸𝑃𝑃 𝑗𝑗𝑇𝑇𝑗𝑗𝑠𝑠 𝑃𝑃𝑒𝑒𝑇𝑇𝑇𝑇𝑠𝑠𝑃𝑃𝑒𝑒𝑐𝑐,𝜏𝜏,𝑡𝑡

𝑠𝑠ℎ𝐸𝐸𝐸𝐸𝑃𝑃 𝑗𝑗𝑇𝑇𝑗𝑗𝑠𝑠 𝑃𝑃𝑒𝑒𝑇𝑇𝑇𝑇𝑠𝑠𝑃𝑃𝑒𝑒𝜏𝜏,𝑡𝑡
 , where c is a location (CBSA), 𝜏𝜏 is a technology, and t is calendar year. The coefficient of variation is calculated using the 

normalized share of technology job postings by dividing the standard deviation of 𝑁𝑁𝐶𝐶𝑉𝑉𝑚𝑚𝑉𝑉𝑁𝑁𝐶𝐶𝑁𝑁𝐶𝐶𝑁𝑁 𝑌𝑌ℎ𝑉𝑉𝑉𝑉𝐶𝐶𝑐𝑐,𝜏𝜏,𝑡𝑡 across locations c in year 𝐶𝐶 by its mean in year 𝐶𝐶 for each technology bigram 𝜏𝜏. Skill level 
variables (in Panel B – Share College Educated and Wage) are calculated using 𝑆𝑆𝑆𝑆𝐶𝐶𝑁𝑁𝑁𝑁𝑡𝑡τ =  

∑ 𝑁𝑁𝑜𝑜;𝑡𝑡
𝜏𝜏  χo;2015𝑜𝑜

∑ 𝑁𝑁𝑜𝑜;𝑡𝑡
𝜏𝜏

𝑜𝑜
, where 𝑁𝑁𝑇𝑇,𝑡𝑡

𝜏𝜏  is the number of Burning Glass job postings mentioning technology bigram τ that are in 

SOC code o at time t, and  χo,2015 is the average skill level for occupation o, as measured by the 2015 ACS. The share of research/produce/RDP/knowledge postings are calculated for each technology 
bigram τ and year t according to the process explained in Section 5a.



 

 

Appendix Table 8 – Robustness: Testing for non-linearity in `region broadening’ 

Panel A: Comparing linear, quadratic and logarithmic specifications 
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡  log (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡) 

  (1) (2) (3)  (4) 
𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝐶𝐶𝑉𝑉𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡 -0.068*** -0.028 -0.305***  -0.015** 

 (0.026) (0.133) (0.076)  (0.006) 
(𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝐶𝐶𝑉𝑉𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡)2  -0.001 0.004**   
  (0.003) (0.002)   
Constant 5.577*** 5.203*** 9.008***  1.523*** 
 (0.645) (1.444) (0.861)  (0.158) 
R-squared 0.019 0.019 0.817  0.017 
N 4,270 4,270 4,270  4,270 
Bigram FE NO NO YES  NO 
      
Panel B: Testing for general non-linearity 

Specification: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1 ∗ (𝑦𝑦𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝑚𝑚𝜏𝜏,𝑡𝑡)𝛽𝛽2  
Initial conditions: 𝛽𝛽0 = 𝑚𝑚𝐶𝐶𝑉𝑉𝐶𝐶�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡�, 𝛽𝛽2 = 1 

𝛽𝛽0 𝛽𝛽1 𝛽𝛽2   
5.134*** -0.009 1.536**   
(0.375) (0.020) (0.626)   

H0: 𝛽𝛽2 = 1 0.73    
p-value 0.392    

H0: 𝛽𝛽1 = 𝛽𝛽2 = 0 1,895.00    

p-value 0.000  
 

 

Notes: This table reports results from tests for non-linearity of the relationship between the 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡 and 𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝑚𝑚𝐶𝐶𝑉𝑉𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡. Panel A, column 1 reports results from a regression of the 
coefficient of variation on the year since emergence, the same specification as in Table 4, Panel A, column 1. Column 2 adds a 
quadratic term to this regression and column 3 adds technology bigram fixed effects. Column 4 presents results for a regression 
where we replace 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡 with log (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡) as the dependent variable. Panel B 
tests for non-linearity by estimating the specification: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1 ∗ (𝑦𝑦𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝑚𝑚𝜏𝜏,𝑡𝑡)𝛽𝛽2 with 
non-linear least squares and initial conditions  𝛽𝛽0 = 𝑚𝑚𝐶𝐶𝑉𝑉𝐶𝐶�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡� and  𝛽𝛽2 = 1. The regressions are 
restricted to the sample of technology bigrams that appear in at least 100 earnings calls. For more details on the specification, 
refer to the note in Table 4. 

 

 

  



 

 

Appendix Table 9 – Robustness: Pioneer location advantage in technology hiring 

 𝑁𝑁𝐶𝐶𝑉𝑉𝑚𝑚𝑉𝑉𝑁𝑁𝐶𝐶𝑁𝑁𝐶𝐶𝑁𝑁 𝑆𝑆ℎ𝑉𝑉𝑉𝑉𝐶𝐶𝑐𝑐,𝑡𝑡,𝜏𝜏 
 (1) (2) (3) (4) 

𝑅𝑅𝑉𝑉𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝑁𝑁𝐶𝐶𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶 𝑝𝑝𝐶𝐶𝑉𝑉 𝑦𝑦𝐶𝐶𝑉𝑉𝑉𝑉 -0.027*** --0.027*** --0.024*** --0.024*** 
 0.003 0.003 0.005 0.005 
Implied years to zero advantage 37.04 37.04 41.67 41.67 
     
𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑐𝑐,𝜏𝜏 1.321*** 1.323*** 1.118*** 1.121*** 
 (0.254) (0.255) (0.294) (0.295) 
𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑐𝑐,𝜏𝜏 ∗ 𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝑚𝑚𝜏𝜏,𝑡𝑡 -0.035*** -0.035*** -0.027** -0.027** 
 (0.011) (0.011) (0.012) (0.012) 
R-squared 0.030 0.037 0.033 0.040 
N 7,751,024 7,751,024 7,751,024 7,751,024 
Bigrams 835 835 835 835 
Bigram FE YES NA YES NA 
CBSA FE YES YES NA NA 
Year FE YES NA YES NA 
Bigram x Year FE NO YES NO YES 
CBSA x Year FE NO NO YES YES 
Std. Errors (cluster) Wiki Title Wiki Title Wiki Title Wiki Title 

Notes: This table reports robustness checks for results from the pioneer advantage regressions in Table 
5. We are focusing on the change in the rate of decline per year, so place these findings above the 
regression coefficients. Column 1 repeats the regression specification from Table 5, column 3. Columns 
2, 3 and 4 add CBSA x Bigram fixed effects and CBSA x Year fixed effects iteratively. The first row 
reports the decay rate, as defined in Table 5. The regressions use all technology bigrams that appear in 
at least 1000 job postings in our sample. For more details on the specification, refer to the note in Table 
5. 

  



 

Appendix Table 10 – Top occupations for example technologies 

Emergence Year Technology Top Occupations (by pct. share of postings) 

1979 Hard disk drive Broadcast Technicians (4.5); Computer Operators (2.7) 

1980 Barcode reader Packers and Packagers, Hand (0.5); Library Assistants, Clerical (0.2) 

1981 Laser diode Chiropractors (0.4); Physicists (0.3) 

1982 Personal computer 
Automotive Glass Installers and Repairers (26.7); Demonstrators and Product Promoters 
(22.6) 

1983 Flatpanel display Upholsterers (2.6); Audio and Video Equipment Technicians (2.0) 

1984 User interface Multimedia Artists and Animators (26.7); Web Developers (23.4) 

1985 Mobile phone Graders and Sorters, Agricultural Products (20.7); Advertising Sales Agents (15.8) 

1986 Facial recognition system Marriage and Family Therapists (1.8); Child, Family, and School Social Workers (1.6) 

1987 Digital video Audio and Video Equipment Technicians (7.4); Film and Video Editors (5.1) 

1988 Model organism Astronomers (2.3); Life Scientists, All Other (1.8) 

1989 Mobile device Electronic Equipment Installers and Repairers, Motor Vehicles (12.6); Foresters (11.3) 

1990 Debit card Pharmacy Aides (10.3); Railroad Conductors and Yardmasters (5.5) 

1991 Flash memory 
Computer Hardware Engineers (0.9); Radio, Cellular, and Tower Equipment Installers 
and Repairs (0.5) 

1992 Machine learning Computer and Information Research Scientists (56.7); Astronomers (4.0) 

1993 Financial instrument Financial Specialists, All Other (0.7); Economists (0.4) 

1994 Active users Advertising Sales Agents (2.0); Sales Representatives, Services, All Other (0.3) 

1995 Hybrid electric vehicle Electronics Engineers, Except Computer (0.2); Electrical Engineers (0.2) 

1996 Digital content Producers and Directors (3.6); Multimedia Artists and Animators (3.6) 

1997 Multicore processor Computer Hardware Engineers (0.2); Electronics Engineers, Except Computer (0.1) 

1998 Information privacy Information Security Analysts (2.7); Financial Specialists, All Other (0.7) 

1999 Unmanned aerial vehicle Avionics Technicians (2.5); Commercial Pilots (1.4) 

2000 Transaction account Traffic Technicians (0.2); Brokerage Clerks (0.2) 

2001 Smartphone Automotive Glass Installers and Repairers (28.5); Home Appliance Repairers (21.5) 

2002 Online game 
Fine Artists, Including Painters, Sculptors, and Illustrators (1.2); Multimedia Artists and 
Animators (0.8) 

2003 Social networking service Reporters and Correspondents (5.4); Radio and Television Announcers (3.4) 

2004 Electronic discovery Graders and Sorters, Agricultural Products (13.2); Parts Salespersons (1.3) 

2005 LED circuit Electrical and Electronics Drafters (0.2); Electronics Engineers, Except Computer (0.1) 

2006 Augmented reality Computer Hardware Engineers (0.3); Interior Designers (0.3) 

2007 Self-driving car Computer Hardware Engineers (0.5); Armored Assault Vehicle Crew Members (0.2) 

Notes: This table lists the top two occupations and the percentage of postings (in column 3) that mention technology bigrams associated 
with top technologies (in column 2). The list of technologies is the same as our list in Table 1. 

  



 

 

 

Appendix Table 11: Robustness: Region broadening by skill 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡 

 EC >= 100 

  (1) (2) (3) 

Skill Level Low Medium High 
𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝐶𝐶𝑉𝑉𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡 -0.343*** -0.256*** -0.194*** 

 (0.035) (0.029) (0.023) 
Constant 16.715*** 13.685*** 12.207*** 
 (0.795) (0.655) (0.512) 
R-squared 0.791 0.784 0.778 
N 4,188 4,188 4,188 
Bigrams 427 427 427 
Bigram FE YES YES YES 
Std. Errors (cluster) Wiki Title Wiki Title Wiki Title 
𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝒐𝒐𝒐𝒐 𝒅𝒅𝑹𝑹𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝑹𝑹 𝒑𝒑𝑹𝑹𝒑𝒑 𝒚𝒚𝑹𝑹𝑹𝑹𝒑𝒑 (%) -2.05 -1.87 -1.59 

Notes: This table reports region-broadening regressions for low-, medium-, and high-skill job 
postings at the technology bigram x year level. Columns 1, 2 and 3 show separate regressions for 
high-skill (column 1), medium-skill (column 2), and high-skill (column 3) job postings. For 
definitions of these concepts see Section 4.c of the main text. The regressions are restricted to the 
sample of technology bigrams that appear in at least 100 earnings calls. For more details on the 
specification, refer to the note in Table 4. 

 



 

Appendix Table 12 – Keywords for research, development, and production (RDP) job postings 

Keyword Pct, Tech. Job Postings Keyword Pct, Tech. Job Postings 
development* 15.30 the leading 0.18 
engineering* 4.67 in creating 0.17 
design and* 4.40 the worlds 0.12 

develop and* 1.39 to market 0.10 
to create 1.02 adoption of 0.10 

and develop* 1.00 customization of* 0.09 
range of 0.80 to customize* 0.03 
leader in 0.79 enhancements of 0.02 

designing and* 0.70 and experimentation 0.01 
research and* 0.67 and exploit 0.01 

developing and* 0.63 exploitation of 0.01 
build and 0.59 in expanding 0.01 
team of 0.57 and commercializing* 0.00 

in developing* 0.54 to personalize* 0.00 
and developing* 0.50 customized product* 0.00 

a global 0.48 researching of* 0.00 
high performance 0.39 and redevelopment 0.00 

in building* 0.29   

Notes: This table reports the list of keywords used to classify technology job postings into those requiring research, development, 
and production (RDP) of the technology. We flag job postings that mention these RDP keywords within 15 words of a technology 
bigram as requiring the RDP of the technology. The sample used to calculate these shares only includes technology bigrams that 
appear in at least 100 earnings calls. The asterisk * identifies keywords for research and development. 

 
Appendix Table 13 – Robustness: Skill broadening robustness 

 Share College Educated 
 Baseline (2010-2019) W/ 2007 2010-2015 2016-2019 
 (1) (2) (3) (4) 

Year since emergence -0.288*** -0.294*** -0.260*** -0.228** 
 (0.079) (0.072) (0.088) (0.114) 
Constant 59.095*** 59.313*** 58.901*** 57.047*** 
 (1.794) (1.605) (1.814) (2.933) 
R-squared 0.019 0.021 0.016 0.007 
N 8,347 9,277 5,008 3,339 
Bigram FE NO NO NO NO 

Notes: This table reports robustness of skill broadening results. All regressions are at the technology bigram x year 
level. The dependent variable is the average share of job postings mentioning technology bigram 𝜏𝜏 in year 𝐶𝐶 that 
require a college degree. Column 1 uses our baseline sample of Burning Glass job postings from 2010-2019 
(replicating Table 7, Panel A, column 2); column 2 adds 2007 to our baseline sample. Columns 3 and 4 split the 
sample into two: column 3 only includes 2010-2015 and column 4 only includes 2016-2019. The regressions use 
all technology bigrams that appear in at least 1000 job postings in our sample. For more details on the specification, 
refer to the note in Table 7. 



 

 
Appendix Table 14 – Keywords for “training” job postings 

Keyword Pct, Tech. Job Postings Keyword Pct, Tech. Job Postings 
(1) (2) (1) (2) 

knowledge of 16.888 proficiency of 0.045 
experiences with 13.489 expertise of 0.034 
understanding of 6.098 experience using 0.026 

working knowledge 4.173 specialization in 0.025 
responsible for 3.777 competence of 0.007 
proficiency in 3.680 indepth knowledge 0.002 
proficient in 3.626 credentials in 0.001 
familiar with 3.190 knowhow of 0.000 

skills in 1.432 critical of 0.000 
experience with 1.398   

expertise in 1.236   
familiarity with 1.048   
knowledge in 0.876   
experience of 0.400   

extensive knowledge 0.388   
knowledge with 0.222   

grasp of 0.078   
understanding in 0.056   

Notes: This table reports (in column 1) the list of keywords used to classify technology job postings into those that require training 
in the technology. We flag job postings that mention these training keywords within 15 words of a technology bigram as requiring 
training or experience with that technology. Column 2 reports the respective share of technology job postings in percent which 
require training. To calculate shares in column 2, we only consider technology bigrams that appear in at least 100 earnings calls.  
  



 

 

 

Appendix Table 15 – Top industries by technology 

Emergence Year Technology Top Pioneer Industry 
(1) (2) (3) 

1979 Hard disk drive Computer and Peripheral Equipment Manufacturing 
1980 Barcode reader Computer and Peripheral Equipment Manufacturing 
1981 Laser diode Computer and Peripheral Equipment Manufacturing 
1982 Personal computer Computer and Peripheral Equipment Manufacturing 
1983 Flatpanel display Semiconductor and Other Electronic Component Manufacturing 
1984 User interface Computer and Peripheral Equipment Manufacturing 
1985 Mobile phone Communications Equipment Manufacturing 
1986 Facial recognition system Software Publishers 
1987 Digital video Computer and Peripheral Equipment Manufacturing 
1988 Model organism Pharmaceutical and Medicine Manufacturing 
1989 Mobile device Computer and Peripheral Equipment Manufacturing 
1990 Debit card Management, Scientific, and Technical Consulting Services 
1991 Flash memory Computer and Peripheral Equipment Manufacturing 
1992 Machine learning Software Publishers 
1993 Financial instrument Computer and Peripheral Equipment Manufacturing 
1994 Active users Management, Scientific, and Technical Consulting Services 
1995 Hybrid electric vehicle Motor Vehicle Manufacturing 
1996 Digital content Software Publishers 
1997 Multicore processor Semiconductor and Other Electronic Component Manufacturing 
1998 Information privacy Software Publishers 
1999 Unmanned aerial vehicle Aerospace Product and Parts Manufacturing 
2000 Transaction account Non-depository Credit Intermediation 
2001 Smartphone Information Services 
2002 Online game Software Publishers 
2003 Social networking service Other Information Services 
2004 Electronic discovery Pharmaceutical and Medicine Manufacturing 
2005 LED circuit Semiconductor and Other Electronic Component Manufacturing 
2006 Augmented reality Semiconductor and Other Electronic Component Manufacturing 
2007 Self-driving car Other Information Services 

Notes: This table lists the top pioneer industry (NAICS four-digit codes) (in column 3) by percentage of job postings associated with 
a sample of technologies (in column 2) corresponding to emergence years (in column 1). The list of technologies is the same as in 
Table 1. 

 



 

 

 Appendix Table 16 – Wikipedia titles and trigrams 

Wikipedia Title Trigrams Wikipedia Title Trigrams 

(1) (2) (1) (2) 

Web-RTC real time communications DNA-binding domain dna binding domain 
Real-time operating system time operating system; real time operating LTE telecommunication term evolution lte 
Injection molding machine injection molding machine Perchloric acid sulfuric acid nitric 
MEMS electro mechanical systems; electro 

mechanical system 
Phase detector phase frequency detector 

Single-mode optical fiber single mode fiber; single mode fibers Vinyl-sulfonic acid meth acrylic acid 
Heat recovery steam generator waste gas stream; heat recovery steam Water-gas shift reaction water gas shift 
Mobile phones on aircraft portable electronic devices Calcium oxide calcium oxide calcium 
Optical fiber connector optical fiber connector; fiber optic connectors; 

fiber optic connector 
Carboxylic acid alkyl alkenyl aryl 

Colony-stimulating factor colony stimulating factors Cartesian coordinate system cartesian coordinate system 
Granulocyte colony-stimulating factor colony stimulating factor Cellulose acetate phthalate cellulose acetate phthalate 
Protein sequencing amino acid sequences; terminal amino acid; 

terminal amino acids 
Complement-dependent cytotoxicity dependent cytotoxicity cdc 

Carbon-fiber-reinforced polymers carbon fiber reinforced Dent corn hybrid corn variety 
Transaction processing system transaction processing system Dibenzylideneacetone pale yellow solid 
History of mobile phones mobile communication devices Dimethyl sulfoxide dimethyl sulfoxide dmso 
Engine control unit engine control unit Fluorinated ethylene propylene fluorinated ethylene propylene 
Hollow fiber membrane hollow fiber membrane; hollow fiber 

membranes 
Glyceraldehyde 3phosphate dehydrogenase glyceraldehyde phosphate dehydrogenase 

Satellite navigation navigation satellite system Halide fluoride chloride bromide 
Polyvinyl alcohol poly vinyl alcohol Ion chromatography cation exchange chromatography 
Electronic control unit electronic control module Machine-readable medium and data machine readable media; computer readable 

medium; computer readable media; machine 
readable medium 

USB mass storage device class mass storage devices Magnesium sulfate white crystalline solid 
Tunnel magnetoresistance magnetic tunnel junction Nitrobenzene pale yellow oil 
Ultra-high-molecular-weight polyethylene molecular weight polyethylene Phase-shift keying phase shift keying 
Polymethyl methacrylate poly methyl methacrylate Phase-transfer catalyst phase transfer catalyst 
Amino acid amino acid residues Plant tissue culture plant cell tissue 
Attribute-based access control access control policy Sperm-mediated gene transfer mediated gene transfer 
Protein kinase inhibitor protein kinase inhibitors Zinc selenide light yellow solid 

 
Carboxymethyl cellulose sodium carboxymethyl cellulose   

Notes: This table reports technology trigrams (in column 2) and associated technologies/Wikipedia titles (in column 1). From this list, we exclude trigrams that contain one of the 
baseline technology bigrams or that correspond to a Wikipedia title (technology) already associated with a technology bigram. Entries are sorted by mentions in earnings calls.  

  



 

 

Appendix Table 17 - Wikipedia titles and unigrams 

Wikipedia title Unigrams Wikipedia title Unigrams Wikipedia title Unigrams 
(1) (2) (1) (2) (1) (2) 

Website websites Tomography tomography Biomass biomass 
HTTPS https Flash ADC adcs Multiplexer multiplexer 
Internets internets RTP payload formats rtp Nonlinear system nonlinear 
Infrastructure infrastructures USB usb Multiplexing multiplexes 
Video videos Biomarker biomarkers Playlist playlists 
Upload uploading ; upload Defibrillation defibrillators Microarray microarray 
PDF pdf Pixel pixels Transgene transgenic 
Optimizing compiler optimizations Apheresis apheresis Gac gac 
Blog blogs SUV suvs Zigbee zigbee 
Middleware middleware Bluetooth bluetooth Plasmid plasmid 
Intranet intranets Solidstate drive ssds Waypoint waypoints 
PMOS logic pmos Gallium arsenide gaas Clear aligners aligner 
Nondeliverable forward dfs Pulse oximetry oximetry Messenger RNA mrnas 
Prototype prototyping Backpack backpacks Cannula cannulas 
Endoscopy endoscopy Landline landline Radiation therapy radiotherapy 
United States Postal 
Service usps PowerPC rpc Camcorder camcorder 

Encryption encrypt ; encryption Hyperlink hyperlink 
Complex programmable 
logic device plds 

List of datasets for 
machinelearning research datasets Photonics photonics Liquid crystal on silicon lcos 
In vitro fertilization vfs Interventional radiology endovascular Excipient excipients 
CpG site cpg Discrete Fourier transform dft OnStar onstar 
Server Message Block cifs ; smb Gameplay gameplay Histogram histogram 
Polychlorinated biphenyl pcbs PCI Express pcie Polymerase polymerases 
Pharmacogenomics genomics Proteomics proteomic Biosensor biosensor 
Billable hours billable Integrated circuit microchips Hydrocodone hydrocodone 
Topology topologies Television timeout timeout Oxymorphone oxymorphone 
Clinical decision support 
system dsss 

Floating production storage 
and offloading offloading TFT LCD tfts 

Interoperability interoperability Satellite navigation gnss 
Insulated gate bipolar 
transistor igbts 

Trusted Platform Module tpm Nebulizer nebulizers Xenotransplantation xenograft 
Biofuel biofuel Biomaterial biomaterials Antibody immunoglobulin 
Realtime operating 
system rtos Multimodality multimodal Sunscreen sunscreen 

 



 

 

Wikipedia title Unigrams Wikipedia title Unigrams 
(1) (2) (1) (2) 

Linear particle accelerator linac Erlotinib erlotinib 

Rituximab rituximab ; rituxan 
Steam assisted gravity 
drainage sagd 

Breakpoint breakpoint Moisturizer moisturizing 
Embolization embolization Supercapacitor ultracapacitor 
Collagen collagens Protein isoform isoforms 
Reticle reticle Stevia stevia 
Through silicon via tsvs Paclitaxel paclitaxel 
Penicillin penicillins PSMA scan psma 
Dopamine dopamine Lysine lysines 
Duplexer duplexer Doxorubicin doxorubicin 
Syringe prefilled Prostaglandin prostaglandins 
Megabyte megabytes Calcitonin calcitonin 
Small Formfactor 
Pluggable pluggable Tamoxifen tamoxifen 
Glycemic index glycemic Irinotecan irinotecan 
Naloxone naloxone Bupropion bupropion 
Photomask photomask Cyclophosphamide cyclophosphamide 
Angiogenesis angiogenic; angiogenesis Atorvastatin atorvastatin 
Microparticle microsphere Budesonide budesonide 
Biopolymer biopolymer Cytarabine cytarabine 
Revascularization revascularization Sulfonylurea sulfonylureas 
Joystick joysticks 
Glycoprotein glycoprotein 
Backlight backlights 
Carbonless copy paper carbonless 
Cephalosporin cephalosporins 
Polymethyl methacrylate pmma 
Neurostimulation neurostimulation 
Chemokine chemokines 
Cetuximab erbitux 
Nucleoside nucleosides 

Notes: This table reports the unigrams (in column 2) and their respective technologies/Wikipedia titles (in column 1), in the order of total job postings that they appear in. The table lists 
unigrams that appear in at least 100 earnings calls. Out of a total of 200 such unigrams, we exclude 53 unigrams that correspond to existing Wikipedia titles (technologies) already 
associated with a technology bigram. 



 

 

Appendix Table 18 – Comparison of main results: Disruptive and non-disruptive bigrams 

Panel A: Disruptive bigrams 
Dependent Variable Share College Educated Coefficient of Variation Normalized Share Log (Coefficient of Variation) 
Result: Skill Broadening Region Broadening Pioneer Persistence Differential Skill Broadening 
 (1) (2) (3) (4) 
Year since emergence -0.541*** -0.147***  -0.033*** 
 (0.046) (0.015)  (0.003) 
Pioneer   1.084***  
   (0.309)  
Pioneer * Year since emg.   -0.032**  
   (0.013)  
Low skill * Year since emg.    -0.009*** 
    (0.003) 
Constant 64.289*** 7.400*** 0.621*** 2.726*** 
 (1.069) (0.339) (0.001) (0.061) 
R-squared 0.895 0.816 0.038 0.852 
N 4,270 4,270 3,965,122 12,706 
Fixed Effects Bigram Bigram Bigram, CBSA, Year Bigram 
Technologies 428 428 428 428 
𝑅𝑅𝑉𝑉𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝑁𝑁𝐶𝐶𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶 𝑝𝑝𝐶𝐶𝑉𝑉 𝑦𝑦𝐶𝐶𝑉𝑉𝑉𝑉 0.008 0.020 -0.029 (0.005)  

Years to Full Decay 62.87 50.43 33.88 . 
Panel B: Intermediate and non-disruptive bigrams 

Result: Skill Broadening Region Broadening Pioneer Persistence Region Broadening 
By Skill 

 (1) (2) (3) (4) 
Year since emergence -0.413*** -0.164***  -0.022*** 
 (0.053) (0.017)  (0.002) 
Pioneer   1.986***  
   (0.392)  
Pioneer * Year since emg.   -0.051***  
   (0.015)  
Low skill * Year since emg.    -0.007** 
    (0.003) 
Constant 63.316*** 9.977*** 0.582*** 2.910*** 
 (1.273) (0.408) (0.001) (0.046) 
R-squared 0.919 0.807 0.023 0.796 
N 4,307 4,307 3,999,480 12,784 
Fixed Effects Bigram Bigram Bigram, CBSA, Year Bigram 
Technologies 431 431 431 431 
𝑅𝑅𝑉𝑉𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝑁𝑁𝐶𝐶𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶 𝑝𝑝𝐶𝐶𝑉𝑉 𝑦𝑦𝐶𝐶𝑉𝑉𝑉𝑉 0.007 -0.016 -0.026 (0.003) . 

Years to Full Decay 79.95 60.84 38.94 . 
Difference vs disruptive -0.128(0.070) * 0.017(0.022) -0.003(0.006) -0.002(0.005) 

Notes: This table reports results from regressions corresponding to our primary results: skill broadening (column 1), region broadening 
(column 2), pioneer persistence (column 3), and differential region broadening by skill (column 4), separately for disruptive (Panel A) 
and other (intermediate + non-disruptive, Panel B) technologies. Our primary coefficients for comparison are in bold in both panels. 
Panel A is restricted to the sample of technology bigrams that appear in at least 100 earnings calls. Panel B uses all other technology 
bigrams that appear in at least 1000 job postings in our sample. For more details on the specification, refer to the notes in Table 4, 5, 
6, and 7. 

  



 

 

Appendix Table 19:  Spread of high vs. low-skill jobs, using all bigrams 

Panel A: Region Broadening  
 log (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)𝜏𝜏,𝑡𝑡 

 (1) (2) (3) 
Skill Level High Medium Low 
𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝐶𝐶𝑉𝑉𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝜏𝜏,𝑡𝑡 -0.024*** -0.030*** -0.035*** 
 (0.002) (0.002) (0.002) 

R-squared 0.842 0.853 0.855 

N 8,335 8,330 8,219 

Bigrams 835 835 835 
Bigram FE YES YES YES 

Std. Errors (cluster) Wiki Title Wiki Title Wiki Title 
    
Panel B: Pioneer Advantage  
  𝑁𝑁𝐶𝐶𝑉𝑉𝑚𝑚𝑉𝑉𝑁𝑁𝐶𝐶𝑁𝑁𝐶𝐶𝑁𝑁 𝑆𝑆ℎ𝑉𝑉𝑉𝑉𝐶𝐶𝑐𝑐,𝜏𝜏,𝑡𝑡 

  (1) (2) (3) 
Skill Level High Medium Low 
𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑐𝑐,𝜏𝜏 1.309*** 0.909*** 1.104*** 

 (0.233) (0.225) (0.253) 
𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑐𝑐,𝜏𝜏
∗ 𝑦𝑦𝐶𝐶𝑉𝑉𝑉𝑉 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝑚𝑚𝜏𝜏,𝑡𝑡 

-0.029*** -0.022** -0.036*** 
 (0.010) (0.010) (0.010) 

R-squared 0.016 0.018 0.012 

N 8,491,998 8,478,284 8,319,989 

Bigrams 835 835 835 
Bigram FE YES YES YES 

Std. Errors (cluster) Wiki Title Wiki Title Wiki Title 

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝒐𝒐𝒐𝒐 𝒅𝒅𝑹𝑹𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝑹𝑹 𝒑𝒑𝑹𝑹𝒑𝒑 𝒚𝒚𝑹𝑹𝑹𝑹𝒑𝒑  
-0.022 -0.024 -0.032 
(0.004) (0.005) (0.003) 

Notes: This table reports region-broadening regressions at the technology bigram x year level (Panel A) and pioneer advantage 
regressions at the technology bigram x year x location level (Panel B), now using all technology bigrams with at least 1000 job 
postings. These analyses are akin to those in columns 1 and 2 of Table 6, Panels A and B, but now include all technology bigrams 
that appear in at least 1000 job postings. Columns 1, 2, and 3 show separate regressions for high-skill, medium-skill, and low-skill 
job postings. Panel A reports results from regressions of 𝑁𝑁𝐶𝐶𝑚𝑚(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)𝜏𝜏,𝑡𝑡 on the number of years since the 
technology’s year of emergence. Panel B reports results from regressions of the 𝑁𝑁𝐶𝐶𝑉𝑉𝑚𝑚𝑉𝑉𝑁𝑁𝐶𝐶𝑁𝑁𝐶𝐶𝑁𝑁 𝑌𝑌ℎ𝑉𝑉𝑉𝑉𝐶𝐶𝑐𝑐,𝜏𝜏,𝑡𝑡 on a dummy indicating 
pioneer status of the CBSA and the interaction of this dummy with number of years that have elapsed since bigram’s emergence. 
The rate of decline per year is calculated as 𝛽𝛽𝐷𝐷

𝛽𝛽𝑃𝑃
, where 𝛽𝛽𝑃𝑃is the coefficient of 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑐𝑐,𝜏𝜏 and 𝛽𝛽𝐷𝐷is the coefficient of 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝑐𝑐,𝜏𝜏 ∗

𝑌𝑌𝐶𝐶𝑉𝑉𝑉𝑉𝑌𝑌 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑚𝑚𝑚𝑚𝜏𝜏,𝑡𝑡. For more details on the specification, refer to the note in Table 6. 



Appendix Figure 1 – Examples of patent text

Notes: These figures show examples of patent text. The left panel displays the first page of U.S. Patent 7406200, while the right panel shows the second 

page of text in that same patent. For analysis in our paper, we use all text sections, including title, abstract, background, summary, description, and claims.



Notes: The figure shows a sample of Wikipedia pages corresponding to two example technologies. The red circles indicate sections that are associated with selection of technology bigrams.

Appendix Figure 2 – Examples of Wikipedia entries and procedure for filtering technology bigrams



Appendix Figure 3 – Example of a Burning Glass technology job posting, and corresponding location and occupation fields

Notes: The figure shows an example of  a job posting in Burning Glass, with associated data. This posting mentions one of our technologies (“machine learning”).



Appendix Figure 4 – Average number of job postings by type of technology – disruptive, intermediate and non-disruptive

(276 wiki titles)(413 wiki titles)(597 wiki titles)

Notes: The figure shows the average number of job postings associated with different types of technologies (disruptive, intermediate, and non-disruptive). Disruptive technologies are technologies 

associated with at least one bigram that appears in at least 100 earnings calls; intermediate technologies are those technologies associated with at least one bigram that appears in at least 10 earnings 

calls and are not one of the disruptive technologies. The rest are classified as non-disruptive technologies.  Whiskers show 95%-confidence interval. A t-test of difference between the average 

number of disruptive and intermediate postings results in a F-stat of 57.04 (p-value of less than 0.001).
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Appendix Figure 5 – Early disruptive and non-disruptive patenting vs. local skill composition

Notes: The figures show binned scatter plots of disruptive and non-disruptive patents 

in the ten years prior to the emergence date per 1,000 people in a CBSA over measures 

of skill and university presence in the CBSA. The coefficients and robust standard 

errors displayed are from the associated regressions with standard errors clustered by 

CBSA. In all panels, the coefficient for disruptive patents are (statistically) 

significantly higher than the coefficient for non-disruptive patents at 1% level.

0

.02

.04

.06

.08

.1

E
a

rl
y
 d

is
ru

p
ti
v
e

 p
a
te

n
ts

 p
e

r 
1

,0
0
0

 p
e

o
p

le

0 .5 1 1.5 2

Log(1 + university assets (in $1,000 per capita))

 category=disruptive  category=non-disruptive

0

.05

.1

.15

E
a

rl
y
 d

is
ru

p
ti
v
e

 p
a
te

n
ts

 p
e

r 
1

,0
0
0

 p
e

o
p

le

.1 .2 .3 .4

Share college educated

 category=disruptive  category=non-disruptive

Coef (disruptive): 0.047 (0.001)

Coef (non-disruptive): 0.029 (0.000)

Coef (disruptive): 0.482 (0.004)

Coef (non-disruptive): 0.258 (0.001)

Coef (disruptive): 1.130 (0.009)

Coef (non-disruptive): 0.623 (0.004)



[The company] has an opening in R&D for an individual experienced in 
radiological imaging to lead the development of computed tomography 
(CT) systems used in pre-clinical imaging research. We are emphasizing a 
multi-modality imaging approach, combining CT with optical molecular 
imaging. The successful candidate will guide the development of both 
hardware and software platforms, working closely with a multi-disciplinary 
team of engineers, software developers, and biologists…

With a keen focus on clinically-relevant experimentation, [this company’s] 
portfolio of offerings includes state-of-the-art microfluidics, lab automation 
& liquid handling, optical imaging technologies, and discovery & 
development outsourcing solutions….

Notes: The panels above show examples of job postings mentioning our technology bigrams categorized into use, and research, development, and production.

Develop: Software Engineer

Job Description: Analyze requirements, develop the software architecture, 
plan and perform detailed software design activities, specify software test 
requirements, estimate software size and development effort and plan for 
future product releases is required.

Use: Sales Representative

We are in search of an outgoing driven and reliable individual who is 
looking for a part time or full time opportunity to become a brand rep for a 
regulated product in convenience store locations in your area you will be a 
key asset to the program…

Responsibilities and requirements: 
• work on product displays pull product out of back stock and 

merchandise replenish displays as needed.
• use third channel technology on a smart device to collect crucial data 

engage with consumers and provide sales support/brand education to 
retail associates 

• reliable transportation a smart phone with internet access. 

Appendix Figure 6  – Examples of use and research, develop, and production (RDP) in job postings

Develop: Modeling & Simulation Software Engineer

Our client is seeking a motivated and passionate scientist/engineer with 
the technical vision required to translate advanced modeling and 
simulation concepts into operational reality. (…) The successful applicant 
will function as a key technical member of an interdisciplinary team in a 
dynamic development environment, providing leadership across the full 
R& D cycle. Position responsibilities will include concept formulation, 
proposal writing, algorithm design, software implementation and 
integration, client interaction, and research publication…

Ph.D. in Computer Science or M.S. in Computer Science plus minimum 5 
years experience . Hands-on experience with one or more advanced 
modeling approaches, transforming theory into real world solutions. 
Strong software development skills including systems integration, network 
programming, AI programming, and virtual environments.

Develop: Scientist

Use: Clinical Nurse

Position is responsible for creating and maintaining positive customer 
relations for hospice and, as appropriate, home health and other-in-home 
services programs throughout the assigned hospital/clinic.

Essential Duties:
• …
• Documents in patient hospital medical record pertinent information 

related to discharge from hospital to home or facility/agency setting. 
• Appropriately documents activities in the Providence electronic medical 

system, tracks referrals received by nursing unit and accepted by each 
Providence agency. 

Use: Ultrasound Technologist

The Ultrasound Technologist II under general direction, operates 
ultrasound equipment to obtain high quality ultrasound examinations of 
various body parts as ordered by the Physician. Prepares patients, 
processes images and assists Physicians as needed.  Evening Shift and 
rotate call.  Qualifications  RDMS required. ARRT a plus.  3-5 years of 
experience preferred. Successful completion of a formal (Accredited) 
educational /training program for Radiology and/or Medical Imaging. 



Coeff (SE): 0.171 (0.011)
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Notes: For a panel of technology bigram x year observations, the figure in Panel A shows a 

binned scatter plot of the share of Research, Development, and Production (RDP) job postings 

relative to the years since emergence. Each bin represents the average share of job postings 

categorized as RDP jobs across technology bigrams for a given year since emergence. The 

sample pools across technologies, where each observation in the sample denotes a technology 

bigram x year observation. Only observations at the year of emergence and after are included. 

The size of circles is proportional to the square root of the number of  technology bigram job 

postings, capped at 100.

Panel A: Pct. of technology RDP job postings by year since emergence

Appendix Figure 7 – Technology job postings with RDP synonyms, by year since emergence and college education

Panel B: Pct. of technology RDP jobs by college education

Notes: The figure in Panel B plots a binned scatter plot of share of Research, Development, and 

Production (RDP) postings against the share of college-educated postings. Each observation in 

the dataset is at the technology bigram x year level.

Coeff (SE): -0.867 (0.092)



Panel A: Pct. of technology training job postings by year since emergence

Appendix Figure 8 – Technology job postings with training synonyms, by year since emergence and college education

Panel B: Pct. of technology training jobs by college education

Notes: For a panel of technology bigram x year observations, the figure in Panel A shows a 

binned scatter plot of the share of training postings against the years since emergence. Each bin 

represents the average share of job postings categorized into `training’ across technology bigrams 

for a given year since emergence. The sample pools across technology bigrams, where each 

observation in the sample denotes a technology bigram x year observation. Only observations at 

the year of emergence and after are included. The size of circles is proportional to the square root 

of the number of  technology bigram job postings, capped at 100.

Notes: The figure in Panel B plots a binned scatter plot of share of training postings against the 

share of college-educated postings. Each observation in the dataset is at the  technology bigram x 

year level.

Coef.: -0.143
S.d.: 0.132
R-squared: 0.870
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Coeff (SE): 0.107 (0.015)
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Panel C: Number of job postings vs employment in OES

Appendix Figure 9 – Total number and composition of Burning Glass job postings, over time

Notes: The figure presents descriptions of the changing composition of Burning Glass (BG) job postings over time. Panel A shows the overall number of job postings in BG (left y-axis) against the overall number 

of job postings in JOLTS (right y-axis). Panel B shows the (approximate) share of job postings in BG requiring a college education by year. Panel C plots a bin-scatter of number for job postings in BG against the 

number of employed people in Occupational Employment and Wage Statistics (OEWS) program by 6-digit occupation (SOC) and year. Panel D plots the same picture as in Panel A with a bin scatter by year. 

Panel A: Number of job postings in BG vs JOLTS

Panel D: Number of job postings vs employment in OES (by year)

Coeff: 1.039

SE: 0.009

Panel B: Share of job postings requiring a college-education



Coef.: 0.331
S.d.: 0.017
R-squared: 0.932

0

10

100

 1,000

J
o
b

 p
o

s
ti
n

g
s

0 10 100 1,000 10,000

Cite-wt. patent counts

Notes: The figure plots a binned scatterplot of the number of job postings associated with technologies against the number of normalized citation-weighted patents that mention a novel technology. In preparing the 

figure, we include all technological bigrams with more than 100 citation-weighted patents, as well as a random sample of 1,000,000 novel bigrams with cite-weighted counts between 0 and 99. The size of circles 

is proportional to the number of bigrams in any given bin. (Unlike in the other figures and regressions, here we do not cap the weights to highlight the concentration of bigrams on the low end of these measures.)  

The figure presents a binned scatter plot along with the coefficient, standard deviation, and R-squared from a regression of the log of job postings on the log of cite-weighted patent counts corresponding to each 

technology.

Appendix Figure 10 – Number of normalized citation-weighted patents and job postings associated with novel bigrams
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