The Economic Geography of Global Warming

José-Luis Cruz (Princeton University)

Esteban Rossi-Hansberg (Princeton University)

April 2021

An Economic Assessment Model

- Global warming is a protracted, global, phenomenon with heterogeneous local effects
- Standard climate models use loss functions relating aggregate economic outcomes to climate variables
 - ► Fail to incorporate behavioral responses, and therefore economic adaptation
 - Ignore the vast spatial heterogeneity in climate damages
- We propose and quantify a spatial and dynamic assessment model
 - Emphasizing the role of economic adaptation through migration, trade, and innovation

Model Characteristics

- We extend the spatial growth model in Desmet et al. (2018)
 - Add natality, energy, carbon cycle, and local temperature effect on amenities and productivities

- \blacktriangleright Quantify using $1^{\circ}\times1^{\circ}$ G-Econ data on population and income in 2000
- ► Set trade and mobility frictions to match gravity and net migration flows
- Natality depends on income and temperature

Cruz and Rossi-Hansberg

Local Temperature Down-scaling

- We let $T_{t+1}(r) = T_t(r) + g(r) \cdot (T_{t+1} T_t)$
 - \blacktriangleright where $g(\cdot)$ is a function of latitude, longitude, elevation, distance to coast, distance to ocean, distance to water, vegetation density and albedo

Damage Functions

- Invert fundamental amenities and productivities consistent with observed data (1990, 1995, 2000, 2005)
- Estimate damage function given by

 $\mathsf{Log-Amenity}_t(r) = \sum_{j=1}^J \delta_j^b \cdot T_t(r) \cdot \mathbb{1}\{T_t(r) \in \mathcal{T}_j\} + \iota(r) + \iota_t(s_j) + \varepsilon_t(r)$

 $\text{Log-Productivity}_t(r) = \sum_{j=1}^J \delta_j^a \cdot T_t(r) \cdot \mathbbm{1}\{T_t(r) \in \mathcal{T}_j\} + \delta^z \cdot Z(r) + \iota_t(s_j) + \varepsilon_t(r)$

Fossil and Clean Energy Costs

Set initial productivities to match fossil and clean energy use map

Set relative fossil and clean technology growth to match historical CO₂ emissions and clean energy use

Baseline Scenario: CO2 Emissions and Global Temperature

temperature

Baseline Scenario: Amenities and Productivities

worst-scenario

Baseline Scenario: Global and Local Population

Baseline Scenario: Welfare Cost of Global Warming

Baseline Scenario: Uncertainty about Damage Functions

Baseline Scenario: Uncertainty about Damage Functions

Adaptation: Migration

real GDP

Adaptation: Trade

real GDP

Adaptation: Innovation

real GDP

Carbon Taxes

- Carbon tax of 50% equals 37 usd/tCO₂; similar to maximum in EU Emissions Trading Scheme
- Carbon tax of 200% equals 146 usd/tCO₂; similar to Swedish Tax

energy population

Carbon Taxes: Dynamic Effects

• Aggregate gains depend on discount factor and BGP growth rate

	PL	OV of real G	DP	Welfare		
	BGP gr	β =0.965	$\beta = 0.969$	BGP gr	β =0.965	$\beta = 0.969$
$\tau=0\%$	3.043%	1	1	3.024%	1	1
$\tau {=} 50\%$	3.048%	0.991	1.019	3.028%	0.997	1.016
$\tau {=} 100\%$	3.050%	0.987	1.030	3.030%	0.995	1.024
$\tau {=} 200\%$	3.053%	0.981	1.042	3.032%	0.993	1.033

Cruz and Rossi-Hansberg

Carbon Taxes: Local Effects

real GDP

Carbon Taxes with Abatement

- Perfect and cost-less abatement technology in 2100
- With abatement, carbon tax not only flattens the temperature curve but reduces total emissions significantly

Carbon Taxes and Abatement: Dynamic Effects

- With abatement, carbon tax results in same current cost but much larger welfare gains in the future
 - For $\tau = 200\%$ and $\beta = 0.969$, welfare gains from carbon tax double

Clean Energy Subsidies

Clean Energy Subsidies: Local Effects

dynamic effects real GDP

Conclusions

- We develop an economic spatial growth model of global warming
 - ► Accounts for adaptation through trade, migration, innovation
- Estimate impact of temperature on fundamentals
 - Heterogeneous spatial effect of temperature for amenities and productivities
- Large heterogeneity in climate damages over space
 - ▶ From welfare losses of 15% to gains of 14%
 - On average, welfare losses of 6%
 - ► Large role of adaptation, particularly migration
- Carbon taxes create trade-off between present and future benefit
 - Large disagreement across regions
 - ► Highly effective only in combination with future abatement technology

Thank You

Estimation: Energy

back

Estimation: Temperature

back

Worst-Scenario: Amenities and Productivities

back

Worst-Scenario: Welfare Cost of Global Warming

back

Baseline Scenario: Real GDP Cost of Global Warming

back

Worst-Scenario: Real GDP Cost of Global Warming

back

Adaptation: Migration and Real GDP

back

Adaptation: Trade and Real GDP

back

Adaptation: Innovation and Real GDP

back

Carbon Taxes: Energy Price

Carbon Taxes: Energy Price

back

Carbon Taxes: Population

Carbon Taxes: Population

back

Carbon Taxes: Local Real GDP

back

Clean Energy Subsidies: Dynamic Effects

PDV of real GDP

	BGP gr	$\beta = 0.965$	$\beta = 0.969$	BGP gr	$\beta = 0.965$	β=0.969	
s=0%	3.043%	1	1	3.024%	1	1	
s=25%	3.040%	1.011	1.009	3.020%	1.007	1.000	
s=50%	3.034%	1.032	1.021	3.012%	1.020	0.996	
s=75%	3.012%	1.094	1.044	2.989%	1.050	0.975	

W/olfaro

Clean Energy Subsidies: Local Real GDP

back