Demographics, Wealth, and Global Imbalances in the Twenty-First Century

Adrien Auclert, Hannes Malmberg, Frédéric Martenet and Matthew Rognlie

Hoover Economic Policy Working Group, March 2021

The world population is aging...

2

...wealth-to-GDP ratios are increasing...

National Wealth

...rates of return on wealth are falling ...

4

...and "global imbalances" are rising

- Broad agreement that demographics has contributed to historical trends in *W*/*Y*, *NFA* imbalances, and real returns (*r*)
- Much less agreement about how much

- Broad agreement that demographics has contributed to historical trends in *W*/*Y*, *NFA* imbalances, and real returns (*r*)
- Much less agreement about how much: Δr for 1970-2020 is zero in the standard neoclassical growth model
 - -0.71pp in Gagnon-Johannsen-Lopez-Salido 2021
 - -3.19pp in Eggertsson-Mehrotra-Robbins 2019

- Broad agreement that demographics has contributed to historical trends in *W*/*Y*, *NFA* imbalances, and real returns (*r*)
- Much less agreement about how much: Δr for 1970-2020 is zero in the standard neoclassical growth model -0.71pp in Gagnon-Johannsen-Lopez-Salido 2021
 - -3.19pp in Eggertsson-Mehrotra-Robbins 2019
- Going forward, hypothesis that these trends might revert, centered on the savings rate in an aged population:

"While a large population cohort that is saving for retirement puts upward pressure on the total savings rate, **a large elderly cohort may push down aggregate savings** by running down accumulated wealth." [Lane 2020]

- Broad agreement that demographics has contributed to historical trends in *W*/*Y*, *NFA* imbalances, and real returns (*r*)
- Much less agreement about how much: ∆r for 1970-2020 is zero in the standard neoclassical growth model

 -0.71pp in Gagnon-Johannsen-Lopez-Salido 2021
 -3.19pp in Eggertsson-Mehrotra-Robbins 2019
- Going forward, hypothesis that these trends might revert, centered on the savings rate in an aged population:

"While a large population cohort that is saving for retirement puts upward pressure on the total savings rate, **a large elderly cohort may push down aggregate savings** by running down accumulated wealth." [Lane 2020]

"**asset market meltdown**" hypothesis [Poterba 2001] "**great demographic reversal**" hypothesis [Goodhart-Pradhan 2020] In a baseline multi-country GE OLG model, the effect of demographic change on r, W/Y and NFA depends **only** on:

- 1. cross-sectional age profiles of asset accumulation, labor income, and consumption
- 2. demographic projections
- 3. the elasticity of intertemporal substitution 1/ σ
- 4. the elasticity of substitution between capital and labor η

This provides a framework for measurement, which we implement

Quantitative conclusions are robust to many plausible extensions of this baseline model

Slope of asset supply $\bar{\epsilon}_s$: depends on η and observables Slope of asset demand $\bar{\epsilon}_d$: depends on σ and observables (new!)

Shift in asset demand $\overline{\Delta}^{comp}$: observable from composition (new!) Large and positive in the data.

Country-specific shifts Δ^{comp} large and heterogeneous in data

$$\Delta\left(\frac{\textit{NFA}}{\textit{Y}}\right) \approx \Delta^{\textit{comp}} - \bar{\Delta}^{\textit{comp}}$$

 \Rightarrow r always falls, W/Y always rises, large global imbalances

A bridge between reduced-form and structural approaches

- Existing literature follows two broad approaches:
- 1. Reduced-form, based on shift-share exercises
 - Projected asset demand [Poterba 2001, Mankiw-Weil 1989], projected savings rates [Summers-Carroll 1987, Auerbach-Kotlikoff 1990...]
 - Projected labor supply [Cutler et al 1990], demographic dividend literature [Bloom-Canning-Sevilla 2003...]

A bridge between reduced-form and structural approaches

- Existing literature follows two broad approaches:
- 1. Reduced-form, based on shift-share exercises
 - Projected asset demand [Poterba 2001, Mankiw-Weil 1989], projected savings rates [Summers-Carroll 1987, Auerbach-Kotlikoff 1990...]
 - Projected labor supply [Cutler et al 1990], demographic dividend literature [Bloom-Canning-Sevilla 2003...]
- 2. Structural, based on fully specified GE OLG models
 - Demographics and **wealth** + social security [Auerback Kotlikoff 1987, imrohoroğlu-İmrohoroğlu-Joines 1995, De Nardi-İmrohoroğlu-Sargent 2001, Abel 2003, Geanakoplos-Magill-Quinzii 2004, Kitao 2014...]
 - Demographics and **capital flows** [Henriksen 2002, Börsch-Supan-Ludwig-Winter 2006, Domeij-Flodén 2006, Krueger-Ludwig 2007, Backus-Cooley-Henriksen 2014, Bárány-Coeurdacier-Guibaud 2019...]
 - Demographics and interest rates [Carvalho-Ferrero-Necchio 2016, Gagnon-Johannsen-Lopez Salido 2016, Eggertsson-Mehrotra-Robbins 2019, Lisack-Sajedi-Thwaites 2017, Jones 2018, Papetti 2019, Rachel-Summers 2019...]

A bridge between reduced-form and structural approaches

- Existing literature follows two broad approaches:
- 1. Reduced-form, based on shift-share exercises
 - Projected asset demand [Poterba 2001, Mankiw-Weil 1989], projected savings rates [Summers-Carroll 1987, Auerbach-Kotlikoff 1990...]
 - Projected labor supply [Cutler et al 1990], demographic dividend literature [Bloom-Canning-Sevilla 2003...]
- 2. Structural, based on fully specified GE OLG models
 - Demographics and **wealth** + social security [Auerback Kotlikoff 1987, imrohoroğlu-imrohoroğlu-Joines 1995, De Nardi-imrohoroğlu-Sargent 2001, Abel 2003, Geanakoplos-Magill-Quinzii 2004, Kitao 2014...]
 - Demographics and **capital flows** [Henriksen 2002, Börsch-Supan-Ludwig-Winter 2006, Domeij-Flodén 2006, Krueger-Ludwig 2007, Backus-Cooley-Henriksen 2014, Bárány-Coeurdacier-Guibaud 2019...]
 - Demographics and interest rates [Carvalho-Ferrero-Necchio 2016, Gagnon-Johannsen-Lopez Salido 2016, Eggertsson-Mehrotra-Robbins 2019, Lisack-Sajedi-Thwaites 2017, Jones 2018, Papetti 2019, Rachel-Summers 2019...]
 - This paper bridges the gap between both

1. Baseline environment

Environment: demographics, production, and government

OLG model, demographic change + multiple countries facing $\{r_t\}$

Demographics (drop country subscripts)

- Exogenous, time-varying sequence of births Not
- Exogenous, constant sequence of mortality rates ϕ_j Mortality contrib.
- No migration

Production

- Aggregate production function with capital and effective labor
- Constant growth rate of labor-augmenting technology γ
- Perfect competition, free capital adjustment

Government

Flow budget constraint

$$G_t + w_t \sum_{j=0}^T N_{jt} \mathbb{E}tr_j + (1+r_t)B_t = \tau w_t \sum_{j=0}^T N_{jt} \mathbb{E}\ell_j + B_{t+1},$$

• Balances budget over time by adjusting G_t and B_{t+1} , not au_t or tr_{jt} 10

Environment: demographics, production, and government

OLG model, demographic change + multiple countries facing $\{r_t\}$

Demographics (drop country subscripts)

- Exogenous, time-varying sequence of births Not
- Exogenous, constant sequence of mortality rates $\phi_i \bullet Mortality$ contrib.
- No migration

Production

- Aggregate production function with capital and effective labor
- Constant growth rate of labor-augmenting technology γ
- Perfect competition, free capital adjustment

Government

Flow budget constraint

$$G_t + w_t \sum_{j=0}^T N_{jt} \mathbb{E}tr_j + (1+r_t)B_t = \tau w_t \sum_{j=0}^T N_{jt} \mathbb{E}\ell_j + B_{t+1},$$

• Balances budget over time by adjusting G_t and B_{t+1} , not τ_t or tr_{it}

10

Problem for **heterogeneous agents** of cohort k (age $j \equiv t - k$)

$$\max \mathbb{E}_{k} \left[\sum_{j} (\beta^{j} \times \psi_{j} \times \Phi_{j}) \frac{c_{jt}^{1-\sigma}}{1-\sigma} \right]$$

s.t $c_{jt} + a_{j+1,t+1} \leq W_{t} \left((1-\tau)\ell(z_{j}) + tr(z^{j}) \right) + \frac{(1+r_{t})a_{j,t}}{\phi_{j}}$
 $a_{j+1,t+1} \geq -\underline{a}$

- $\beta^{j}\psi_{j}\Phi_{j}$: discounting \times utility shifter \times survival prob $(\prod_{j}\phi_{j})$
- *a_{jt}*: annuity holdings
- $\ell(z_t)$: risky labor supply driven by arbitrary stochastic process z_t
- τ , $tr(z^{j})$: taxes and (state-contingent) government transfers

Problem for **heterogeneous agents** of cohort k (age $j \equiv t - k$)

$$\max \mathbb{E}_{k} \left[\sum_{j} (\beta^{j} \times \psi_{j} \times \Phi_{j}) \frac{c_{jt}^{1-\sigma}}{1-\sigma} \right]$$

s.t $c_{jt} + a_{j+1,t+1} \leq W_{t} \left((1-\tau)\ell(z_{j}) + tr(z^{j}) \right) + \frac{(1+r_{t})a_{j,t}}{\phi_{j}}$
 $a_{j+1,t+1} \geq -\underline{a}$

- $\beta^{j}\psi_{j}\Phi_{j}$: discounting \times utility shifter \times survival prob $(\prod_{j}\phi_{j})$
- *a_{jt}*: annuity holdings
- $\ell(z_t)$: risky labor supply driven by arbitrary stochastic process z_t
- τ , $tr(z^{j})$: taxes and (state-contingent) government transfers

Equilibrium

Given demographics and policy, in an integrated world equilibrium:

- Households optimize
- Firms optimize
- Global asset markets clear (with GDP weights $\omega_t^c \equiv \frac{Y_t^c}{Y_t}$)

$$\sum_{c} \omega_{t}^{c} \frac{W_{t}^{c}}{Y_{t}^{c}} = \sum_{c} \omega_{t}^{c} \left(\frac{K_{t}^{c}}{Y_{t}^{c}} + \frac{B_{t}^{c}}{Y_{t}^{c}} \right) \quad \forall t$$

Next consider two cases, each with countries facing a constant γ

- 1. Small country aging alone, world at steady state ightarrow r constant
- 2. Many countries aging together, converging to a s.s. with r_{LR}

Compositional effects as sufficient statistics

Proposition

The wealth-to-GDP ratio of a small country aging alone with constant r and γ follows

$$rac{W_t}{Y_t} \propto rac{\sum_j \pi_{jt} a_{jo}}{\sum_j \pi_{jt} h_{jo}}$$

where $a_{jo} \equiv \mathbb{E}a_{j,o}$ and $h_{jo} = \mathbb{E}w_o\ell_{j,o}$ are average initial asset holdings and pretax labor income by age.

Compositional effects as sufficient statistics

Proposition

The wealth-to-GDP ratio of a small country aging alone with constant r and γ follows

$$rac{W_t}{Y_t} \propto rac{\sum_j \pi_{jt} a_{jo}}{\sum_j \pi_{jt} h_{jo}}$$

where $a_{jo} \equiv \mathbb{E}a_{j,o}$ and $h_{jo} = \mathbb{E}w_o\ell_{j,o}$ are average initial asset holdings and pretax labor income by age.

 \Rightarrow G.E. demographic impact over time is $\Delta r =$ 0, and

$$\Delta\left(\frac{W_t}{Y_t}\right) = \Delta\left(\frac{NFA_t}{Y_t}\right) = \Delta_t^{comp} \equiv \frac{\sum_j \pi_{jt} a_{jo}}{\sum_j \pi_{jt} h_{jo}} - \frac{\sum_j \pi_{jo} a_{jo}}{\sum_j \pi_{jo} h_{jo}}$$

measurable from demographic projections and hh. surveys Why? Demographics do not affect (normalized) individual decisions

Long-run wealth and rate of return adjustment

Proposition

In world equilibrium, the long-run change in r and W/Y satisfy

$$\begin{aligned} r_{LR} - r_{\rm O} \simeq -\frac{1}{\bar{\epsilon}^d + \bar{\epsilon}^{\rm S}} \bar{\Delta}_{LR}^{comp} \\ \sum_{\rm c} \omega^{\rm c} \left[\left(\frac{W^{\rm c}}{\gamma^{\rm c}} \right)_{LR} - \left(\frac{W^{\rm c}}{\gamma^{\rm c}} \right)_{\rm O} \right] \simeq \frac{\bar{\epsilon}^{\rm s}}{\bar{\epsilon}^{\rm s} + \bar{\epsilon}^d} \bar{\Delta}_{LR}^{comp} \end{aligned}$$

- + $ar{\epsilon}^d,ar{\epsilon}^{\mathrm{s}}$: average long-run asset demand and supply sensitivities
- ω_c : initial GDP weights

Long-run change in country NFAs

$$\begin{aligned} \left(\frac{NFA^{c}}{Y^{c}}\right)_{LR} &\simeq \Delta_{comp}^{c} - \bar{\Delta}_{comp} + [(\epsilon^{c,d} + \epsilon^{c,s}) - (\bar{\epsilon}^{d} + \bar{\epsilon}^{s})](r_{LR} - r_{o}) \\ &\simeq \Delta_{comp}^{c} - \bar{\Delta}_{comp} \qquad \text{(if } \epsilon_{d}, \epsilon_{s} \text{ are similar)} \end{aligned}$$

Sensitivities of asset supply and demand

• Assuming all countries have the same capital-labor substitution elasticity η ,

$$\overline{\epsilon}^{\rm s} = \frac{\eta}{r_{\rm o} + \delta} \overline{\left(\frac{K_{\rm o}}{Y_{\rm o}}\right)}$$

 \rightarrow Measurable from observables and knowledge η

Sensitivities of asset supply and demand

• Assuming all countries have the same capital-labor substitution elasticity η ,

$$\overline{\epsilon}^{\mathsf{s}} = \frac{\eta}{\mathsf{r}_{\mathsf{o}} + \delta} \overline{\left(\frac{\mathsf{K}_{\mathsf{o}}}{\mathsf{Y}_{\mathsf{o}}}\right)}$$

 \rightarrow Measurable from observables and knowledge η

Proposition

With no idiosyncratic risk, $\underline{a} = \infty$ and $\mathbf{r} = \gamma = \mathbf{0}$, in each country:

$$\epsilon^{d} = \underbrace{\frac{C}{Y} \cdot \frac{1}{\sigma} \cdot Var(Age_{c})}_{substitution \ effect} - \underbrace{\frac{W}{Y} \underbrace{(E[Age_{a}] - E[Age_{c}])}_{income \ effect}}_{income \ effect}$$

 \rightarrow Measurable from observables and knowledge of σ

2. Measurement and implications

- Calculate shift-share $\Delta_t^{\textit{comp}}$ for US and 24 other countries
- Implementation:

$$\Delta_t^{comp} \equiv \frac{W_o}{Y_o} \left(\frac{\sum \pi_{jt} a_{jo}}{\sum \pi_{jt} h_{jo}} \middle/ \frac{\sum \pi_{jo} a_{jo}}{\sum \pi_{jo} h_{jo}} - 1 \right)$$

- Data:
 - π_{jt} : projections of age distributions over individuals 2019 UN World Population Prospects
 - a_{jo}, h_{jo} : age-wealth and labor income profiles in base year For US: SCF, LIS/CPS, and Sabelhaus-Henriques Volz (2019) a_{jo} includes funded part of DB pensions Household \rightarrow individual *j* by splitting wealth among adults in hh

Δ^{comp} in the United States: 1950-2100

Historica

Δ^{comp} in the United States: 1950-2100

Low fertility 200 Baseline High fertility Data (WID) 100 Δ_{t}^{comp} 0 -100 1960 2000 2020 2040 2060 2080 2100 1980

Historica

17

Where do these large effects come from?

Numerator (W) Denominator (Y) 75K 15.0 15.0 h₂₀₁₆ π_{2016} a₂₀₁₆ π_{2016} 12.5 12.5 X52 X92 Labor income (USD) π_{2100} π_{2100} 750K Pop. shares (%) Wealth (USD) Pop. shares (%) 10.0 10.0 7.5 7.5 5.0 5.0 250K 2.5 2.5 0.0 0.0 0 20 40 60 80 20 40 60 80 Age Age

- · In paper: separate contribution of numerator and denominator
 - + Going forward: W contributes \sim 2/3, Y contributes \sim 1/3
 - Historically demographic dividend pushed Y up, reversed in 2010

Globally large and heterogeneous Δ^{comp} by 2100

Quantifying sensitivities

Supply sensitivity $\bar{\epsilon}_{s} = \frac{\eta}{r_{o}+\delta} \frac{\bar{K}}{\bar{Y}}$:

- + $\eta \equiv$ substitutability between capital and labor
- + Range of $\eta = {\rm 0.6-1.25}$

[Oberfield and Raval, 2019; Karabarbounis and Neiman, 2014]

Quantifying sensitivities

Supply sensitivity $\bar{\epsilon}_{s} = \frac{\eta}{r_{o}+\delta} \frac{\bar{K}}{\bar{Y}}$:

- + $\eta \equiv$ substitutability between capital and labor
- Range of $\eta = 0.6 1.25$ [Oberfield and Raval, 2019; Karabarbounis and Neiman, 2014]

Demand sensitivity $\bar{\epsilon}_d = \frac{C}{Y} \cdot \frac{1}{\sigma} \cdot Var(Age_c) - \frac{W}{Y}(E[Age_a] - E[Age_c])$

• Can also compare to literature estimates, range 5–200 [Zoutman, 2018; Gagnon et al., 2019; Moll, Rachel and Restrepo, 2019; Eggertson et al., 2020; Jakobsen et al. 2020]

$$\Delta r pprox -rac{ar{\Delta}^{comp}}{ar{\epsilon}^d+ar{\epsilon}^s}$$

1.25

 A. Change in world r
 EIS

 η
 0.25
 0.50
 1.00

 0.60
 -3.17
 -1.44
 -0.69

 1.00
 -2.14
 -1.18
 -0.62

-1.06

-0.59

-1.78

$$\Delta\left(\frac{W}{Y}\right) \approx \frac{\bar{\epsilon}^{s}}{\bar{\epsilon}^{d} + \bar{\epsilon}^{s}} \bar{\Delta}^{comp}$$

B. Change in world *W*/*Y EIS*

η	0.25	0.50	1.00
0.60	116	57	28
1.00	132	77	42
1.25	138	87	50

Demeaned compositional effect and NFAs

$$\Delta\left(\frac{NFA}{Y}\right) \approx \Delta^{comp} - \bar{\Delta}^{comp}$$

ightarrow Data points to large global imbalances for the 21st century

ightarrow Data points to large global imbalances for the 21st century

3. Quantitative model

Updated environment

Household problem becomes

$$\max \mathbb{E}_{k} \sum_{j} \beta^{j} \psi_{jt} \Phi_{jk} \left[\frac{c_{jt}^{1-\sigma}}{1-\sigma} + \Upsilon Z_{t}^{\nu-\sigma} \left(1-\phi_{jt}\right) \frac{\left(a_{jt}\right)^{1-\nu}}{1-\nu} \right] \quad \nu \geq \sigma$$

s.t. $c_{jt} + a_{jt} \le W_t \left((1 - \tau_t) \ell_{jt}(z_j) (1 - \rho_{jt}) + tr_{jt}(z_j) \right) + (1 + r_t) a_{j-1,t-1} + b_{jt}^r(z_j)$ $a_{jt} \ge -\overline{a}Z_t$

- From annuities to bequests:
 - assets become bequests at death, distributed as $b_{jt}^r(z_j)$
- Time-variation in mortality Φ_{jk} , utility shifters ψ_{jt} from kids in household, labor supply ℓ_{jt} , retirement age ρ_{jt}
- Fiscal rule with adjustments in taxes and transfers, income process with intergenerational persistence
- Migration

Robustness of conclusions

+ Assume EIS=0.5, $\eta={\rm 1}$

	Δr	$\Delta \frac{\bar{W}}{\bar{Y}}$	$\Delta rac{NFA^{USA}}{Y^{USA}}$	$\Delta rac{NFA^{CHN}}{Y^{CHN}}$
Pure compositional analysis	-1.18	77	-23	59
Baseline social security	-1.13	56	-38	67
Alternative assumptions				
Only social security tax	0.47	1	32	-11
Only lower benefits	-1.68	99	-75	158

- 1. Multiple assets
- 2. Accounting for historical movements in US W/Y and r
- 3. Reconciling literature findings on r^* effects of demographics
- 4. Housing
- 5. Population aging and wealth inequality

4. Demographics and falling savings rates

- Possible to calculate shift-share for savings rate S/Y
 - Either directly from consumption profiles
 - Or using the budget constraint (our preferred approach)

$$S_t^{comp} \equiv \frac{1}{1+g_t} \cdot \frac{g_t \sum_j \pi_{jt} a_{jo} + \sum_j \Delta \pi_{jt} a_{jo}}{\sum \pi_{jt} h_{jo}}$$

- g_t: Growth rate of real GDP
 - Use $\sum \pi_{jt} h_{jo}$ to calculate compositional effect on labor supply

Worldwide: decreasing S_t/Y_t everywhere

Declining r despite falling savings?

- Will dissaving of the old reverse the effects of demographics? [Lane 2020, Goodhart and Pradhan 2020]
- Measured S_t^{comp} does decline
- But: r does not increase
- Why? Savings is misleading with declining pop. growth. In s.s.:

$$\frac{W}{Y} = \frac{1+g}{g}\frac{S}{Y}$$

With demographic change, S/Y falls but g falls by more!

- How does population aging affect wealth-output ratios, real interest rates, and capital flows?
- Use compositional effect Δ^{comp} as starting point for forecasts
- Δ^{comp} are large and heterogeneous in the data
- For the 21st century, our approach:
 - Refutes the asset market meltdown hypothesis: r definitively falls
 - Suggests the global savings glut has just begun

Thank you!

Additional slides

US Wealth-to-GDP from SCF vs World Inequality Database

Source: World Inequality Database (WID), Survey of Consumer Finances (SCF)

Share of the population aged 65+

◀ Back

Countries by income group

33

National Wealth over GDP

- Baseline safe return r_t^{safe} is 10 year constant maturity interest rate minus HP-filtered PCE deflator
- Baseline total return is

$$r_t = \frac{(s_K Y - \delta K)_t + r_t^{safe} B_t}{W_t - NFA_t}$$

where $(s_K Y - \delta K)_t$ is net capital income

Age-labor income profiles

Contribution of mortality to aging since 1950

Contribution of mortality to aging in 21st century

Measuring income and wealth profiles

- Measuring age-labor income profiles h_{it}
 - Data from the Luxembourg Income Study (LIS)
 - h_{jt} is proportional to total labor income per person
 - In 2016: normalize aggregate effective labor per person

$$1 = L_{2016} = \sum_{j} \pi_{j,2016} h_{j,2016}$$

• In t: L_t grows as aggregate labor input from the BLS $\frac{L_t^{BLS}}{L_{206}^{BLS}}$

- Measuring age-wealth profiles $a_{jt} = rac{A_{jt}}{Y_t/L_t}$
 - Data from the Survey of Consumer Finances (SCF)
 - Provide net worth by age at the household level
 - A_{jt} is aggregate household net worth over total individuals
 - Divide by Y_t/L_t^{BLS} to obtain a_{jt}

Retrospective U.S. exercise

• To first order:

41

Robustness to baseline year for age profiles (past)

Change in W/Y: 1950 to 2016															
	1989	71	72	74	74	73	72	74	71	70	67	67	68	98	83
ge-wealth profile (SCF)	1992	71	72	75	75	73	72	74	71	70	68	67	68	99	83
	1995	76	77	79	79	78	77	79	76	75	72	72	73		88
	1998	81	82	85	85	84	82	85	82	80	77	77	78	111	94
	2001	82	83	86	85	84	83	85	82	81	78	78	78	111	95
	2004	88	89	92	92	91	90	92	89	88	85	84	85	118	101
	2007	91	92	95	95	94	93	95	92	91	87	87	88	123	105
	2010	83	84	87	87	86	85	87	85	84	81	81	81	109	95
	2013	87	88	91	91	90	89	91	88	87	84	84	84	115	100
Ϋ́	2016	97	99	102		101	100		100	98	96	95	96	129	112
	DH-t	101	102	106	106	105	104	107	104	102	99	99	100	132	116
	DH-c	108	110	113	114	113	112	115	112	110	108	107	108	139	123
		1974	1979	1986	1991	1994	1997	2000	2004	2007	2010	2013	2016	DH-t	DH-c
				Age-labor income profile (LIS)											

Back

43

Robustness to baseline year for age profiles (future)

Change in W/Y: 2016 to 2100 1989 106 107 110 111 111 110 112 109 107 105 103 102 123 117 105 106 107 106 107 105 102 118 113 (SCF) 115 109 profile 120 120 119 120 118 Age-wealth 119 120 119 120 118 119 118 120 125 126 127 126 127 125 122 120 118 117 140 2013 121 2016 143 145 149 151 151 150 152 149 147 144 142 141 165 159 DH-t 128 130 133 124 148 142 DH-c 146 148 152 154 | 155 | 154 | 156 | 153 | 150 148 145 2010 2013 2016 CH-t CH-C 199, Age-labor income profile (LIS)

CK

W/Y from shift-share in 2016 and in 2100

Back

Back
Shift-share at common age profiles (rescaled)

Shift-share at common demographic change

49

Population evolves as

$$N_{jt} = (N_{j-1,t-1} + M_{j-1,t-1}) \phi_{j-1,t-1}$$

where

- N_{jt} denotes the numbers of individuals aged j in year t
- $M_{j,t}$ is migration
- $\phi_{j,t}$ are survival probabilities
- Total population is

$$N_t = \sum_j N_{jt}$$

• Population converges to a stationary distribution in the long run

Weight on children

- Let $c = c^{P} + nc^{C}$ be the total cons. of parent and children
- Assume flow utility function of a parent is

$$\mathcal{U}\left(\mathsf{C}^{\mathsf{P}},\mathsf{C}^{\mathsf{C}}\right)=u\left(\mathsf{C}^{\mathsf{P}}\right)+\lambda n^{\varphi}u\left(\mathsf{C}^{\mathsf{C}}\right)$$

• Utility maximization implies:

$$u'\left(\mathbf{c}^{\mathsf{P}}\right) = \lambda n^{\varphi-1} u'\left(\mathbf{c}^{\mathsf{C}}\right)$$

 \Rightarrow total value of having children

$$W(\mathbf{c}) = u(\mathbf{c}^{\mathbf{p}}) + \lambda n^{\varphi} u(\mathbf{c}^{\mathbf{C}}) = \left(1 + \lambda^{\frac{1}{\sigma}} n^{\frac{\sigma + \varphi - 1}{\sigma}}\right)^{\sigma} u(\mathbf{c})$$

- Hence $\psi_i = \left(1 + \lambda^{\frac{1}{\sigma}} n_i^{\frac{\sigma + \varphi 1}{\sigma}}\right)^{\sigma}$
 - + Children raise the m.u.c. if $\lambda > {\rm O} ~{\rm and}~ \varphi > {\rm I} \sigma$
 - n_i comes from empirical distribution of children for parent aged i

Retirement policy

- Retirement is phased at age T_t^r
- At age T_t^r , agents still work a fraction $\rho_t \in [0, 1]$ of total hours
- Retirement policy is therefore

$$\rho_{jt} = \mathbf{1}_{j < T_t^r} + \rho_t \mathbf{1}_{j = T_t^r}$$

• Effective labor supply is

$$L_t \equiv \sum_{j < T_t^r} \pi_{jt} \widetilde{h_{jt}} + \rho_t \pi_{T_t^r t} \widetilde{h_{T_t^r t}}$$

• Effective share of retirees is

$$\mu_t^{ret} \equiv (1 - \rho_t) \pi_{T_t^r t} + \sum_{j \ge T_t^r} \pi_{jt}$$

Government policy

Flow budget constraint

$$B_t + T_t = (1 + r_{t-1}) B_{t-1} + G_t$$

where B_t is debt, G_t are expenditures, T_t are net taxes

$$T_{t} = W_{t}N_{t}\left(\left(\tau_{t}^{ss} + \tau_{t}\left(1 - \tau_{t}^{ss}\right)\right)L_{t} - \left(1 - \tau_{t}\right)\bar{d}_{t}\mu_{t}^{ret}\right)$$

• Government sets retirement policy $\{
ho_{jt}\}$ and follows fiscal rules

$$\begin{aligned} \tau_t^{\rm ss} &= \overline{\tau}^{\rm ss} + \varphi^{\rm ss}(B_t/Y_t - \overline{b}) \\ \tau_t &= \overline{\tau} + \varphi^{\tau}(B_t/Y_t - \overline{b}) \\ \frac{G_t}{Y_t} &= \frac{\overline{G}}{\overline{Y}} - \varphi^{\rm G}(B_t/Y_t - \overline{b}) \\ \overline{d_t} &= \overline{d} - \varphi^{\rm d}(B_t/Y_t - \overline{b}) \end{aligned}$$

where \overline{b} is the 2016 debt-to-GDP ratio

· Coefficients φ 's regulate the aggressiveness of the adjustment

Extension 1: other sources of asset supply

- In simple cases, alternative assets just add to supply
- Allow for
 - Markups μ , capitalized monopoly profits
 - Government bonds with long-run rule $\frac{B}{Y} = b(r)$
- Then

$$\frac{a(r,\theta)}{y(r)} = \frac{k(r)}{y(r)} + b(r) + \left(1 - \frac{1}{\mu}\right)\frac{1}{r - (n + \gamma)}$$

- θ directly affects both W and market cap. through discounting
- Extra terms on RHS affect elasticity of asset supply $\epsilon^{\rm s}$
 - Similar formula still determines dr

• Model housing by introducing Cobb-Douglas utility

$$\frac{1}{1-\sigma} \left(\mathsf{C}^{1-\alpha_h} h^{\alpha_h} \right)^{1-\sigma}$$

- All households rent to a REIT who owns
 - fixed supply of land L, equilibrium price P^L
 - stock of dwellings H, depreciating at δ^{H} , investment price = 1

•
$$\beta = \frac{P^L L}{P^L L + H}$$
 is s.s. share of land

- Households invest in mutual fund that owns the REIT
- Housing supply in steady state adjusts so that

$$\frac{a(r,\theta)}{y(r)} = \frac{k(r)}{y(r)} + \frac{\alpha^{h}}{1-\alpha^{h}} \left(\frac{\beta}{r-(n+\gamma)} + \frac{1-\beta}{r+\delta^{H}}\right) \frac{\sum_{i} \pi_{i}(\theta) \frac{c_{i}(r,\theta)}{y(r)}}{\sum_{i} \pi_{i}(\theta) h_{i}}$$

Projected survival functions

Distribution of children

Distribution of bequests received

Bequests distribution and consumption profile

◀ Back

Historical exercise: inputs

63

Historical exercise

- We'll use our model primarily for prospective counterfactuals
- But: can the model account for trends in wealth since 1960?
- Concurrent developments to demographics over the period:
 - Falling real rates
 - Falling productivity growth
- + We feed the model with observed trends in r, γ , B and G

🕨 Inputs 🔪 🖪

Demographics: population distributions

67

Demographics: population growth rates

◀ Back

World economy calibration

	Parameters		$\frac{W}{Y}$		Δ^{comp}	
Country	β	Υ	Model	Data	Model	Data
AUS	0.99	0.78	5.09	5.09	1.32	1.32
CAN	0.96	2.34	4.63	4.63	1.14	1.14
CHN	0.95	4.63	4.20	4.20	2.81	2.81
DEU	0.95	3.41	3.64	3.64	0.89	0.89
ESP	1.00	0.00	5.33	5.33	1.64	1.55
FRA	0.98	1.68	4.85	4.85	1.31	1.31
GBR	0.97	2.15	5.35	5.35	1.49	1.49
IND	0.95	3.28	3.44	3.44	3.07	3.07
ITA	1.00	0.61	5.83	5.83	1.77	1.77
JPN	0.96	1.68	4.85	4.85	0.82	0.82
NLD	0.95	3.93	3.92	3.92	1.23	1.23
USA	0.97	1.82	4.38	4.38	1.13	1.13

World economy calibration

Elasticities by country

Note: Response of wealth to a reduction in the wealth tax. We replicate the model experiments of Jakobsen et al. (2020). The first (Couples DD) analyzes a reduction of the wealth tax from 2.2% to 1.2% on the top 1%. The second (Ceiling DD) analyzes the a reduction of 1.56 percentage points on the top 0.3%.

▲ Back

Sensitivities by country

Construction of ϵ^d in the USA

◀ Back

Change in NFA

77

Multiple assets (1/2)

A. Net safety demand

B. Compositional effect

◀ Back

Multiple assets (2/2)

k₂₀₁₆ 600 **b**₂₀₁₆ Thousands of USD 500 Thousands of USD 500 The term of term of term of 0 20 40 60 80 Age

79

◀ Back