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1 Introduction

The monetary transmission mechanism is often described as the effect that changes in a policy in-

strument, usually the stock of money or the short-term interest rate, have on aggregate variables

such as inflation, output, consumption, and investment.1 This description limits the scope of the

monetary transmission mechanism to monetary policy, i.e. actions generally undertaken by a central

bank. However, this characterization depicts an incomplete account of all the policy actions in-

volved, as monetary policy usually has fiscal consequences: it affects the value of government debt,

debt servicing costs, and primary surpluses (through changes in revenues and other automatic

stabilizers). This paper revisits the monetary transmission mechanism with a focus on monetary

and fiscal interactions. The analysis isolates the role that the different policy instruments play in

determining the economy’s equilibrium, with a focus on the wealth effect, i.e. the revaluation of

households’ financial and human wealth.

The fiscal response to monetary policy is almost entirely overlooked in textbook formulations

of the monetary transmission mechanism.2 This approach usually acknowledges the importance of

an appropriate fiscal backing in supporting the equilibrium, but its role is relegated to an adjust-

ment in the background. This is the so-called Taylor equilibrium, as it is characterized by an interest

rate rule that satisfies the principles of Taylor (1993). Alternative formulations put fiscal policy at

the forefront and emphasize the role of government debt and primary surpluses in determining

the equilibrium. Much of this literature’s focus has been on the determination of the price level,

which is why it is generally known as the Fiscal Theory of the Price Level (FTPL).3 In this paper, we

present a unifying framework that identifies the channels through which the different policy in-

struments (monetary and fiscal) affect the main macroeconomic variables. The analysis highlights

the role played by fiscal policy and uncovers its quantitative importance. Crucially, the approach is

agnostic about the policy rules that gave rise to the equilibrium paths of the policy variables, and it

is sufficiently general to accommodate any framework in which monetary policy has fiscal conse-

quences. In particular, it nests the Taylor equilibrium and the FTPL as special cases.

We study the dynamic response of the economy to a monetary shock, which results in a de-

viation of the path of the nominal interest rate from its steady-state level, and a simultaneous re-

sponse of the fiscal authority. We present the results in various specifications of the New Keynesian

environment: the textbook representative agent New Keynesian (RANK) model; a liquidity trap

1See, e.g., the definition in The New Palgrave Dictionary of Economics (Ireland, 2008).
2See Galí (2015). Woodford (2003) presents a limited analysis in Section 4 of Chapter 4.
3See Leeper and Leith (2016) for a review and Cochrane (2021) for a detailed analysis.
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scenario; a two-agent New Keynesian (TANK) model; and a RANK model with capital. A robust

finding emerges: when monetary policy has fiscal consequences, monetary variables affect the tim-

ing of aggregate output, while it is fiscal variables that determine its present value, a counterpart of

the households’ wealth. This result highlights the role of the interest rate as a relative price, and the

fact that, in a closed economy, the government is the only counterpart to the private sector taken as

a whole. Moreover, the analysis clarifies how policy rules determine the equilibrium paths of policy

variables but, given those paths, they do not affect the channels of transmission.

Underlying the analysis there is a novel decomposition of the dynamic response of aggregate

consumption into two terms that represent distinct economic forces. One term is uniquely deter-

mined by the equilibrium path of the nominal interest rate and captures the change in the timing

of aggregate demand due to the monetary shock, without affecting its present value. In the RANK

model with fixed capital, this term has an interpretation in terms of the substitution effect from

microeconomic theory: it corresponds to the households’ Hicksian demand extended to a general

equilibrium setting. We call this term the intertemporal substitution effect (ISE).4 The second term

depends on the wealth effect, i.e. the revaluation of the households’ financial and human wealth.

Notably, even though monetary shocks generate only transitory changes in income and households

conform to the permanent income hypothesis in the RANK model, the general equilibrium dynam-

ics of inflation can significantly amplify the impact of the wealth effect on initial output. We present

a numerical exercise in which, for a standard calibration, the wealth effect is amplified by a factor

of 30, and it explains more than half of the initial response of consumption to a monetary shock in

the Taylor equilibrium.

A significant feature of the decomposition is that the ISE is uniquely determined by the equilib-

rium path of the nominal interest rate, while the wealth effect is indeterminate under an interest rate

peg. Indeed, it is possible to index all the bounded equilibria of the New Keynesian model by the

wealth revaluation they generate. Moreover, as long as monetary policy has fiscal consequences,

we show that the wealth effect can be expressed in terms of fiscal variables according to a Fiscal

Keynesian Cross in the spirit of the old-Keynesian analysis. The autonomous portion is comprised

of government lump-sum transfers and a wealth effect generated by government bonds. The mul-

tiplier depends on the proportional tax rate and the inflation tax on nominal bond holdings. This

characterization underscores the main result of the paper: in the New Keynesian model, the mag-

4King (1991) and Leeper and Yun (2006) provide an analogous decomposition to study the effects of government
spending and tax changes in DSGE models. An important distinction is that, in this paper, the inflation rate used to
compute the substitution effect is consistent with the New Keynesian Phillips curve evaluated at the Hicksian demand.
This is the sense in which it corresponds to a general equilibrium extension of the standard substitution effect.
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nitude of the wealth effect depends on the fiscal response to monetary policy rather than on the

change in the path of the nominal interest rate per se.5 This result does not require that fiscal policy

is set independently of monetary policy. Even in a monetary-active regime (see Leeper, 1991), fiscal

policy needs to adjust to guarantee that the government’s budget constraint is satisfied in equilib-

rium. The result states that it is this adjustment that determines the wealth effect. In this sense, the

Taylor equilibrium could be interpreted as acting through two separate channels: i) changing the

path of the nominal interest rate, which affects the timing of output (i.e. the ISE); and ii) triggering a

fiscal response that changes the present value of output (i.e. the wealth effect). Thus, combining the

fiscal determination of the wealth effect and the general equilibrium amplification described before,

we conclude that the fiscal response to monetary policy is not just an adjustment that happens in

the background but a significant determinant of the monetary transmission mechanism.6

The importance of the wealth effect and the fiscal response associated with monetary policy

becomes even more apparent when considering the dynamics of inflation. We find that, for a fixed

level of capital, the initial response of inflation is entirely determined by the wealth effect rather

than by the contemporaneous response of consumption. This result sheds new light on the channels

through which the central bank controls inflation in these models. A contractionary monetary shock

reduces initial inflation not because of a reduction in the contemporaneous level of consumption, but

because households are overall poorer after the shock. Put differently, initial inflation decreases after

a contractionary monetary shock if and only if there is a simultaneous contractionary fiscal response.

To show the generality of the results, we study three types of equilibria that exemplify the kinds

of dynamics that the model can generate. Consider first a monetary-active regime characterized by

an interest rate rule that satisfies the “Taylor principle.” As mentioned above, the change in the path

of the nominal interest rate triggers an intertemporal substitution effect: an increase in the interest

rate increases the incentives to save today in order to consume more in the future. The Taylor

equilibrium requires a sufficiently strong negative wealth effect to neutralize the future positive

substitution effect. Thus, the (passive) fiscal backing necessary to sustain the Taylor equilibrium is

strongly contractionary after a contractionary monetary shock.

Next, we consider a version of the FTPL in which the primary surpluses do not change after the

5The change in the path of the nominal rate directly affects the value of government debt and the debt servicing cost.
However, these two channels operate through the government’s budget constraint, usually associated with fiscal policy.

6A noteworthy exception is when monetary policy does not have fiscal consequences. This is the only case that
renders the households’ budget constraint irrelevant: since output is demand determined, any level of the households’
demand can be consistent with equilibrium. The monetary-active equilibrium selection solves this indeterminacy by
making only one equilibrium to be bounded. However, this case is non-generic, in the sense that even a small fiscal effect
leads to the fiscal characterization, and it is also at odds with reality.
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monetary shock. Under this specification, the wealth effect is negative if and only if the duration

of government bonds is sufficiently long. On the one hand, increases in the interest rate increase

the return on households’ savings. This represents a positive wealth effect. On the other hand, a

contractionary monetary shock reduces the value of long-term government bonds, a negative wealth

effect. If the duration of government debt is sufficiently long, the second effect dominates. Crucially,

absent any change in the primary surpluses, there is no other source of wealth effect in the model.

Notably, this result holds even in the presence of capital and investment.

We also study the unique equilibrium that generates a zero wealth effect. In this equilibrium, a

contractionary monetary shock reduces consumption on impact but does not affect its present value,

so consumption eventually increases above its steady-state level. Moreover, inflation is unchanged

on impact, and it increases above its steady-state level in all subsequent periods, a manifestation

of the Neo-Fisherian forces present in the model. This result does not imply that all equilibria of

the model are (short-term) Neo-Fisherian, but it highlights the necessity of a strong, contractionary

fiscal backing to overturn the presence of this force.

Naturally, the numerical results depend on the calibration. In a sensitivity analysis, we show

that the degree of price stickiness is a crucial parameter determining the relevance of fiscal back-

ing in the monetary transmission mechanism. The general equilibrium amplification of the wealth

effect relies on an inflation channel: a reduction in households’ wealth reduces aggregate demand,

which puts downward pressure on inflation and, for a given path of the nominal interest rate, in-

creases the real rate, generating a second-round reduction in aggregate demand. Thus, this ampli-

fication mechanism increases with the degree of price flexibility. Since the wealth effect depends on

the fiscal response to monetary policy, it follows that fiscal policy has a stronger effect in economies

with a high degree of price flexibility. This implies that for low degrees of price flexibility, the Taylor

equilibrium and the FTPL generate virtually identical aggregate dynamics for the same given path

of the nominal interest rate. This finding can prove relevant to assess the effectiveness of monetary

policy in economies with different institutional arrangements, as the degree of monetary-fiscal coor-

dination appears to be more important in economies with a steeper Phillips curve. Moreover, even

if fiscal policy might not be crucial for macroeconomic stabilization in an economy with relatively

rigid prices, an uncoordinated policy may eventually trigger a regime change.7

As a final exercise, we show that all the intuitions built in the simple RANK model extend to

7Alvarez et al. (2019) estimate the firms’ price-setting behavior in Argentina for different levels of the inflation rate.
They find that the probability of a price change is relatively constant for low inflation levels but increases for higher rates,
suggesting that the degree of price flexibility depends on the policy regime.
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richer settings. For example, we find that monetary-fiscal coordination is a critical determinant of

the liquidity trap equilibrium. We show that the contractionary effect of the standard liquidity trap

equilibrium selection owes much to the contractionary fiscal response associated with it.

A particularly interesting extension is the two-agent New Keynesian (TANK) model. While

household heterogeneity can amplify the effects of monetary policy, fiscal backing remains an im-

portant determinant of equilibrium dynamics, both through changes in aggregate fiscal policy like

in the RANK model, as well as a separate redistribution channel across households with different

marginal propensities to consume (MPC), as emphasized by Kaplan et al. (2018). Absent the fiscal

redistribution channel, a TANK model with hand-to-mouth agents can be represented by a RANK

economy where the elasticity of intertemporal substitution (EIS) is distorted relative to its micro

counterpart.8 This implies that while household heterogeneity can change the micro channels of

transmission, the macro channels remain unchanged. Fiscal redistribution can have an independent

effect, but only insofar it involves a dynamic component since all households have an MPC of one

relative to their permanent income. We conjecture that richer heterogenous agents New Keynesian

(HANK) models would not change the qualitative results, as the determinants of the wealth effect

rely on considering the private sector as a whole rather than the specifics of household heterogene-

ity.

Lastly, we present an analytical version of the RANK model with capital. Two results are of

particular interest. First, the determination of the wealth effect does not change in the presence of

capital, which suggests that the result is robust to the presence of other sources of wealth. Second,

while the results on initial inflation break analytically, we find that they still hold approximately

numerically. The reason is that inflation depends on the sequence of marginal costs, which depends

on the dynamics of investment. However, this effect is small in a standard calibration, and most of

the response of initial inflation is due to the wealth effect.

Literature. There is a long tradition that studies the role of monetary and fiscal policies as macroe-

conomic stabilizers (see Keynes, 1936; Friedman, 1948). Perhaps one of the most famous quotes

related to the origins of inflation is Friedman’s “Inflation is always and everywhere a monetary

phenomenon,” (Friedman, 1963). This view is reflected in much of the modern analysis of the mon-

etary transmission mechanism. However, careful inspection of the government’s budget constraint

highlights the tight connection between monetary and fiscal policy (see Sargent and Wallace, 1981,

8See Bilbiie (2008, 2019) for detailed discussions.
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for an early formalization). We contribute to this literature by providing a novel characterization of

the role that monetary and fiscal policy play in the monetary transmission mechanism.

The paper shares several features emphasized by the Fiscal Theory of the Price Level (FTPL)

(see Leeper, 1991; Sims, 1994; Woodford, 1995, for early developments).9 We make four important

contributions. First, we formalize the interpretation of the monetary transmission mechanism in

terms of substitution and wealth effects and show that the wealth effect is linked to fiscal policy.

The connection between the wealth effect and fiscal policy is a recurrent narrative in this literature,

but, to the best of our knowledge, the formalization was missing.10 Second, the paper expands on

a recent approach that characterizes equilibria in terms of equilibrium paths for policy variables

rather than on policy rules (see Werning, 2012; Cochrane, 2017, 2018a). A significant difference with

these papers is that we explicitly consider the joint determination of monetary and fiscal variables.

We characterize the restrictions that the choice of policy rules impose on the joint dynamics of policy

variables and equilibrium allocations, clarifying the extent of observational equivalence empha-

sized by previous work.11 Third, we identify the importance of the slope of the Phillips curve in

the results, noting that monetary-fiscal coordination is more relevant in economies with relatively

flexible prices. Finally, we extend the analysis to three settings of independent interest: a liquidity

trap scenario, a TANK model, and a model with endogenous capital accumulation.

The HANK literature has also recognized the importance of fiscal policy in heterogenous agents

models in which Ricardian equivalence does not hold (see Kaplan et al., 2018). Our paper makes

two contributions. First, it emphasizes that fiscal policy matters even when Ricardian equivalence

holds. Second, it shows the extent to which fiscal redistribution can affect the channels of transmis-

sion, uncovering the importance of a dynamic component.

Finally, Caramp and Silva (2020) extend the decomposition in this paper to a setting with ag-

gregate risk and private debt. They show how to use fiscal data to discipline the magnitude of the

wealth effect and find that, in the absence of risk and heterogeneity, the fiscal backing implied by

the standard Taylor equilibrium is significantly larger than the one obtained in the data.

The rest of the paper is organized as follows. Section 2 describes the model and presents the

equilibrium decomposition. Section 3 shows that the wealth effect can be expressed in terms of

the fiscal response to monetary policy. Section 4 extends the analysis to a liquidity trap scenario,
9A related literature emphasizes the importance of fiscal policy to understand several historical events such as the

recovery from the Great Depression (Jacobson et al., 2019), the run-up and end of the Great Inflation (Bianchi and Ilut,
2017) and the missing inflation during the Great Recession (Bianchi and Melosi, 2017).

10Kaplan et al. (2018) present an alternative decomposition in terms of the direct and indirect effects of monetary policy.
We compare the two approaches in Appendix C.3.

11This is related to the literature that tries to identify the policy regime in the data. See, e.g., Canzoneri et al. (2001).
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a TANK model, and a RANK model with capital accumulation. Finally, Section 5 concludes. All

proofs are presented in the Appendix A.

2 The Model

In this section, we study a standard RANK model in discrete time augmented to incorporate fiscal

variables and explicitly account for the households’ budget constraint. We present a characteriza-

tion of the equilibrium paths of consumption and inflation that identify two major economic forces:

an intertemporal substitution effect and a wealth effect.

We study the dynamic response of an economy hit by a monetary shock, resulting in a deviation

of the path of the nominal interest rate from its steady-state level and a simultaneous response of

the fiscal authority. We analyze the reaction of the economy to the resulting equilibrium paths of the

monetary and fiscal variables. By focusing on the equilibrium paths of policy variables, we obtain

results that are robust to any monetary-fiscal regime that generated those paths. In particular, we

show that the Taylor equilibrium and the FTPL are special cases of the general approach.

Environment. Time is discrete and denoted by t ∈ R+. The economy is populated by a large

number of identical, infinitely-lived households and a government. There is also a continuum of

firms that produce final and intermediate goods. Final-goods producers operate competitively and

combine intermediate goods using a CES aggregator with elasticity ε > 1. Intermediate-goods

producers use labor as the only factor of production to produce a differentiated good that is traded

in a monopolistically competitive market. As is standard, we assume that intermediate-goods firms

face a pricing friction à la Calvo, so that only a fraction 1 − θ of firms can set a new price each

period. Finally, the government chooses monetary policy, which entails a path for the nominal

interest rate, and fiscal policy, comprised of proportional sales taxes, nominal debt, and lump-sum

transfers.12 We assume that government debt consists of perpetuities that pay coupons that decay

exponentially at a rate ρ ∈ [0, β−1). The case with ρ = 0 corresponds to one-period bonds, while

ρ = 1 corresponds to consols. More generally, the duration of these bonds is given by 1
1−βρ . This

assumption allows us to study the effects of long-term debt with a minimal departure from the

standard model (see Woodford, 2001). As is standard in the literature, we log-linearize the model

around its zero inflation steady-state equilibrium and consider the first-order approximation of the

12Given the focus on monetary policy shocks, we follow the literature and abstract from government spending.
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response of the economy to exogenous shocks.13

Given a path of interest rates {it}∞
t=0 and transfers {Tt}∞

t=0, the log-linearized solution to the

model can be characterized by four equations: the households’ intertemporal Euler equation

ct = ct+1 − σ−1(it − πt+1 − rn), (1)

the New Keynesian Phillips curve

πt = βπt+1 + κct, (2)

the households’ intertemporal budget constraint

∞

∑
t=0

βtct =
∞

∑
t=0

βt [(1 − τ) yt + (it − πt+1 − rn) Qb + Tt]−
!

∞

∑
t=0

(βρ)t (it − rn) ρ +
1
β

π0

"
Qb, (3)

and the resource constraint

ct = yt, (4)

where ct and yt denote, respectively, the percentage difference between actual consumption and

output and their corresponding levels in steady state; πt denotes the inflation rate; it denotes the

short-term, risk-free nominal interest rate; σ denotes the inverse of the intertemporal elasticity of

substitution; β denotes the households’ subjective discount factor, and rn ≡ − log β; κ is the slope of

the Phillips curve; τ is the steady-state rate of the proportional sales tax; Qb denotes the steady-state

value of government debt as a fraction of output, where Q is the steady-state price of a unit of the

nominal bond; and Tt denotes the lump-sum taxes as a fraction of output.

Since the analysis emphasizes the role of the households’ budget constraint in the dynamic

behavior of consumption, it is helpful to briefly describe its components. The left-hand side of

equation (3) is the present value of consumption, discounted at the steady-state real interest rate.

The right-hand side contains the sources of income: the after-tax profits and wages, which combined

equal (1 − τ)yt, the interest income from government bond holdings, lump-sum transfers, and

the revaluation of initial bond holdings. Note that there are three channels through which fiscal

variables affect the households’ budget constraint. First, they affect non-interest income through τ

and Tt.14 Second, the level of government debt determines the households’ exposure to changes in

the real interest rate. While changes in the real interest rate affect the present discounted value of

13For the detailed derivation of the model, see Appendix B.
14To keep the analysis as close as possible to the standard approach, we have assumed that the proportional tax τ is

fixed at its steady-state level, and only lump-sum transfers adjust to a monetary shock.
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both consumption and after-tax income, in a representative-agent economy the net impact depends

only on the steady-state level of government debt.15 Finally, the change in the path of the nominal

interest rate, {it}∞
t=0, and initial inflation, π0, affect the real return of initial nominal bond holdings.

On the one hand, the change in nominal interest rates generates a revaluation of long-term bonds,

given by −∑∞
t=0 (βρ)t (it − rn) ρQb. This effect is absent when bonds are one-period, i.e. when ρ =

0. On the other hand, initial inflation affects the realized return on initial nominal bond holdings,

summarized by − 1
β π0Qb.

Policy rules. The exercise focuses on the paths of policy variables and studies the channels through

which these paths affect equilibrium dynamics. This exercise differs from the standard approach,

which typically assumes monetary and fiscal rules and then determines the equilibrium path of

policy variables endogenously. While the choice in this paper might seem more restrictive, it is, in

fact, more general and can accommodate any monetary-fiscal interactions that generate a particular

path for monetary and fiscal variables.

A popular approach is to assume that monetary policy follows an interest rate rule of the form

it = rn + φππt + φyyt + εt, (5)

where κ (φπ − 1) + (1 − β) φy > 0 and εt represents an innovation of the rule relative to its sys-

tematic response to inflation. Fiscal policy is assumed to be passive or Ricardian, and the exogenous

monetary shock is represented by a path for {εt}∞
t=0 rather than a path for the nominal interest

rate.16 Under these assumptions, equation (3) is often dropped when finding an equilibrium of the

economy because transfers {Tt}∞
t=0 are assumed to automatically adjust so that the government’s

budget constraint is satisfied for any path of the endogenous and exogenous variables.17 Since

lump-sum transfers do not affect any of the other equations characterizing the equilibrium, they

represent a free variable that adjusts to guarantee that any solution to the system given by (1), (2),

(4) and (5) is an equilibrium of the economy. We call this case the Taylor equilibrium.

An alternative approach follows the Fiscal Theory of the Price Level (FTPL), which in its simplest

15Formally, the impact of changes in the interest rate on the present discounted value of consumption is
− β

1−β c ∑∞
t=0 βt(it − πt − rn), and the corresponding impact on after-tax income is − β

1−β [(1 − τ)y + T]∑∞
0 βt(it − πt+1 −

rn), where T denotes the steady-state level of transfers. Combining the two and using that c = y =
1−β

β Qb+(1 − τ) y+T,

we obtain ∑∞
0 βt(it − πt+1 − rn)Qb.

16Note that Ricardian equivalence holds in the model regardless of the monetary-fiscal regime, so only the present
value of transfers, ∑∞

t=0 βtTt, rather than the whole path, {Tt}∞
t=0, matters for the equilibrium.

17See Woodford (2003) for a discussion.
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specification assumes an exogenous path for the primary surplus, given by st ≡ τyt − Tt, and an

interest rate rule (5) with κ (φπ − 1) + (1 − β) φy < 0 and φπ, φy ≥ 0. Then, an equilibrium of the

economy is a solution to the system (1)-(5) given {st}∞
t=0.

Despite the stark differences between the two approaches, our formulation is consistent with

both. The determination of the paths of policy variables, {it}∞
t=0 and {Tt}∞

t=0 (which implicitly

determine {st}∞
t=0), depends on the specific monetary-fiscal regime in place. However, by analyzing

the impact of the policy variables directly on consumption and inflation, we are able to bypass the

debate on the monetary-fiscal policy regime and obtain results about the monetary transmission

mechanism that are robust to any regime. Given equilibrium paths, we can always find rules that

lead to these paths, although only certain paths will be consistent with specific rules. For example,

Proposition 2 below shows how to interpret the standard Taylor equilibrium as a particular solution

of this general approach.

Equilibrium. The system of difference equations (1)-(2) can be written as

#

$ ct+1

πt+1

%

& =

#

$1 + σ−1κ
β − σ−1

β

− κ
β

1
β

%

&

#

$ ct

πt

%

&+

#

$σ−1(it − rn)

0

%

& .

The eigenvalues of this system are given by

λ =
1 + β + σ−1κ +

'
(1 + β + σ−1κ)2 − 4β

2β
> 1,

λ =
1 + β + σ−1κ −

'
(1 + β + σ−1κ)2 − 4β

2β
∈ (0, 1).

Note that the system has one eigenvalue outside the unit circle and one eigenvalue inside the unit

circle. Focusing on bounded solutions, we need one additional condition to determine the equilib-

rium. A standard approach is to index all solutions of the system by the response of consumption or

inflation in period 0, that is, index the equilibria by the value of c0 or π0 (see Cochrane, 2017). More

generally, one can use the value of consumption or inflation at any point in time, or a combination

of different periods, as the extra terminal condition of the system. Here, we choose to index the

solutions by the change in the households’ wealth, or the wealth effect, defined as

Ω0 ≡ (1 − β)

!
∞

∑
t=0

βt [(1 − τ) yt + (it − πt+1 − rn) Qb + Tt]−
!

∞

∑
t=0

(βρ)t (it − rn) ρ +
1
β

π0

"
Qb

"
. (6)
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In Appendix B, we show that Ω0 is the first-order approximation of the change in households’

wealth to a monetary shock (net of the change in the cost of consumption; see footnote 15). Then,

the households’ intertemporal budget constraint implies

(1 − β)
∞

∑
t=0

βtct = Ω0.

Thus, Ω0 equals the change in the households’ average consumption (and, from market-clearing,

output). As we will see, choosing Ω0 as the terminal condition allows us to uncover new properties

of the New Keynesian model.

The following proposition provides a characterization of the equilibrium path of consumption

in any solution to the New Keynesian model for a given path of the nominal interest rate, {it}∞
t=0. It

shows that consumption can be decomposed into the sum of a term that is uniquely determined by

the path of the nominal interest rate and a term that depends on the households’ wealth effect.

Proposition 1 (Consumption Decomposition in General Equilibrium). Given an equilibrium path for

the nominal interest rate, {it}∞
t=0, all bounded solutions of the system (1)-(2) generate a path of consumption

that is given by

ct = cS
t

()*+
ISE

+
1 − βλ

1 − β
λt

( )* +
GE multiplier

× Ω0

()*+
WE

,

where
,

cS
t
-∞

t=0 is uniquely determined by the path of the nominal interest rate, {it}∞
t=0, and satisfies

∞

∑
t=0

βtcS
t = 0,

and Ω0 is given by (6).

Proposition 1 shows that the equilibrium response of consumption to a monetary shock can be

decomposed into two terms.18 The first term corresponds to an intertemporal substitution effect (ISE).

The ISE can be interpreted as the path of consumption if the households’ wealth did not react to the

change in the path of the nominal interest rate.19 A change in the nominal interest rate represents a

change in the relative price of present versus future consumption. The households’ response to this

change in relative prices corresponds to a substitution effect: they change the timing of consumption

18In Appendix C.3, we compare the decomposition in Proposition 1 with the one found in Kaplan et al. (2018).
19Of course, Ω0 is determined endogenously, so it is not yet clear that an equilibrium with Ω0 = 0, in fact, exists. We

postpone the determination of Ω0 until Section 3, but it should be clear from the characterization in Proposition 1 that
Ω0 is a free variable of the system. Corollary 1, below, makes this claim formally.
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Panel A: Nominal interest rate Panel B: Consumption decomposition

Figure 1: Decomposition of the consumption response to a nominal interest rate change

Calibration: quarterly time period, β = 0.99, σ = 1, κ = 0.1275. The nominal interest rate follows it = rn + ρt
r(i0 − rn),

with ρr = 0.5 (which implies a half-life of the monetary shock of three months). We set i0 − rn to 25bps (100bps
annualized). The solution corresponds to the unique purely forward-looking equilibrium.

while keeping the total cost of the bundle constant.20 Moreover, given a path for the nominal interest

rate, the ISE is unique. This result is in sharp contrast to the multiplicity of equilibria present in the

New Keynesian model for an interest rate peg, and it will help shed some light on the sources of

this multiplicity.

The second term has two components: the wealth effect (WE) and a general equilibrium (GE) mul-

tiplier. The wealth effect captures the revaluation of the households’ after-tax financial and human

wealth after a change in the path of the nominal interest rate. As is common in representative-agent

models, the permanent income hypothesis implies that households try to smooth any changes in

their transitory income, which generates small changes in each period’s consumption for standard-

sized shocks. However, Proposition 1 shows that the wealth effect can be amplified in general equi-

librium by the GE multiplier. The intuition is as follows. When their wealth decreases, households

reduce their consumption, which puts downward pressure on inflation. For a given equilibrium

path of the nominal interest rate, the reduction in inflation increases the real interest rate, further

contracting the economy. Since λ < 1, the GE multiplier at t = 0 is greater than one. In fact, as we

show below, the GE multiplier can be very large.

In order to get a sense of the quantitative importance of each component, we present a numerical

example in Figure 1. In this section, we use a standard calibration found, for example, in Galí (2015).

20Strictly speaking, the households’ choice of the timing of consumption depends on the real rather than the nominal
interest rate. Appendix C shows that cS

t corresponds to the Hicksian demand from microeconomic theory evaluated at
the inflation rate consistent with the consumption plan {cS

t }∞
t=0 according to the New Keynesian Phillips curve (2). This

is the sense in which the ISE can be interpreted as an intertemporal substitution channel.

12



A crucial parameter is κ, the slope of the Phillips curve. We study the sensitivity of the results to

alternative calibrations in Section 3. The solid lines represent the equilibrium paths of the nominal

interest rate (Panel A) and the households’ consumption (Panel B). The interest rate follows an

AR(1) process with an autoregressive coefficient of 0.5, implying a half-life of the monetary shock

of 3 months. We depicted a standard equilibrium in which an increase in the nominal interest rate

generates a reduction in the consumption path.21 Panel B also decomposes the equilibrium response

of consumption into the components defined in Proposition 1. Both components of consumption

are negative on impact. Regarding their contribution to the total response, the ISE accounts for 40%

of the initial response, while the GE amplified wealth effect (i.e. the GE multiplier times the wealth

effect) accounts for 60%. That is, even in the RANK model, more than half of the response of the

economy to a monetary shock is explained by a term that depends on the wealth effect rather than

the ISE.

Let us consider the GE amplified wealth effect in more detail. Figure 2 plots the dynamics of the

GE multiplier (Panel A) and the wealth effect together with the GE amplified wealth effect (Panel

B). The wealth effect alone only explains 2% of the consumption response in period 0. The small

impact of the wealth effect on equilibrium consumption is consistent with the fact that households

in the model conform to the permanent income hypothesis and that the shock is transitory. How-

ever, the GE multiplier magnifies the wealth effect to the point that the GE amplified wealth effect

accounts for more than half of the total initial response. Notably, the baseline calibration generates

a GE multiplier in period 0 equal to 30. These results show that the wealth effect can play a sub-

stantial role in the RANK model, though indirectly, through powerful endogenous amplification

mechanisms. In Section 3, we show that this observation has important implications for the role of

fiscal policy in the monetary transmission mechanism.

Moreover, the decomposition in Proposition 1 provides new insights about the source of multi-

plicity in the New Keynesian model.

Corollary 1 (Multiplicity in the New Keynesian model). Given a path for the nominal interest rate,

{it}∞
t=0, all bounded solutions of the system (1)-(2) generate the same ISE and GE multiplier. All bounded

solutions to the New Keynesian model for a given path of the nominal interest rate can be indexed by Ω0.

The decomposition in Proposition 1 characterizes all the bounded solutions of the system (1)-

(2) for a given path of the nominal interest rate. Corollary 1 establishes that all these solutions

21In Figure 1, we focus on the unique purely forward-looking solution to the system (1)-(2), which coincides with the
standard Taylor equilibrium, as shown in Proposition 2 below.
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Panel A: GE multiplier Panel B: Wealth Effect

Figure 2: GE multiplier and the wealth effect

Calibration: quarterly time period, β = 0.99, σ = 1, κ = 0.1275. The nominal interest rate follows it = rn + ρt
r(i0 − rn),

with ρr = 0.5 (which implies a half-life of the monetary shock of three months). We set i0 − rn to 25bps (100bps
annualized). The solution corresponds to the unique purely forward-looking equilibrium.

generate the same ISE and GE multiplier. This result provides a new perspective on the multiplicity

of equilibria of the New Keynesian model under an interest rate peg. The solutions of the model can

be indexed by the level of wealth effect they generate, i.e. the extent of revaluation of households’

financial assets and human wealth. In this sense, the standard Taylor rule equilibrium and the

FTPL are ways of selecting a particular level of the wealth effect.22 Next, we consider the Taylor

rule equilibrium in detail.

The Taylor equilibrium. Consider the interest rate rule (5) with κ (φπ − 1) + (1 − β) φy > 0 and

φy >

!
4βσ−1(κ(φπ−1)+(1−β)φy)−(1−β+σ−1κ)

σ−1β
.23 We say that a sequence of monetary shocks {εt}∞

t=0 de-

cays sufficiently fast if εt = O(ψt), where ψ < λ.24 Under these assumptions, the Taylor equilibrium

is the unique purely forward-looking solution to the system (1)-(2).

Proposition 2 (Taylor equilibrium). Suppose that the equilibrium path of the nominal interest rate, {it}∞
t=0,

was generated by an interest rate rule (5) with κ (φπ − 1) + (1 − β) φy > 0 and

φy >

!
4βσ−1(κ(φπ−1)+(1−β)φy)−(1−β+σ−1κ)

σ−1β
, given a sequence of shocks {εt}∞

t=0 that decays sufficiently fast.

Then, the equilibrium path of consumption is the unique purely forward-looking solution to the system (1)-

22This interpretation is valid conditional on these regimes generating the same equilibrium path for the nominal
interest rate. In more general exercises, the two regimes could potentially have different implications for the equilibrium
path of the interest rate and, therefore, for the decomposition.

23The second restriction implies real-valued eigenvalues.
24If the shock follows an AR(1) process, the condition ψ < λ implies that a positive monetary shock leads to an

increase in the nominal interest rate, as in standard calibrations of the New Keynesian model.
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(2), that is,

cTaylor
t = − σ−1

λ − λ

∞

∑
s=t

.
λ − 1
λs−t +

1 − λ

λ
s−t

/0
iTaylor
s − rn

1
.

The corresponding wealth effect is

ΩTaylor
0 = −(1 − β)

σ−1

λ − λ

∞

∑
s=0

.
λ

λs −
λ

λ
s

/0
iTaylor
s − rn

1
. (7)

If εt = ψεt−1 with ψ ∈ (0, λ) and ε0 given, the nominal interest rate satisfies

iTaylor
t = rn + ψtνε0,

with ν > 0.

Proposition 2 shows how consumption responds to changes in the nominal interest rate in the

Taylor equilibrium. Two features of the solution are particularly relevant. First, the Taylor equi-

librium corresponds to the unique purely forward-looking solution to the system (1)-(2) given an

equilibrium path for the nominal interest rate. The substitution effect on date t depends on both

past and future interest rates, while the wealth effect can depend, in principle, on the entire path of

nominal interest rates. Therefore, the solution to the system (1)-(2) has, in general, both backward-

and forward-looking components. Proposition 2 says that there is a unique value of Ω0 such that

the effect of past interest rates on the substitution effect and the GE amplified wealth effect cancel

out exactly, and this corresponds to the Taylor equilibrium. Thus, the Taylor equilibrium is the

unique solution in which only current and future values of the interest rate matter for the determi-

nation of aggregate variables.25 Second, an increase in nominal interest rates leads to a decline in

consumption at all dates. Thus, the wealth effect has to be sufficiently negative to offset the increase

in consumption embedded in the ISE.

Consider again Figure 1. The equilibrium plotted can be reinterpreted as the response of con-

sumption in the Taylor equilibrium with εt = ψεt−1, ψ = ρr and ε0 = i0−rn
ν . Note that the equi-

librium interest rate inherits the persistence and sign of the monetary shock. Moreover, the quan-

titative importance of the wealth effect in the Taylor equilibrium can be seen by comparing the

equilibrium path of consumption with the corresponding ISE. Recall that in the example of Figure

1 the ISE is only 40% of the initial consumption response. The remaining 60% is due to the GE

25This result depends on assuming that the sequence of monetary shocks decays sufficiently fast, which is the standard
assumption in the literature. For more general processes, observational equivalence of monetary-active and fiscally-active
regimes obtains (Cochrane, 1998, 2018a). See Appendix D for a discussion.
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amplified wealth effect. The role of the wealth effect becomes even starker when considering the

dynamics of inflation, to which we turn next.

Inflation. Proposition 1 presented a decomposition of consumption. There is a similar decompo-

sition of inflation.

Proposition 3 (Inflation Decomposition). In the bounded solutions of the system (1)-(2), inflation is given

by

πt = πS
t +

κ

1 − β
λtΩ0,

where {πS
t }∞

t=0 is uniquely determined by the path of the nominal interest rate, {it}∞
t=0, and Ω0 is given by

(6). In t = 0,

π0 =
κ

1 − β
Ω0.

The decomposition in Proposition 3 uncovers a novel result: inflation in period 0 is entirely

determined by the wealth effect. In particular, initial inflation does not depend on the change in

initial consumption, but on whether the households’ lifetime consumption is on average higher or

lower after the shock. That is, initial inflation depends on whether households are richer or poorer

rather than on the specific timing of the consumption path. To understand this result, it is helpful

to note the forward-looking nature of the New Keynesian Phillips curve, which depends only on

the present value of future consumption. Since the present value of the ISE is zero, initial inflation

is determined solely by the wealth effect. In particular, the old-Keynesian idea that lowering con-

sumption in a period is sufficient to lower inflation contemporaneously does not apply to this New

Keynesian environment. Hence, in the absence of wealth effects, the monetary authority is unable

to control initial inflation.

Moreover, inflation has Neo-Fisherian features under the ISE, as an increase in nominal interest

rates actually raises future inflation,
∂πS

t
∂is

> 0,

for t > 0 and any s ≥ 0.26 Therefore, the inverse relation between the nominal interest rate and

inflation under the Taylor equilibrium is driven entirely by a negative wealth effect. In the absence

of such wealth effects, not only does the monetary authority lose control of initial inflation, but the

effect on future inflation has the opposite sign than in the standard result.

Figure 3 shows the paths of consumption (Panel A) and inflation (Panel B) for different values

26See the proof of Proposition 3 for a formal derivation of this result.
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Panel A: Consumption Panel B: Inflation

Figure 3: Consumption and inflation response to a nominal interest rate change

Calibration: quarterly time period, β = 0.99, σ = 1, κ = 0.1275. The nominal interest rate follows it = rn + ρr(i0 − rn),
with ρr = 0.5 (which implies a half-life of the monetary shock of three months). We set i0 − rn to 25bps (100bps
annualized). The duration of government debt is set to 62 months (20.67 quarters), τ = 0.3, and the debt-to-GDP
(annual) is 1.

of Ω0. When Ω0 = 0, the path is simply given by {cS
t , πS

t }∞
t=0. Note that inflation starts at zero and

then becomes strictly positive, converging back to zero from above in the limit. When Ω0 = ΩTaylor
0 ,

as calculated in Proposition 2, the negative wealth effect more than compensates the positive effect

of the ISE, and both the paths of consumption and inflation are negative and converge back to zero

from below. Finally, the figure shows the case in which Ω0 corresponds to a fiscal policy in which

the government’s primary surpluses do not change after the monetary shock, which we label as the

FTPL case. We study the role of fiscal policy in the determination of Ω0 in detail in Section 3, but it

is worth noting that, in this case, the response of consumption and inflation are attenuated relative

to the Taylor case, though inflation is negative on impact, implying that ΩFTPL
0 < 0 in the baseline

calibration.

Taking stock. The previous analysis shows that the wealth effect, represented by Ω0, plays a cru-

cial role in shaping the response of consumption and inflation to a monetary shock. Until now, the

analysis has mostly taken Ω0 as given. However, Ω0 is determined endogenously, and we have not

established yet if the structure of the economy imposes any restrictions. The next section studies

the equilibrium determination of Ω0 and connects it to the fiscal response to a monetary shock.
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3 The Fiscal Determination of the Wealth Effect

In this section, we study the determination of the wealth effect. Recall that the wealth effect is given

by

Ω0 = (1 − β)

!
∞

∑
t=0

βt [(1 − τ) yt + (it − πt+1 − rn) Qb + Tt]−
!

∞

∑
t=0

(βρ)t (it − rn) ρ +
1
β

π0

"
Qb

"
. (8)

Two forces will help characterize it: the spending-income spiral and the spending-inflation spiral, given,

respectively, by

(1 − β)
∞

∑
t=0

βtct = Ω0 = (1 − β)
∞

∑
t=0

βtyt, and πt = πS
t +

κ

1 − β
λtΩ0,

where recall that
,

πS
t
-∞

t=0 is uniquely determined by the path of the nominal interest rate (see

Proposition 3). The spending-income spiral states that the wealth effect equals average consump-

tion and, by the resource constraint, average income, and that higher income leads to higher con-

sumption. The spending-inflation spiral states that, given a path for the nominal interest rate, the

inflation rate increases with aggregate consumption and, therefore, with the wealth effect. Plugging

these two relations into (8), we get

Ω0 =

2
1 −

3
τ +

3
1
β
+

1
1 − βλ

4
κQb

45
Ω0+

(1 − β)

!
∞

∑
t=0

βt
60

it − πS
t+1 − rn

1
Qb − ρt (it − rn) ρQb + Tt

7"
. (9)

Equation (9) states that the wealth effect is determined according to a Fiscal Keynesian Cross, in

the spirit of the old-Keynesian logic found in many introductory textbooks. One can interpret

1 −
0

τ +
0

1
β + 1

1−βλ

1
κQb

1
as the analogous to the marginal propensity to consume (MPC), and

(1 − β)
8
∑∞

t=0 βt 89it − πS
t+1 − rn

:
Qb − ρt (it − rn) ρQb + Tt

;;
as the autonomous portion of spend-

ing.27 To determine the equilibrium value of Ω0, thus, we need to consider two separate cases: i)

monetary policy has no fiscal consequences, that is, τ = b = 0; and ii) monetary policy has fiscal

consequences, that is, either τ > 0 or b > 0 (or both). The equilibrium implications of the model are

very different in these two cases.

Consider first the case τ = b = 0. This is a knife-edge case and not the empirically relevant one,

but it is still important to study as it is commonly assumed in the literature. Evaluating equation

27Recall that {πS
t }∞

t=0 is uniquely determined by the path of the nominal interest rate.
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(9) at τ = b = 0, we get

Ω0 = Ω0 + (1 − β)
∞

∑
t=0

βtTt =⇒
∞

∑
t=0

βtTt = 0.

That is, the only restriction we get from the households’ intertemporal budget constraint is that

the present value of transfers must be zero. But beyond that, the households’ budget constraint

imposes no restrictions on the present value of consumption. In particular, consumption and the

wealth effect have a self-fulfilling nature: if agents expect to receive a higher income, they increase

their consumption accordingly, and since output is demand determined, output increases to satisfy

that demand. But since households’ income equals the value of output, the increase in consump-

tion becomes self-fulfilling. This logic resembles the case in which the MPC is equal to one in

old-Keynesian analysis. In the standard equilibrium selection, the Taylor rule pins down Ω0 by

imposing that only a specific path of inflation is consistent with a bounded equilibrium.

In contrast, the indeterminacy of the wealth effect disappears when monetary policy has fiscal

consequences. As we move away from τ = b = 0, the wealth effect can be characterized by the

observed paths of policy variables.

Proposition 4 (Fiscal Keynesian Cross). Suppose τ > 0 or b > 0 (or both). The wealth effect, Ω0, is given

by

Ω0 =
1 − β

τ +
0

1
β + 1

1−βλ

1
κQb

!
∞

∑
t=0

βt
0

λt+1 − ρt+1
1
(it − rn) Qb +

∞

∑
t=0

βtTt

"
. (10)

Proposition 4 states that, given a path for the nominal interest rate and government transfers, the

wealth effect is uniquely determined. This is an important result that provides a novel link between

the economy’s equilibrium and the fiscal response to a monetary shock, which is often overlooked

in standard analysis. Crucially, the characterization in Proposition 4 is relevant independently of

whether fiscal policy is active or passive, and it helps understand the role of fiscal policy in the

monetary transmission mechanism.

It may sound surprising that the wealth effect can be expressed in terms of fiscal variables in

the Taylor equilibrium. After all, it is well-known that, in monetary-active regimes, fiscal policy is

irrelevant for determining the economy’s response to monetary policy as long as it is guaranteed

that the government’s intertemporal budget constraint is satisfied. The analysis here, however,

does not contradict conventional wisdom. Proposition 2 showed that, in the Taylor equilibrium,

there exists a unique value of the wealth effect that is consistent with a bounded equilibrium, and
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this value is independent of fiscal variables. However, the Fiscal Keynesian Cross allows us to recover

the fiscal backing necessary to sustain such equilibrium. Rewriting (10), we obtain an expression for

the fiscal transfers that are necessary to sustain a particular level of the wealth effect:

∞

∑
t=0

βtTt =
τ +

0
1
β + 1

1−βλ

1
κQb

1 − β
Ω0 −

∞

∑
t=0

βt
0

λt+1 − ρt+1
1
(it − rn) Qb. (11)

For example, the transfers in the Taylor equilibrium can be recovered by evaluating this expression

at Ω0 = ΩTaylor
0 , given by equation (7).

To get a quantitative sense of the importance of fiscal policy in the Taylor equilibrium, Figure

4 Panel A plots ∑∞
t=0 βtTt as a function of ρ while Panel B plots ∑∞

t=0 βtTt as a function of Qb. For

our calibration of the duration of government bonds, the fiscal backing in the Taylor equilibrium is

0.64% of steady-state annual output, a considerable adjustment.28 Panel A shows that transfers in

the Taylor equilibrium decrease in absolute value with the duration of government bonds. In par-

ticular, if government debt had a duration of one quarter, the transfers would need to be almost 72%

larger to sustain the Taylor equilibrium. Finally, Panel B shows that the fiscal backing also depends

on the level of government debt. If government debt were 25% of GDP (like at the beginning of

the Volcker era), the fiscal backing necessary to sustain the Taylor equilibrium would be cut by two

thirds, to 0.23% of annual output. In contrast, it would increase by almost 85%, to 1.18% of annual

output, if the debt-to-GDP ratio increased to 2, as projected by the CBO for 2051 (see Congressional

Budget Office, 2021). These observations can prove helpful for the design of debt maturity man-

agement, and to understand potential tensions between the monetary and fiscal authorities as the

debt-to-GDP ratio increases.

An alternative measure of the fiscal backing is the change in the present discounted value of

primary surpluses, which is given by

∞

∑
t=0

βtst = −

0
1
β + 1

1−βλ

1
κQb

1 − β
Ω0 +

∞

∑
t=0

βt
0

λt+1 − ρt+1
1
(it − rn) Qb.

Figure 4 Panel C plots this measure of fiscal backing for different values of Ω0. The three equilibria

highlighted in the figure entail substantial differences in the required fiscal response. The Taylor

equilibrium requires a substantial increase in the primary surpluses, translating into a strong nega-

28The duration of government debt is set to the average maturity of the U.S. debt, which is 62 months. The value of ρ
is relatively insensitive to changes in duration in the neighborhood of 62 months.
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Panel A: Transfers and
debt maturity

Panel B: Transfers and
level of debt

Panel C: Primary surplus
and Ω0

Figure 4: Fiscal policy in the New Keynesian model

Calibration: quarterly time period, β = 0.99, σ = 1, κ = 0.1275. The nominal interest rate follows it = rn + ρr(i0 − rn),
with ρr = 0.5 (which implies a half-life of the monetary shock of three months). We set i0 − rn to 25bps (100bps
annualized). The duration of government debt is set to 62 months (20.67 quarters), τ = 0.3 and debt-to-GDP (annual) is
1. Transfers and primary surplus are in percentage of annual steady-state level of output. Panels A and B correspond to
the Taylor equilibrium.

tive wealth effect in equilibrium.29 In contrast, in the equilibrium with Ω0 = 0, we have

∞

∑
t=0

βtst =
∞

∑
t=0

βt [τyt − Tt]

=
∞

∑
t=0

βtτcS
t

( )* +
=0

+
∞

∑
t=0

βtTt

=
∞

∑
t=0

βt
0

λt+1 − ρt+1
1
(it − rn) Qb,

where the second equality uses that yt = ct and that when Ω0 = 0, ct = cS
t , and the third equality

uses that ∑∞
t=0 βtcS

t = 0. That is, the fiscal surpluses exactly offset any wealth effect arising from the

holdings of government bonds. With government bonds of sufficiently long duration (in particular,

ρ > λ), the Ω0 = 0 equilibrium requires a reduction in the present value of primary surpluses (i.e.

expansionary fiscal policy) after a contractionary monetary shock.

Next, we consider the final policy response that is of independent interest: the FTPL case.

Wealth effects in the FTPL. In the spirit of the canonical formulation of the FTPL, we consider the

case in which the change in the path of the nominal interest rate does not affect the present value of

29Note that the adjustment in the primary surplus in the Taylor equilibrium is less than half the adjustment in transfers.
The reason is that counter-cyclical fiscal automatic stabilizers (such as the proportional tax in the model) generate an
expansionary fiscal response after a contractionary monetary shock which, in the Taylor equilibrium, has to be neutralized
by the transfers.
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Panel A: Consumption Panel B: Inflation

Figure 5: Consumption and inflation response to a monetary shock for various debt duration in the
FTPL equilibrium.

Calibration: quarterly time period, β = 0.99, σ = 1, κ = 0.1275. The nominal interest rate follows it = rn + ρr(i0 − rn),
with ρr = 0.5 (which implies a half-life of the monetary shock of three months). We set i0 − rn to 25bps (100bps
annualized). The duration of government debt is set to 62 months (20.67 quarters), τ = 0.3 and debt-to-GDP (annual) is
1.

the government’s primary surpluses, i.e. ∑∞
t=0 βtst = 0. In this case, we get

ΩFTPL
0 =

1 − β0
1
β + 1

1−βλ

1
κ

∞

∑
t=0

βt
0

λt+1 − ρt+1
1
(it − rn)

Note that relative to equation (10), this expression does not feature τ or {Tt}∞
t=0, as they were set to

exactly cancel out. Thus, only government bonds generate wealth effects in this economy. Interest-

ingly, the determination of ΩFTPL
0 features two opposing forces. An increase in the nominal interest

rate leads to an increase in real rates, so households can reinvest their savings at higher rates after

the monetary shock, generating a positive wealth effect. However, an increase in nominal inter-

est rates also reduces the value of long-term government bonds, negatively affecting households’

wealth. Which effect dominates depends on the duration of public debt. In particular, for a suffi-

ciently long duration, the second effect prevails, and an increase in interest rates generates a negative

wealth effect.30

Proposition 5 (FTPL and Long-Term Bonds). Suppose b > 0 and ∑∞
t=0 βtst = 0. Then,

∂Ω0

∂it
< 0 ⇐⇒ ρ > λ.

30Notably, the quantity of government debt does not matter in this case. This result holds only when ∑∞
t=0 βtst scales

with Qb (including when ∑∞
t=0 βtst = 0).

22



To understand the relevance of Proposition 5, Figure 5 plots the response of consumption and

inflation in the FTPL equilibrium for different durations of government bonds. Consider first one-

period bonds. The wealth effect in response to an increase in the interest rate is positive. This

positive wealth effect explains why consumption decreases only in the first quarter and increases

afterward (Panel A). The result is even starker for inflation. A contractionary monetary policy shock

uniformly increases inflation. Recall that, absent wealth effects, inflation has a strong Neo-Fisherian

component. A positive wealth effect exacerbates this force to the extreme that a contractionary

monetary shock that increases the nominal interest rate by 100 bps in t = 0 generates an increase in

inflation of 25 bps.

The results change with long-term bonds. An increase in nominal interest rates reduces the

value of government bonds, generating a reduction in households’ wealth. If this effect is suffi-

ciently strong, an increase in interest rates generates a negative wealth effect. This happens when

the duration of government debt satisfies ρ > λ, which in the baseline calibration corresponds to

a duration longer than 10 months (recall that U.S. debt average maturity is 62 months). Figure 5

shows that consumption and inflation drop on impact in the calibrated duration of government

debt. However, the negative wealth effect generated by government bonds does not overturn the

Neo-Fisherian predictions after the first quarter, and inflation becomes positive until it converges

back to zero in the limit. Note that combining the results in Proposition 3 and Proposition 4 it is

immediate to see that, in the FTPL, π0 < 0 if and only if the duration of government bonds is

sufficiently long. That is, in the context of the standard New Keynesian model and absent any

change in the present value of primary surpluses, only the maturity of debt can generate a negative

co-movement between nominal rates and the inflation rate in period 0. This insight remains ap-

proximately true in a model with capital (see Section 4.3). Finally, Figure 5 shows that setting ρ = 1

(i.e. a consol) has only a marginal effect relative to the baseline calibration.

The idea that government liabilities are the relevant assets for the assessment of wealth effects is

not new. This observation was central to Pigou’s argument in his response to Keynesian economics.

For instance, Patinkin describes Pigou’s argument as follows:31

(...) the private sector considered in isolation is, on balance, neither debtor nor cred-

itor, when in its relationship to the government, it must be a net “creditor.” (...) If we

assume that government activity is not affected by the movements of the price level,

then the net effect of a price decline must always be stimulatory.

31See Patinkin (1948).
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Two aspects of this quote are important. First, the idea that private assets cancel out in the aggre-

gate, but households are on net creditors of the government. Second, the fact that it is assumed that

“government activity is not affected” by the shock. The Pigou effect, as described here, is remark-

ably similar to the modern formulation of the FTPL.

Moreover, the result in Proposition 5 echoes some of the findings in Cochrane (2018a).32 The pa-

per highlights the difficulties of the standard RANK model in generating a negative co-movement

between initial inflation and the nominal interest rate when primary surpluses do not react to the

monetary shock. The paper concludes that long-term bonds help overcome this difficulty. Our

findings sharpen these results in two dimensions. First, we show that absent a change in primary

surpluses, only a sufficiently long bond maturity can generate a negative wealth effect, where the

threshold is determined by the lowest eigenvalue of the system. Second, our results show that

when monetary policy has fiscal consequences, a necessary condition for a drop of initial inflation

to a contractionary monetary shock is either the presence of (sufficiently long) government debt or

contractionary fiscal policy as summarized by the present value of primary surpluses. In particu-

lar, the RANK model has no alternative channels to generate a drop in inflation. Section 4 studies

several extensions that show the robustness of this result.

Wealth Effect, the GE multiplier, and price stickiness. The previous analysis highlights two

novel features of the New Keynesian model. First, it shows that while the direct impact of the

wealth effect is small in RANK (consistent with the permanent income hypothesis), its general

equilibrium effects can be significantly amplified, as reflected by a potentially large GE multiplier.

Second, the wealth effect can be characterized in terms of the fiscal response to the monetary shock.

Thus, put together, these results imply that fiscal policy can play an essential role in the monetary

transmission mechanism.

Here, we consider in more detail the properties of the GE multiplier. Recall that the GE mul-

tiplier captures the effect on consumption (and output) of changes in households’ wealth that is

mediated through inflation. When their wealth decreases, households reduce consumption putting

downward pressure on prices and increasing the real interest rate, further reducing consumption.

The baseline calibration of Section 2 finds a strong effect arising from this channel. We now show

that this result is highly sensitive to the degree of price flexibility in the economy.

Figure 6 Panel A plots the GE multiplier as a function of κ, indicating the calibrated value from

32The paper builds on results in Sims (2011) and Cochrane (2018b)
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Panel A: GE multiplier Panel B: GE mult.×WE
C

Figure 6: GE multiplier and the degree of price flexibility.

Calibration: quarterly time period, β = 0.99, σ = 1. The nominal interest rate follows it = rn + ρr(i0 − rn), with ρr = 0.5
(which implies a half-life of the monetary shock of three months). We set i0 − rn to 25bps (100bps annualized). The
solution in Panel B corresponds to the Taylor equilibrium.

Section 2 as a reference. The GE multiplier is strictly increasing in the degree of price flexibility,

achieving a minimum of 1 when prices are perfectly rigid. Panel B shows how the value of κ

affects the fraction of the consumption response due to the GE amplified wealth effect in the Taylor

equilibrium. For the calibration in Section 2, 60% of the total response of output is explained by

the wealth effect. In contrast, with rigid prices, the GE amplified wealth effect explains only 2% of

the consumption response, consistent with only the permanent income hypothesis being operative.

More generally, the fraction increases with κ.

These results suggest that the importance of fiscal backing in the RANK model depends signif-

icantly on the degree of price flexibility. Figure 7 plots the path of consumption after a monetary

shock and different values of κ and Ω0.33 Panel A plots the path of consumption for different values

of Ω0 when κ is set to 0.25, which is approximately double the value in the calibration of Section 2.

Panel B sets κ to the baseline calibration, and it coincides with the plot in Panel A of Figure 3 (with

the axis modified to help the comparison across cases). Finally, Panel C presents the response of

consumption in a fairly rigid-price environment.34

A striking result emerges. While the wealth effect has a substantial impact on the consumption

33To interpret the results for the Taylor equilibrium, note that the path of the nominal interest rate is set the same for
all values of κ. From the characterization of Proposition 2, we know that we can achieve this result by adjusting the size
of the initial shock, ε0. Thus, while the Taylor equilibrium features a consumption response to a monetary shock, {εt}∞

t=0,
that is decreasing in κ, it features a response to a path of the nominal interest rate, {it}∞

t=0, that is increasing in κ.
34We set κ = 0.005. Lower values of κ drastically change the properties of the FTPL equilibrium, as a monetary shock

generates a positive wealth effect even with long-term debt (recall that we obtain ∂ΩFTPL
0

∂it
< 0 if and only if ρ > λ, and λ

is strictly increasing in κ, with λ = 1 when κ = 0).
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Panel A: High κ Panel B: Medium κ Panel C: Low κ

Figure 7: Consumption response to a monetary shock for various values of κ and Ω0

Calibration: quarterly time period, β = 0.99, σ = 1, κ ∈ {0.25, 0.1275, 0.005}. The nominal interest rate follows
it = rn + ρr(i0 − rn), with ρr = 0.5 (which implies a half-life of the monetary shock of three months). We set i0 − rn to
25bps (100bps annualized). The duration of government debt is set to 62 months (20.67 quarters), τ = 0.3 and
debt-to-GDP (annual) to 1.

path when prices are relatively flexible, the effect is marginal for lower degrees of price flexibility.

In Panel A (κ = 0.25), the fiscal backing represents 78% of the consumption response in period 0

(taking into account the GE amplification). In contrast, in Panel C (κ = 0.005), the fiscal backing

represents less than 15% of the response. Thus, in the RANK model, monetary-fiscal interactions

are particularly relevant in economies with a relatively high degree of price flexibility, while coor-

dination is less relevant when prices are more rigid. Figure 8 shows analogous plots for inflation.

This finding may have important implications for the design of policies in economies that differ

in their degree of price flexibility. In economies with a high degree of price flexibility, monetary-

fiscal coordination might be a crucial element of an effective stabilization policy, and the monetary

authority by itself might have limited power to affect the equilibrium. In contrast, in economies

with relatively fixed prices, monetary-fiscal coordination might be secondary, and the monetary

authority might be very effective in affecting aggregate variables. Of course, the degree of price

flexibility is likely to be endogenous to the monetary-fiscal institutions. Still, this result suggests

that when prices are more rigid, the fiscal authority does not need to fully accommodate monetary

policy to approximate the outcomes in the Taylor equilibrium.

4 Extensions

Sections 2 and 3 studied in detail the equilibria of the standard RANK model. While useful, this

setting lacks some important features present in richer models currently used for policy analysis.

This section extends the standard RANK model in three dimensions. First, we study the properties

of the New Keynesian model in a liquidity trap. Consistent with the previous analysis, we find
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Panel A: High κ Panel B: Medium κ Panel C: Low κ

Figure 8: Inflation response to a monetary shock for various values of κ and Ω0

Calibration: quarterly time period, β = 0.99, σ = 1, κ ∈ {0.005, 0.1275, 0.25}. The nominal interest rate follows
it = rn + ρr(i0 − rn), with ρr = 0.5 (which implies a half-life of the monetary shock of three months). We set i0 − rn to
25bps (100bps annualized). The duration of government debt is set to 62 months (20.67 quarters), τ = 0.3 and
debt-to-GDP (annual) to 1.

that fiscal policy plays a crucial role in the dynamics of the economy. Moreover, we show that

there exists a tight connection between the monetary paradoxes identified in the literature and the

fiscal response to monetary policy. Then, we solve a simple TANK model in the spirit of Bilbiie

(2008, 2019). In this model, fiscal policy matters through two separate channels: the fiscal backing

analyzed in Section 3, and a fiscal redistribution channel. Finally, we solve analytically a RANK

model with capital and investment. While adding a state variable complicates the analysis, the

results of the previous sections remain valid (sometimes approximately) in this setting as well.

4.1 Fiscal Policy in a Liquidity Trap

We follow Werning (2012) and Cochrane (2017) and assume a natural interest rate that follows

rnt =

<
=>

=?

−rn t ≤ T,

rn t > T,

for some known rn > 0 and T > 0. We consider monetary responses of the type:

it =

<
=>

=?

0 t ≤ T∗,

rn t > T∗,

for some known T∗.

To find the equilibrium of the economy, the liquidity trap literature tipically assumes that the
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Panel A: Consumption Panel B: Inflation

Figure 9: Consumption and inflation response in a liquidity trap in the SLTE.
Calibration: quarterly time period, β = 0.99, σ = 1, κ = 0.1275. The natural rate of interest is set to −rn until T = 4.
Discretionary Monetary Policy sets T∗ = T; Forward Guidance sets T∗ = T + 1; Fixed Interest Rate sets T∗ = −1. The
solution corresponds to the SLTE.

economy converges back to its steady state at T∗ + 1, that is

ct = πt = 0 and it = rn, ∀t ≥ T∗ + 1.

We call this the Standard Liquidity Trap Equilibrium (SLTE). In the SLTE, a shock that reduces the nat-

ural interest rate has a contractionary effect, reducing initial consumption and inflation. Moreover,

if T∗ > T, consumption and inflation eventually become positive, and they revert back to zero at

T∗ + 1.

Figure 9 shows the dynamics of consumption and inflation in the SLTE for different monetary

policy responses when the trap lasts until period T = 4. The discretionary monetary policy corre-

sponds to a policy that sets T∗ = T. In this case, consumption drops by almost 8% and inflation

slightly more than 10%. The forward guidance case corresponds to a monetary policy that keeps

the nominal rate at zero for an extra period after the natural rate reverts to its long-run level, i.e.

T∗ = T + 1. This policy significantly dampens the recessionary effects of the trap, reducing the drop

in initial consumption by 45% and the drop in initial inflation by 57%. Finally, we also consider a

fixed interest rate stance, which keeps the nominal rate at rn the whole time, i.e. T∗ = −1. The drop

in consumption and inflation doubles on impact relative to the discretionary monetary policy.

Consider, alternatively, the dynamics of consumption and inflation for the same paths of the

nominal interest rate but a fiscal response consistent with the FTPL, that is, a fiscal policy that keeps

the present value of primary surpluses unchanged, depicted in Figure 10. For comparison, we also

28



Panel A: Consumption Panel B: Inflation

Figure 10: Consumption and inflation response in a liquidity trap in the FTPL equilibrium.
Calibration: quarterly time period, β = 0.99, σ = 1, κ = 0.1275. The natural rate of interest is set to −rn until T = 4.
Discretionary Monetary Policy sets T∗ = T; Forward Guidance sets T∗ = T + 1; Fixed Interest Rate sets T∗ = −1. The
duration of government debt is set to 62 months (20.67 quarters), τ = 0.3 and debt-to-GDP (annual) is 1. The solution
corresponds to the FTPL equilibrium except for the line labeled SLTE, which corresponds to the Discretionary Monetary
Policy in the SLTE.

plot the SLTE under a discretionary monetary policy. The results are revealing. The response of

consumption under a discretionary monetary policy is 58% smaller in the FTPL equilibrium. More-

over, forward guidance has a relatively small effect on consumption, reducing the magnitude of the

initial response by less than 0.5 p.p. Finally, we also compare the response of the economy to a fixed

interest rate stance. Recall that in the SLTE with a fixed interest rate, consumption decreases by dou-

ble the magnitude in the discretionary equilibrium. In contrast, in the FTPL equilibrium, the effect

becomes 16% smaller than in the SLTE with discretionary monetary policy. These results highlight

that the fiscal policy response to the natural rate shock is a crucial component of the dynamics of

the economy in a liquidity trap and the effectiveness of forward guidance. To put it in perspective,

while the FTPL features, by construction, no change in the present value of primary surpluses, the

SLTE under discretionary monetary policy requires an increase (i.e. contractionary fiscal policy) of

4% of steady-state annual output (and almost 10% for transfers). We perform additional exercises

in Appendix E.1.

These results provide an alternative interpretation to the findings in Cochrane (2017). Cochrane

shows that the selection of equilibrium in the New Keynesian model is crucial in determining the

equilibrium dynamics of aggregate variables. He argues that there exists a multiplicity of equilibria

that feature a substantially milder response of the economy to the liquidity trap and concludes that

a sharp recession is not a necessary outcome of the New Keynesian model. Here, we reinforce this

argument by connecting the economy’s response in a liquidity trap to the fiscal policy implemented.
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Instead of indexing the solutions in terms of the properties of the system of equations characterizing

equilibrium, like in Cochrane (2017), we propose a characterization in terms of the wealth effect and

fiscal policy. The conclusion is that absent a strong contractionary fiscal response to the natural rate

shock, the economy’s response in a liquidity trap is significantly mitigated.35

Fiscal Policy and the Monetary Paradoxes. Before ending the liquidity trap analysis, we briefly

study the monetary paradoxes highlighted in the literature through the lens of our decomposition.

In particular, we focus on the Forward Guidance Puzzle and the Paradox of Flexibility.

Definition 1 (Monetary Paradoxes). Given a path of the nominal interest rate, {it}∞
t=0, an equilibrium

features the Forward Guidance Puzzle if

∂2c0

∂t∂it
< 0,

∂2π0

∂t∂it
< 0.

Moreover, the equilibrium features the Paradox of Flexibility if

lim
κ→∞

∂c0

∂it
= −∞, lim

κ→∞

∂π0

∂it
= −∞.

The Forward Guidance Puzzle refers to the theoretical result that the promise to reduce the

interest rates in the future becomes more powerful the further into the future the actual time of

intervention is.36 The Paradox of Flexibility is the result that the effect of monetary policy is un-

boundedly strong in the limit to flexible prices even though the nominal interest rate has no impact

on real variables in a fully flexible price economy. Proposition 6 formally establishes that the For-

ward Guidance Puzzle and the Paradox of Flexibility are present in the SLTE.

Proposition 6 (Monetary Paradoxes in the STLE). The SLTE exhibits the monetary paradoxes.

Given the decomposition from Section 2, it has to be true that either the ISE or the wealth effect

(or both) feature the monetary paradoxes as well. The next proposition shows that the ISE is a force

against the paradoxes, and the paradoxes are the result of the wealth effect.

Proposition 7 (Monetary Paradoxes and the Decomposition). Suppose κ > 0 and let t > T. The ISE

satisfies
∂cS

0
∂it

< 0,
∂2cS

0
∂t∂it

> 0, lim
κ→∞

∂cS
0

∂it
= 0.

35In Appendix E.2 we provide a mapping between the equilibria studied in Cochrane (2017) and the characterization
through wealth effects in this paper.

36This term was coined by Del Negro et al. (2015), who find that the estimated response of the U.S. economy to forward
guidance shocks are significantly smaller than the ones predicted by the standard New Keynesian model.
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If an equilibrium exhibits the monetary paradoxes, then

∂2Ω0

∂t∂it
< 0 and lim

κ→∞

∂Ω0

∂it
= −∞.

Proposition 7 implies that the paradoxes are not the result of the intertemporal substitution of

consumption. In the absence of wealth effects, an increase in interest rates shifts consumption from

the present to the future. However, the effect becomes weaker as the date of the shock moves fur-

ther into the future since future rates are discounted by 1
λ
< 1. Moreover, the substitution effect

is continuous in the price flexibility parameter κ, in sharp contrast with the standard liquidity trap

equilibrium. Thus, only the wealth effect shares the paradoxical properties of initial consumption.

Moreover, note that the wealth effect exhibiting the paradoxes is insufficient to generate the para-

doxes on equilibrium consumption. To obtain the paradoxes, the wealth effect must be sufficiently

strong to overturn the countervailing force embedded in the ISE. Finally, since fiscal variables de-

termine the wealth effect, we can conclude that the paradoxes are the result of fiscal rather than

monetary policy in the standard RANK model.

A popular resolution to the monetary paradoxes has been to build a model that can be charac-

terized by a discounted Euler equation of the form:

ct = δct+1 − σ−1(it − πt+1 − rn),

with δ ∈ (0, 1).37 In Appendix E.3 we show that for standard calibrations, this specification only

mitigates the paradoxes in the SLTE. Only for extreme calibrations (low EIS and high degree of price

rigidity), the paradoxes disappear. This is achieved by making both eigenvalues of the system fall

outside the unit circle. However, this solution fundamentally changes the properties of the model.

4.2 Household Heterogeneity: A TANK Model

We now extend the RANK model from Section 2 to incorporate household heterogeneity, in the

spirit of Bilbiie (2008, 2019). The economy is populated by a continuum of measure one of house-

holds. A measure 1 − ω of households are savers: they are forward-looking and can trade in asset

markets. The complementary fraction ω corresponds to households that are hand-to-mouth (HtM):

37For example, McKay et al. (2016) propose a heterogeneous agent model with incomplete markets, Angeletos and
Lian (2016) relax the assumption of common knowledge, Gabaix (2016) introduces behavioral inattention, and Gertler
(2017) adaptive expectations. All these micro-foundations essentially modify the households’ Euler equation to reduce
the direct impact of future interest rates changes.
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they have no access to financial markets and consume their labor income each period. We log-

linearize the model around a symmetric zero-inflation steady state. We provide the details of the

model in Appendix B.

Let ct denote the aggregate consumption, Tt the aggregate government transfers to households,

and Th,t the transfers to HtM households. The next proposition provides a characterization of the

equilibrium of the model.

Proposition 8 (Dynamics in the TANK model). Aggregate consumption ct and inflation πt satisfy the

following system of equations:

i. Generalized Euler equation:

ct+1 = ct + σ̃−1(it − πt − rn) + vt,

where σ̃−1 ≡ 1−ω
1−ωχy

σ−1 and vt ≡ ωχT
1−ωχy

(Th,t+1 − Th,t), with χy, χT > 0,

ii. New Keynesian Phillips curve:

πt = βπt+1 + κct,

iii. Aggregate Intertemporal Budget constraint:

∞

∑
t=0

βtct =
∞

∑
t=0

βt[(1 − τ)yt + b(it − πt − rn)Qb + Tt]−
!

∞

∑
t=0

(βρ)t(it − rn)ρ +
1
β

π0

"
Qb,

iv. Resource constraint:

ct = yt.

Proposition 8 shows that aggregate consumption satisfies a generalized Euler equation, which

differs from the standard Euler equation in two dimensions. First, the macro-EIS σ̃−1 can differ

from the micro-EIS σ−1. The difference between the two is determined by χy, which denotes the

cyclicality of HtM households’ income. In particular, the macro-EIS is larger than the micro-EIS

if and only if χy > 1, echoing the result in Bilbiie (2019). Second, the Euler equation includes an

additional term, vt, which depends on the transfers to the HtM households. Notably, vt does not

depend on the contemporaneous level of the transfer but on future changes. This feature will be

important when we describe the channels of transmission below.

The supply side of the economy, captured by the New Keynesian Phillips curve, is the same

as in the RANK model of Section 2. Interestingly, κ depends on the micro-EIS rather than the
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macro-EIS.38 Moreover, the equilibrium can be characterized by an aggregate intertemporal budget

constraint, which is given by the sum of all the households’ budget constraints.

The following proposition extends the decomposition of Proposition 1 to this TANK model.

Proposition 9 (Consumption Decomposition in TANK). Given an equilibrium path for the nominal

interest rate, {it}∞
t=0, all bounded solutions of the TANK model generate a path of consumption that is given

by

ct = cS
t

()*+
ISE

+ cT
t

()*+
Fiscal

redistribution

+
1 − βλ

1 − β
λt

( )* +
GE multiplier

× Ω0

()*+
WE

where
,

cS
t
-∞

t=0 is uniquely determined by the path of the nominal interest rate, {it}∞
t=0,

,
cT

t
-∞

t=0 is uniquely

determined by the path of transfers to HtM households, {Th,t}∞
t=0, with

∞

∑
t=0

βtcS
t =

∞

∑
t=0

βtcT
t = 0,

and Ω0 is given by (6).

Proposition 9 presents a channel of transmission absent in the RANK model: a fiscal redistribu-

tion channel. The expression for the fiscal redistribution is

cT
t =

ωχT

1 − ωχy

1 − βλ

λ − λ
λt

!
t−1

∑
s=0

.
λ

λs −
λ

λ
s

/

(Th,s+1 − Th,s) +

∞

∑
s=t

@

A1 − βλ

1 − βλ

.
λ

λ

/t

− 1

B

C λ

λ
s (Th,s+1 − Th,s)

%

& .

The formula clarifies how the redistribution channel operates. First, it shows that fiscal redistri-

bution does not affect the present value of aggregate consumption but only its timing. Second, it

shows that only the growth rate of the transfers to HtM households affects aggregate demand, not

their levels. The reason for these results is that both types of agents have an MPC of 1 to changes in

their permanent income. Thus, any redistribution that is perfectly smooth over time will only affect

the distribution of consumption but not the aggregate level.

Moreover, Proposition 9 also shows the robustness of the results in Sections 2 and 3. Absent any

fiscal redistribution effect (i.e. cT
t = 0 for all t), the TANK model can be represented as a RANK

model with a different EIS. Put differently, in the TANK model, the EIS and the cyclicality of HtM

38In the general case in which the steady-state equilibrium is not symmetric, the Phillips curve has an additional term.
See Appendix B.
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income contribute to the same macro channel of transmission. This also implies that while heteroge-

neous agents models have the ability to amplify the response of the economy to a monetary shock,

the tight connection between the wealth effect and fiscal policy is not affected. Even if at the mi-

croeconomic level the channels of transmission are different than in RANK, at the macroeconomic

level, the economic forces are similar. The difference is that the TANK model can rely less on a coun-

terfactually large calibration of the micro-EIS and more on household heterogeneity to generate a

meaningful output response to monetary policy. We conjecture that this result is robust to richer

sources of heterogeneity, as in quantitative HANK models. What matters is the aggregate intertem-

poral budget constraint, which takes the private sector as a whole in relation to the government.39

An important remaining question is whether the results survive if the households are allowed

to hold real assets. Next, we solve a RANK model with capital.

4.3 Real Assets: A RANK model with Capital

This section solves a RANK model with capital accumulation analytically. The analysis is based

on Li (2002), who studies the determinacy properties of the model. Here, we are interested in

understanding whether the channels highlighted in the previous sections extend to a model with

capital and investment.40 We show that most of the results go through (e.g., the wealth effect can

be stated in terms of the fiscal response to monetary policy), and when they do not, they still hold

approximately for standard calibrations (e.g., the determination of initial inflation).

The log-linear approximation of the equilibrium of the economy around a zero-inflation steady

state can be characterized by the following equations:

ct+1 = ct + (it − πt+1 − rn) , (12)

kt+1 = −ξkπ βπt+1 + ξkππt − ξkcct + ξkkkt, (13)

πt+2 = ξπππt+1 − ξπi (it − rn)− ξπcct, (14)

∞

∑
t=0

βtyt =
∞

∑
t=0

βt [(1 − τ) yt + (it − πt+1 − rn) Qb + Tt]−
!

∞

∑
t=0

(βρ)t (it − rn) ρ +
1
β

π0

"
Qb, (15)

yt = scct + sI

2
1
δ

kt+1 +
1 − δ

δ
kt

5
, (16)

39Caramp and Silva (2020) extend these results to a setting with private debt and aggregate risk and show that a
version of the Fiscal Keynesian Cross holds.

40Rupert and Šustek (2019) also study the monetary transmission mechanisms in a RANK model with capital. Their
focus is on the real interest rate channel.
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where sc denotes the consumption-to-output ratio, sI is the investment-to-output ratio, δ is the

capital depreciation rate, and ξkπ, ξkc, ξkk, ξππ, ξπi and ξπc are positive constants defined in the

appendix.41 Equation (12) is the standard household’s Euler equation. Equation (13) is obtained

from the New Keynesian Phillips curve. To see this, note that from the firms’ optimization problem

together with the law of motion of the aggregate price level we have

πt = βπt + κmct,

where mct denotes the firms’ marginal cost. In the presence of capital, the marginal cost can be

written as

mct = ct +
γ

1 − γ
yt −

γ

1 − γ
kt.

Using the resource constraint and combining terms, we obtain (13). Equation (14) can be derived

from the no-arbitrage condition between the return on bonds and the return on capital. Note that

this equation is a second-order difference equation. Equation (15) is the household’s intertemporal

budget constraint. Note that the RHS of the equation is equivalent to what we obtained in Section 2.

Thus, the definition of the wealth effect does not change in the presence of capital.42 The difference

here is that the household uses her wealth to consume and invest. Equation (16) is the resource

constraint. Finally, for the Taylor equilibrium we assume a monetary rule of the form

it = ρrit−1 + (1 − ρr)(rn + φππt) + εt,

with φπ > 1.

Let Ω0 be defined as in Section 2 (see equation (6)). The next proposition establishes that the

wealth effect can be expressed in terms of fiscal variables even in this model with capital.

Proposition 10. Suppose τ > 0 or b > 0 (or both). Then

Ω0 =
1 − β

τ + ΨΩQb

!
∞

∑
t=0

βt
60

it − πS
t − rn

1
Qb + Tt

7
−

!
∞

∑
t=0

(βρ)t (it − rn) ρ + ΨΓΓ0

"
Qb

"
,

where ΨΩ and ΨΓ are constants independent of monetary and fiscal variables, and {πS
t+1}∞

t=0 and Γ0 are

uniquely determined by the path of the nominal interest rate, {it}∞
t=0.

41See Appendix F for a full derivation of the model.
42The definition of the wealth effect is gross of investment. Under this definition, the wealth effect is equal to the

present discounted value of output using the steady-state real interest rate. The quantitative results do not change if we
define the wealth effect net of investment.
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Panel A: Nominal Interest Rate Panel B: Output Panel C: Inflation

Figure 11: Output and inflation in RANK with capital
Calibration: quarterly time period, β = 0.99, σ = 1, δ = 0.15, ρr = 0.8341, φπ = 1.2312. The duration of government
debt is set to 62 months (20.67 quarters), τ = 0.3 and debt-to-GDP (annual) is 1. The path of the nominal interest rate
corresponds to the outcome after a monetary shock in the Taylor equilibrium. The other equilibria are computed using
the same path for the nominal interest rate.

Figure 11 shows the equilibrium path of output and inflation for Ω0 ∈
D

0, ΩTaylor
0 , ΩFTPL

0

E
,

where ΩTaylor
0 corresponds to the wealth effect in the Taylor equilibrium and ΩFTPL

0 is the wealth

effect when the present value of primary surpluses does not change. The path of the nominal

interest rate is the corresponding path in the Taylor equilibrium after a monetary shock. The other

equilibria are computed using the same equilibrium path of the nominal rate. It is clear from the

figure that the general patterns obtained in Section 3 extend to the model with capital. The Taylor

equilibrium generates the strongest responses of output and inflation, while the zero-wealth effect

equilibrium features similar Neo-Fisherian features as in the model without capital. However, the

response of initial inflation is not zero when Ω0 = 0, but a small drop of 0.7 bps. As a reference, the

drop in initial inflation in the Taylor equilibrium is 135 bps while in the FTPL is 22 bps. Thus, we

can conclude that the results from Sections 2 and 3 extend approximately to the model with capital.

5 Conclusion

Despite being often overlooked, the fiscal response to monetary policy is a central part of how

the economy responds to monetary shocks. In this paper, we provided novel analytical tools to

understand the role of fiscal policy and wealth effects in the monetary transmission mechanism.

We presented a decomposition of the equilibrium response of consumption into an intertemporal

substitution effect and a wealth effect. General equilibrium forces resulting from inflation dynamics

can significantly amplify the impact of the wealth effect on households’ consumption, even in a

RANK model. Moreover, when capital is fixed, initial inflation is entirely determined by the wealth
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effect and not by the initial response of consumption. This result holds approximately true even in

the presence of investment. Crucially, when monetary policy has fiscal consequences, the wealth

effect is uniquely determined by fiscal variables. Thus, these results highlight the importance of

fiscal policy in the monetary transmission mechanism.

We presented these results in a series of widely used New Keynesian models. Besides the stan-

dard RANK model, we studied a liquidity trap scenario, a TANK model, and a RANK model with

capital. On top of highlighting the importance of fiscal policy, each model provided some setting-

specific insights. We found that the pervasive effects of the standard liquidity trap analysis owe

much to the implicitly assumed contractionary fiscal policy. Moreover, We showed the extent to

which fiscal redistribution can affect the dynamics of macroeconomic variables in a TANK model.

The analysis in the paper provides a comprehensive analysis of the role of fiscal policy in the

monetary transmission mechanism. Future work should focus on applying these insights to identify

and test the channels empirically. This task will require building models that incorporate realistic

features absent in the models studied here. Caramp and Silva (2020) take a step in this direction by

extending the analysis to a setting with aggregate risk and richer household heterogeneity.
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A Proofs

Proofs of Propositions 1 and 3. The system of equations characterizing equilibrium is given by

!
ct+1

πt+1

"
=

!
1 + σ−1 κ

β − σ−1

β

− κ
β

1
β

" !
ct

πt

"
+

!
σ−1 (it − rn)

0

"
.

The eigenvalues of the system are

λ =
1 + β + σ−1κ +

#
(1 + β + σ−1κ)

2 − 4β

2β
, λ =

1 + β + σ−1κ −
#
(1 + β + σ−1κ)

2 − 4β

2β
.

It is immediate that λ > 1 and λ ∈ (0, 1). The eigenvectors are given by

v =

$
1 − βλ

κ
, 1

%
, v =

&
1 − βλ

κ
, 1
'

.

Let

P ≡
!

1−βλ
κ

1−βλ
κ

1 1

"
.

Then, we can write the system as

!
Z1,t+1

Z2,t+1

"
=

!
λ 0
0 λ

" !
Z1,t

Z2,t

"
+

σ−1κ

β(λ − λ)

!
− (it − rn)

(it − rn)

"
,

where Zt ≡ P−1

!
ct

πt

"
. Since λ > 1, we can solve the first equation forward

Z1,t =
σ−1κ

λ − λ
λ

t ∞

∑
s=t

λ

λ
s (is − rn) .

Moreover, since λ ∈ (0, 1), we can solve the second equation backward

Z2.t = λtZ2,0 +
σ−1κ

λ − λ
λt

t−1

∑
s=0

λ

λs (is − rn) .

Recall that

Zt = − κ

β(λ − λ)

!
1 − 1−βλ

κ

−1 1−βλ
κ

" !
ct

πt

"
.

Hence

Z1,t = − κ

β(λ − λ)

&
ct −

1 − βλ

κ
πt

'
,

Z2,t = − κ

β(λ − λ)

$
−ct +

1 − βλ

κ
πt

%
.
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And therefore

ct =
1 − βλ

κ
πt − σ−1λ

t ∞

∑
s=t

1

λ
s+1 (is − rn) , (17)

πt =
κ

1 − βλ
ct −

β
(
λ − λ

)

1 − βλ
λtZ2,0 −

σ−1κ

1 − βλ
λt

t−1

∑
s=0

1
λs+1 (is − rn) . (18)

Introducing (31) into (32), we get

πt = λtZ2,0 +
σ−1κ

λ − λ
λt

t−1

∑
s=0

λ

λs (it − rn) +
σ−1κ

λ − λ
λ

t ∞

∑
s=t

λ

λ
s (it − rn) . (19)

Introducing (33) into (31), we get

ct =
1 − βλ

κ
λtZ2,0 + σ−1 1 − βλ

λ − λ
λt

t−1

∑
s=0

λ

λs (is − rn) + σ−1 1 − βλ

λ − λ
λ

t ∞

∑
s=t

λ

λ
s (is − rn) . (20)

Multiplying (34) by βt and summing across time, we get

Ω0

1 − β
=

∞

∑
t=0

βtct =
1
κ

Z2,0 +
σ−1

λ − λ

∞

∑
s=0

λ

λ
s (is − rn) .

Hence

Z2,0 =
κ

1 − β
Ω0 −

σ−1κ

λ − λ

∞

∑
s=0

λ

λ
s (is − rn) . (21)

Introducing (35) in (34), we get

ct = cS
t +

1 − βλ

1 − β
λtΩ0,

where

cS
t ≡ σ−1 1 − βλ

λ − λ
λt

*

+
t−1

∑
s=0

$
λ

λs −
λ

λ
s

%

(is − rn) +
∞

∑
s=t

,

-1 − βλ

1 − βλ

$
λ

λ

%t

− 1

.

/ λ

λ
s (is − rn)

0

1 .

Similarly
πt = πS

t +
κ

1 − β
λtΩ0,

where

πS
t ≡ σ−1κ

λ − λ
λt

*

+
t−1

∑
s=0

$
λ

λs −
λ

λ
s

%

(is − rn) +
∞

∑
s=t

,

-
$

λ

λ

%t

− 1

.

/ λ

λ
s (is − rn)

0

1 .

Note that for t > 0,

∂πS
t

∂is
=

2
34

35

σ−1κ
λ−λ

λt
6

λ
s+1 − λs+1

7
βs > 0 if s < t

σ−1κ
λ−λ

λt
&6

λ
λ

7t
− 1

'
λ

λ
s > 0 if s ≥ t

Proof of Corollary 1. Immediate from the fact that, given {it}∞
t=0, {cS

t , πS
t }∞

t=0 is unique and 1−βλ
1−β λt depends

only on the parameters of the model.
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Proof of Proposition 2. Consider first the Taylor equilibrium. The economy is characterized by the following
system of equations:

ct+1 = ct + σ−1 (it − πt+1 − rn) ,

πt = βπt+1 + κct,

it = rn + φππt + φyct + εt,

where κ (φπ − 1) + (1 − β) φy > 0 and φy >

!
4βσ−1(κ(φπ−1)+(1−β)φy)−(1−β+σ−1κ)

σ−1β
. The solution to this system

is given by

c∗t = − σ−1

β
(
δ − δ

)
∞

∑
s=t

$
βδ − 1

δ
s+1−t −

βδ − 1
δs+1−t

%
εs, π∗

t = − κσ−1

β
(
δ − δ

)
∞

∑
s=t

&
1

δs+1−t −
1

δ
s+1−t

'
εs,

and

i∗t = rn − φπ
κσ−1

β
(
δ − δ

)
∞

∑
s=t

&
1

δs+1−t −
1

δ
s+1−t

'
εs − φy

σ−1

β
(
δ − δ

)
∞

∑
s=t

$
βδ − 1

δ
s+1−t −

βδ − 1
δs+1−t

%
εs + εt,

where

δ =

(
1 + β + σ−1κ + σ−1βφy

)
+

#(
1 + β + σ−1κ + σ−1βφy

)2 − 4β
(
1 + σ−1κφπ + σ−1φy

)

2β
> 1,

δ =

(
1 + β + σ−1κ + σ−1βφy

)
−

#(
1 + β + σ−1κ + σ−1βφy

)2 − 4β
(
1 + σ−1κφπ + σ−1φy

)

2β
> 1.

Note that if the sequence of shocks decays sufficiently fast, then the sequence of nominal interest rates {i∗t }∞
t=0

also decays sufficiently fast.
Next, we compute the unique purely forward-looking solution to the system (1)-(2). Recall that the solu-

tion to the system can be written as

ct = cS
t +

1 − βλ

1 − β
λtΩ0, (22)

with

cS
t = σ−1 1 − βλ

λ − λ
λt

!
t−1

∑
s=0

$
λ

λs −
λ

λ
s

%

(is − rn) +
∞

∑
s=t

,

-1 − βλ

1 − βλ

$
λ

λ

%t

− 1

.

/ λ

λ
s (is − rn)

0

1 .

Since Ω0 is independent of t and equal to zero when it = rn for all t, it has to take the following form:

Ω0 =
∞

∑
s=0

ωs (is − rn) ,
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for some {ωs}∞
s=0. Plugging cS

t and Ω0 into (22) and combining terms, we get

ct =
1 − βλ

1 − β
λt

t−1

∑
s=0

!
σ−1 1 − β

λ − λ

$
λ

λs −
λ

λ
s

%
+ ωs

"

(is − rn) +

1 − βλ

1 − β
λt

∞

∑
s=t

*

+σ−1 1 − β

λ − λ

,

-1 − βλ

1 − βλ

$
λ

λ

%t

− 1

.

/ λ

λ
s + ωs

0

1 (is − rn) , (23)

where we divided the summation in Ω0 into a backward-looking and a forward-looking term. This expres-
sion is purely forward-looking if and only if σ−1 1−β

λ−λ

6
λ
λs − λ

λ
s

7
+ωs = 0 for all s, or ωs = −σ−1 1−β

λ−λ

6
λ
λs − λ

λ
s

7
.

Plugging this expression into (23), we get

ct = − σ−1

λ − λ

∞

∑
s=t

$
λ − 1
λs−t +

1 − λ

λ
s−t

%

(is − rn) ,

where

Ω0 = − (1 − β)
σ−1

λ − λ

∞

∑
s=0

$
λ

λs −
λ

λ
s

%

(is − rn) .

Note that limt→∞ ct and Ω0 are finite if and only if it = O
(
ξt) for ξ < λ. This condition holds for sequences

of nominal interest rates generated by a Taylor rule and shocks that decay sufficiently fast.
We want to show that the Taylor solution coincides with the purely forward-looking solution to the

system (1)-(2) evaluated at {i∗t }∞
t=0, that is

− σ−1

λ − λ

∞

∑
s=t

$
λ − 1
λs−t +

1 − λ

λ
s−t

%

(i∗s − rn) = − σ−1

β
(
δ − δ

)
∞

∑
s=t

$
βδ − 1

δ
s+1−t −

βδ − 1
δs+1−t

%
εs.

We will work with the LHS of this equality. Plugging in the solution for {i∗t }∞
t=0, we get

− σ−1

λ − λ

∞

∑
s=t

$
λ − 1
λs−t +

1 − λ

λ
s−t

%

(i∗s − rn) = − σ−1

λ − λ

∞

∑
s=t

$
λ − 1
λs−t +

1 − λ

λ
s−t

%
εs+

σ−1

λ − λ

σ−1

β
(
δ − δ

)
∞

∑
s=t

∞

∑
z=s

$
λ − 1
λs−t +

1 − λ

λ
s−t

%!
φπκ − φy (βδ − 1)

δz+1−s −
φπκ − φy

(
βδ − 1

)

δ
z+1−s

"
εz. (24)

Consider the last term

∞

∑
s=t

∞

∑
z=s

$
λ − 1
λs−t +

1 − λ

λ
s−t

%!
φπκ − φy (βδ − 1)

δz+1−s −
φπκ − φy

(
βδ − 1

)

δ
z+1−s

"
εz =

∞

∑
z=t

*

+−
(
φπκ − φy

(
βδ − 1

))
(
λ − λ

) 6 1
β − δ

7

(
λ − δ

) (
λ − δ

) δ
t−(z+1)

+
(
φπκ − φy (βδ − 1)

)
(
λ − λ

) 6 1
β − δ

7

(
λ − δ

)
(λ − δ)

δt−(z+1)−

(
φπκ − φy

(
βλ − 1

))
(
δ − δ

) 6 1
β − λ

7

(
λ − δ

) (
λ − δ

) λ
t−(z+1)

+
(
φπκ − φy (βλ − 1)

)
(
δ − δ

) 6 1
β − λ

7

(
λ − δ

)
(λ − δ)

λt−(z+1)

0

1 εz.
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Note that

(
λ − δ

) (
λ − δ

)
= −σ−1 φπκ − φy

(
βδ − 1

)

β
,

(
λ − δ

)
(λ − δ) = −σ−1 φπκ − φy (βδ − 1)

β
,

(
λ − δ

) (
λ − δ

)
= σ−1 φπκ − φy

(
βλ − 1

)

β
,

(
λ − δ

)
(λ − δ) = σ−1 φπκ − φy (βλ − 1)

β
.

Hence

∞

∑
s=t

∞

∑
z=s

$
λ − 1
λs−t +

1 − λ

λ
s−t

%!
φπκ − φy (βδ − 1)

δz+1−s −
φπκ − φy

(
βδ − 1

)

δ
z+1−s

"
εz =

∞

∑
z=t

8
σ
(
λ − λ

) (
1 − βδ

)
δ

t−(z+1) − σ
(
λ − λ

)
(1 − βδ) δt−(z+1) − σ

(
δ − δ

) (
1 − βλ

)
λ

t−(z+1)
+

σ
(
δ − δ

)
(1 − βλ) λt−(z+1)

9
εz.

Plugging back into (24), we get

ct = − σ−1

β
(
δ − δ

)
∞

∑
s=t

$
βδ − 1

δ
s+1−t −

βδ − 1
δs+1−t

%
εs.

Finally, suppose εt = ψtε0 with ψ ∈ (0, λ) and for some ε0 > 0. Then

i∗t = rn − φπ
κσ−1

β
(
δ − δ

)
∞

∑
s=t

&
1

δs+1−t −
1

δ
s+1−t

'
ψsε0 − φy

σ−1

β
(
δ − δ

)
∞

∑
s=t

$
βδ − 1

δ
s+1−t −

βδ − 1
δs+1−t

%
ψsε0 + εt.

After some algebra, we get
i∗t = rn + ψtνε0,

where

ν ≡ 1 − φπ
κσ−1

β
(
δ − ψ

)
(δ − ψ)

− φy
(1 − βψ) σ−1

β
(
δ − ψ

)
(δ − ψ)

.

Note that ∂i∗0
∂ε0

> 0 if and only if ν > 0, or

βψ2 −
6

1 + β + σ−1κ
7

ψ + 1 > 0,

where we used that δδ =
1+σ−1κφπ+σ−1φy

β and δ + δ =
1+β+σ−1κ+σ−1βφy

β . Since ψ ∈ (0, 1), this condition holds
if and only if ψ < λ.

Proof of Proposition 4. From equation (9), we have

Ω0 =

:
1 −

&
τ +

&
1
β
+

1
1 − βλ

'
κQb

';
Ω0+

(1 − β)

!
∞

∑
t=0

βt
86

it − πS
t+1 − rn

7
Qb − ρt (it − rn) ρQb + Tt

9"
.
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Note that
∞

∑
t=0

βtπS
t+1 =

∞

∑
t=0

βt
6

1 − λt+1
7
(it − rn) .

Then

Ω0 =

:
1 −

&
τ +

&
1
β
+

1
1 − βλ

'
κQb

';
Ω0 + (1 − β)

!
∞

∑
t=0

βt
6

λt+1 − ρt+1
7
(it − rn) Qb +

∞

∑
t=0

βtTt

"
.

If τ > 0 or b > 0 (or both), we get

Ω0 =
1 − β

τ +
6

1
β + 1

1−βλ

7
κQb

!
∞

∑
t=0

βt
6

λt+1 − ρt+1
7
(it − rn) Qb +

∞

∑
t=0

βtTt

"
.

Proof of Proposition 5. The wealth effect in the FTLP is given by

ΩFTPL
0 =

1 − β6
1
β + 1

1−βλ

7
κ

∞

∑
t=0

βt
6

λt+1 − ρt+1
7
(it − rn) . (25)

Thus,
∂ΩFTPL

0
∂it

=
1 − β6

1
β + 1

1−βλ

7
κ

βt
6

λt+1 − ρt+1
7
< 0 ⇐⇒ ρ > λ.

Proof of Proposition 6. We have

cSLTE
0 = − σ−1

λ − λ

!
T

∑
s=0

$
λ − 1

λs +
1 − λ

λ
s

%
rn +

T∗

∑
s=T+1

$
λ − 1

λs +
1 − λ

λ
s

%

(is − rn)

"
.

Hence, for t > T, we have
∂cSLTE

0
∂it

= − σ−1

λ − λ

$
λ − 1

λt +
1 − λ

λ
t

%
< 0.

For the Forward Guidance Puzzle, we have

∂2cSLTE
0

∂t∂it
=

σ−1

λ − λ

$
λ − 1

λt log λ +
1 − λ

λ
t log λ

%
.

Then
∂2cSLTE

0
∂t∂it

< 0 ⇐⇒ λ − 1
λt log λ +

1 − λ

λ
t log λ < 0.

A sufficient condition is
(
λ − 1

)
log λ + (1 − λ) log λ < 0.

Note that
λ − 1 > log λ and log λ < λ − 1.
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Then
(
λ − 1

)
log λ < (λ − 1) log λ,

or
(
λ − 1

)
log λ + (1 − λ) log λ < 0.

Hence
∂2cSLTE

0
∂t∂it

< 0.

For the Paradox of Flexibility

lim
κ→∞

∂cSLTE
0
∂it

= − lim
κ→∞

σ−1
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$
λ − 1

λt +
1 − λ

λ
t

%
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κ→∞
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1
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κ→∞
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κ→∞

1

λ
t

%
.

Note that
lim

κ→∞
λ = ∞ and lim

κ→∞
λ = 0,

hence
lim

κ→∞

1

λ
t = 0 and lim

κ→∞

1
λt = ∞ ∀t ≥ 1.

Moreover, using L’Hôpital’s rule,

lim
κ→∞

λ − 1
λ − λ

= lim
κ→∞

∂λ
∂κ

∂λ
∂κ − ∂λ

∂κ

= lim
κ→∞

,

<<-
1
2
+

=
1 − 4β

(1+β+σ−1κ)
2

2

.

>>/ = 1,

and

lim
κ→∞

1 − λ

λ − λ
= lim

κ→∞
−

∂λ
∂κ

∂λ
∂κ − ∂λ

∂κ

= lim
κ→∞

,

<<-
1
2
−

=
1 − 4β

(1+β+σ−1κ)
2

2

.

>>/ = 0,

where we used that

∂λ

∂κ
= σ−1

1 + 1+β+σ−1κ!
(1+β+σ−1κ)

2−4β

2β
> 0,

∂λ

∂κ
= σ−1

1 − 1+β+σ−1κ!
(1+β+σ−1κ)

2−4β

2β
< 0.

Hence

lim
κ→∞

∂cSLTE
0
∂it

= −∞.

For inflation, we have

πSLTE
0 = − κσ−1

λ − λ

!
T

∑
s=0

$
λ

λs −
λ

λ
s

%
rn +

T∗

∑
s=T+1

$
λ

λs −
λ

λ
s

%

(is − rn)

"
.
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For t > T
∂πSLTE

0
∂it

= − κσ−1

λ − λ

$
λ

λt −
λ

λ
t

%
< 0.

For the Forward Guidance Puzzle,

∂2πSLTE
0

∂t∂it
= − κσ−1

λ − λ

$
− λ

λt log λ +
λ

λ
t log λ

%
< 0.

For the Paradox of Flexibility

lim
κ→∞

∂πSLTE
0
∂it

= − lim
κ→∞

κσ−1

,

<<<-
lim

κ→∞

λ

λ − λ? @A B
→1

lim
κ→∞

1
λt

? @A B
→∞

− lim
κ→∞

λ

λ − λ? @A B
→0

lim
κ→∞

1

λ
t

? @A B
→0

.

>>>/
< −∞.

Proof of Proposition 7. We have

cS
0 = σ−1 1 − βλ

λ − λ

!
T

∑
s=0

$
1 − βλ

1 − βλ
− 1

%
λ

λ
s rn +

T∗

∑
s=T+1

$
1 − βλ

1 − βλ
− 1

%
λ

λ
s (is − rn)

"
.

For t > T
∂cS

0
∂it

= − σ−1

λ
t+1 < 0,

and
∂2cS

0
∂t∂it

= log λ
σ−1

λ
t+1 > 0.

Moreover
∂2cS

0
∂κ∂it

= (t + 1)
σ−1

λ
t+2

∂λ

∂κ
,

where

∂λ

∂κ
= σ−1

1 + 1+β+σ−1κ!
(1+β+σ−1κ)

2−4β

2β
> 0.

Hence
∂2cS

0
∂κ∂it

> 0.

Moreover, since limκ→∞ λ = ∞, then

lim
κ→∞

∂cS
0

∂it
= 0.

Finally, note that if ∂2c0
∂t∂it

< 0, then

∂2c0

∂t∂it
=

∂2cS
0

∂t∂it
+

1 − βλ

1 − β

∂2Ω0

∂t∂it
< 0.

Since ∂2cS
0

∂t∂it
> 0 and 1−βλ

1−β > 0, then ∂2Ω0
∂t∂it

< 0. Similarly for the Paradox of Flexibility.
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Proof of Proposition 8. See Appendix B.

Proof of Proposition 9. The system of equations characterizing equilibrium is given by

!
ct+1

πt+1

"
=

!
1 + σ̃−1 κ

β − σ̃−1

β

− κ
β

1
β

" !
ct

πt

"
+

!
σ̃−1 (it − rn,t)

0

"
,

where
rn,t = rn − σ̃

ωχT
1 − ωχy

(Th,t+1 − Th,t).

The solution is analogous to the one in the RANK model (see proof of Proposition 1), with σ̃−1 taking the
place of σ−1 and rn,t taking the place of rn. Then, we can separate vt to get

cS
t = σ̃−1 1 − βλ

λ − λ
λt

*

+
t−1

∑
s=0

$
λ

λs −
λ

λ
s

%

(is − rn) +
∞

∑
s=t

,

-1 − βλ

1 − βλ

$
λ

λ

%t

− 1

.

/ λ

λ
s (is − rn)

0

1 ,

cT
t ≡ ωχT

1 − ωχy

1 − βλ

λ − λ
λt

*

+
t−1

∑
s=0

$
λ

λs −
λ

λ
s

%
(
T̂b,s+1 − T̂b,s

)
+

∞

∑
s=t

,

-1 − βλ

1 − βλ

$
λ

λ

%t

− 1

.

/ λ

λ
s
(
T̂b,s+1 − T̂b,s

)
0

1 .

Proof of Proposition 10. The system of equations characterizing equilibrium is given by

*

CCCC+

πt+2

πt+1

ct+1

kt+1

0

DDDD1

? @A B
=Xt+1

=

*

CCCC+

ξππ 0 −ξπc 0
1 0 0 0
−1 0 1 0

−βξkπ ξkπ −ξkc ξkk

0

DDDD1

? @A B
=A

*

CCCC+

πt+1

πt

ct

kt

0

DDDD1

? @A B
=Xt

+

*

CCCC+

−ξπi (it − rn)

0
(it − rn)

0

0

DDDD1

? @A B
=bt

,

where

ξππ ≡ 1
β

&
1 + ψ +

ψγ (1 − δ)

r

'
, ξπi ≡

ψ

β

&
1 +

γ (1 − δ)

r

'
, ξπc ≡

ψ

β
(1 − γ) ,

ξkπ ≡ 1
ψ

1 − γ

γ

δ

sI
, ξkc ≡

δ

sI

&
1 − γ

γ
+ sc

'
, ξkk ≡ 1 − δ +

δ

sI
.

Since kt is the only predetermined variable in the system, the Rational Expectations Equilibrium of this econ-
omy is determinate if and only if the matrix A has exactly one eigenvalue inside the unit circle and three
eigenvalues outside. It is immediate to see that ξkk > 1 is an eigenvalue of the matrix A. Therefore, the
characteristic polynomial of A can be written as

p(λ) = (ξkk − λ)(−λ) [(ξππ − λ)(1 − λ)− ξπc] .
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The roots of the polynomial are thus given by

λ1 = 0,

λ2 =
ξππ + 1 −

#
(ξππ + 1)2 − 4 (ξππ − ξπc)

2
,

λ3 =
ξππ + 1 +

#
(ξππ + 1)2 − 4 (ξππ − ξπc)

2
,

λ4 = ξkk.

Since ξππ > 1 and ξππ − ξπ′c > 0, λ2 ∈ (0, 1) and λ3 > 1. The associated eigenvectors are

v1 =
8

0 ξkk 0 −ξkπ

9′
,

v2 =

:

1 1
λ2

1
1−λ2

βξkπ−
ξkπ
λ2

+
ξkc

1−λ2
ξkk−λ2

;′
,

v3 =

:

1 1
λ3

1
1−λ3

βξkπ−
ξkπ
λ3

+
ξkc

1−λ3
ξkk−λ3

;′
,

v4 =
8

0 0 0 1
9′

.

Let

Λ ≡

*

CCCC+

λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

0

DDDD1
,

and

V ≡

*

CCCC+

0 1 1 0
ξkk v22 v32 0
0 v23 v33 0

−ξkπ v24 v34 1

0

DDDD1
,

where

v22 ≡ 1
λ2

, v23 ≡ 1
1 − λ2

, v24 =
βξkπ − ξkπ

λ2
+ ξkc

1−λ2

ξkk − λ2
,

v32 ≡ 1
λ3

, v33 ≡ 1
1 − λ3

, v34 =
βξkπ − ξkπ

λ3
+ ξkc

1−λ3

ξkk − λ3
.

After some algebra, it is possible to get that

V−1 =

*

CCCC+

ṽ11
1

ξkk
ṽ13 0

ṽ21 0 ṽ23 0
ṽ31 0 ṽ33 0
ṽ41

ξkπ
ξkk

ṽ43 1

0

DDDD1
,
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where

ṽ11 = − 1
ξkk

1
λ2λ3

, ṽ21 =
1 − λ2

λ3 − λ2
, ṽ31 = − 1 − λ3

λ3 − λ2
,

ṽ41 =
βξkπ + ξkπ + ξkc − βξkπξkk +

ξkk−(λ2+λ3)
λ2λ3

ξkπ

(ξkk − λ2) (ξkk − λ3)
− ξkπ

ξkk

1
λ2λ3

,

ṽ13 =
1

ξkk

(1 − λ2)(1 − λ3)

λ2λ3
, ṽ23 = − (1 − λ2)(1 − λ3)

λ3 − λ2
, ṽ33 =

(1 − λ2)(1 − λ3)

λ3 − λ2
,

ṽ43 =
(1 − λ2) (1 − λ3)

8
−βξkπ + (λ2+λ3)−ξkk

λ2λ3
ξkπ + (λ2+λ3)−ξkk−1

(1−λ2)(1−λ3)
ξkc

9

(ξkk − λ2) (ξkk − λ3)
+

ξkπ

ξkk

(1 − λ2)(1 − λ3)

λ2λ3
.

Then, we can rewrite the system as
Xt+1 = VΛV−1Xt + bt,

or
Yt+1 = ΛYt + mt,

where Yt ≡ V−1Xt, mt ≡ V−1bt. Then

y1,t =

2
4

5
y1,0 if t = 0

m1,t−1 if t ≥ 1

y2,t = λt
2y2,0 + λt

2

t−1

∑
k=0

λ
−(k+1)
2 m2,k

y3,t = −λt
3

∞

∑
k=t

λ
−(k+1)
3 m3,k

y4,t = −λt
4

∞

∑
k=t

λ
−(k+1)
4 m4,k

Note that

mt =

*

CCCC+

ṽ11
1

ξkk
ṽ13 0

ṽ21 0 ṽ23 0
ṽ31 0 ṽ33 0
ṽ41

ξkπ
ξkk

ṽ43 1

0

DDDD1

*

CCCC+

−ξπi (it − rn)

0
(it − rn)

0

0

DDDD1
=

*

CCCC+

(ṽ13 − ṽ11ξπi) (it − rn)

(ṽ23 − ṽ21ξπi) (it − rn)

(ṽ33 − ṽ31ξπi) (it − rn)

(ṽ43 − ṽ41ξπi) (it − rn)

0

DDDD1
.

Hence

y1,t =

2
3334

3335

ṽ11π1 +
1

ξkk
π0 + ṽ13c0

? @A B
y1,0

if t = 0

(ṽ13 − ṽ11ξπi) (it−1 − rn) if t ≥ 1

y2,t = λt
2 [ṽ21π1 + ṽ23c0]? @A B

y2,0

+ (ṽ23 − ṽ21ξπi) λt
2

t−1

∑
k=0

λ
−(k+1)
2 (ik − rn) ,

y3,t = − (ṽ33 − ṽ31ξπi) λt
3

∞

∑
k=t

λ
−(k+1)
3 (ik − rn)
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y4,t = − (ṽ43 − ṽ41ξπi) λt
4

∞

∑
k=t

λ
−(k+1)
4 (ik − rn)

where we used that Y0 = V−1X0. We can recover the original variables using that Xt = VYt, which implies
that

πt+1 = λt
2 [ṽ21π1 + ṽ23c0] + (ṽ23 − ṽ21ξπi) λt

2

t−1

∑
k=0

λ
−(k+1)
2 (ik − rn)− (ṽ33 − ṽ31ξπi) λt

3

∞

∑
k=t

λ
−(k+1)
3 (ik − rn)

πt =

2
33333334

33333335

ξkk

8
ṽ11π1 +

1
ξkk

π0 + ṽ13c0

9
+ v22 [ṽ21π1 + ṽ23c0]− v32 (ṽ33 − ṽ31ξπi)∑∞

k=0 λ
−(k+1)
3 (ik − rn) if t = 0

ξkk (ṽ13 − ṽ11ξπi) (it−1 − rn) + v22λt
2

!

[ṽ21π1 + ṽ23c0] + (ṽ23 − ṽ21ξπi)
t−1

∑
k=0

λ
−(k+1)
2 (ik − rn)

"

−v32 (ṽ33 − ṽ31ξπi) λt
3

∞

∑
k=t

λ
−(k+1)
3 (ik − rn)

if t ≥ 1

ct = v23λt
2

!

[ṽ21π1 + ṽ23c0] + (ṽ23 − ṽ21ξπi)
t−1

∑
k=0

λ
−(k+1)
2 (ik − rn)

"
−v33 (ṽ33 − ṽ31ξπi) λt

3

∞

∑
k=t

λ
−(k+1)
3 (ik − rn)

kt =

2
33333333333334

33333333333335

−ξkπ

:
ṽ11π1 +

1
ξkk

π0 + ṽ13c0

;
+ v24 [ṽ21π1 + ṽ23c0]− v34 (ṽ33 − ṽ31ξπi)

∞

∑
k=0

λ
−(k+1)
3 (ik − rn)−

(ṽ43 − ṽ41ξπi)
∞

∑
k=0

λ
−(k+1)
4 (ik − rn)

if t = 0

−ξkπ (ṽ13 − ṽ11ξπi) (it−1 − rn) + v24λt
2

!

[ṽ21π1 + ṽ23c0] + (ṽ23 − ṽ21ξπi)
t−1

∑
k=0

λ
−(k+1)
2 (ik − rn)

"
−

v34 (ṽ33 − ṽ31ξπi) λt
3

∞

∑
k=t

λ
−(k+1)
3 (ik − rn)− (ṽ43 − ṽ41ξπi) λt

4

∞

∑
k=t

λ
−(k+1)
4 (ik − rn)

if t ≥ 1

Let Ω0 ≡ (1 − β)∑∞
t=0 βtyt, Ωc

0 ≡ (1 − β)∑∞
t=0 βtct and ΩI

0 ≡ (1 − β)∑∞
t=0 βtιt. Then

Ω0 = scΩc
0 + sIΩI

0

Using that ∑∞
t=0 βtιt =

1
β −(1−δ)

δ ∑∞
t=0 βtkt and letting Ωk

0 ≡ (1 − β)∑∞
t=0 βtkt, we get

Ω0 = scΩc
0 +

sI
δ

:
1
β
+ (1 − δ)

;
Ωk

0 (26)

We can use the expressions above to compute the sums. For consumption we have

Ωc
0

1 − β
=

∞

∑
t=0

βtct =
v23

1 − βλ2

!

[ṽ21π1 + ṽ23c0] + (ṽ23 − ṽ21ξπi)
∞

∑
t=0

βt+1 (it − rn)

"
−

v33

1 − βλ3
(ṽ33 − ṽ31ξπi)

∞

∑
t=0

6
λ
−(t+1)
3 − βt+1

7
(it − rn)
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hence

ṽ21π1 + ṽ23c0 =
1

v23

1 − βλ2

1 − β
Ωc

0 +
1 − βλ2

1 − βλ3

v33

v23
(ṽ33 − ṽ31ξπi)

∞

∑
t=0

6
λ
−(t+1)
3 − βt+1

7
(it − rn)−

(ṽ23 − ṽ21ξπi)
∞

∑
t=0

βt+1 (it − rn) (27)

For capital, we have

Ωk
0

1 − β
≡

∞

∑
t=1

βtkt =
v24

1 − βλ2
βλ2 [ṽ21π1 + ṽ23c0] +

:
−ξkπ (ṽ13 − ṽ11ξπi) +

v24

1 − βλ2
(ṽ23 − ṽ21ξπi)

; ∞

∑
t=0

βt+1 (it − rn)−

v34

1 − βλ3
(ṽ33 − ṽ31ξπi)

∞

∑
t=0

6
βλ−t

3 − βt+1
7
(it − rn)−

1
1 − βλ4

(ṽ43 − ṽ41ξπi)
∞

∑
t=0

6
βλ−t

4 − βt+1
7
(it − rn)

Combining with (27), we get
Ωk

0 = (1 − β) Γ0 +
v24

v23
βλ2Ωc

0 (28)

where

Γ0 ≡ βλ2

1 − βλ3

v24v33

v23
(ṽ33 − ṽ31ξπi)

∞

∑
t=0

6
λ
−(t+1)
3 − βt+1

7
(it − rn)−

βλ2

1 − βλ2
v24 (ṽ23 − ṽ21ξπi)

∞

∑
t=0

βt+1 (it − rn) +

:
−ξkπ (ṽ13 − ṽ11ξπi) +

v24

1 − βλ2
(ṽ23 − ṽ21ξπi)

; ∞

∑
t=0

βt+1 (it − rn)−

1
1 − βλ3

v34 (ṽ33 − ṽ31ξπi)
∞

∑
t=0

6
βλ−t

3 − βt+1
7
(it − rn)−

1
1 − βλ4

(ṽ43 − ṽ41ξπi)
∞

∑
t=0

6
βλ−t

4 − βt+1
7
(it − rn)

Introducing this expression into (26), we get

Ωc
0 = −

sI
δ

8
1
β + (1 − δ)

9

sI
δ

8
1
β + (1 − δ)

9
v24
v23

βλ2 + sc
(1 − β) Γ0 +

1
sI
δ

8
1
β + (1 − δ)

9
v24
v23

βλ2 + sc

Ω0

and

Ωk
0 =

sc
sI
δ

8
1
β + (1 − δ)

9
v24
v23

βλ2 + sc
(1 − β) Γ0 +

v24
v23

βλ2

sI
δ

8
1
β + (1 − δ)

9
v24
v23

βλ2 + sc

Ω0
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Thus, we can rewrite consumption as

ct = cs
t −

sI
δ

8
1
β + (1 − δ)

9

sI
δ

8
1
β + (1 − δ)

9
v24
v23

βλ2 + sc
(1 − βλ2) λt

2Γ0 +
1

sI
δ

8
1
β + (1 − δ)

9
v24
v23

βλ2 + sc

1 − βλ2

1 − β
λt

2Ω0

where

cS
t ≡ 1 − βλ2

1 − βλ3
v33 (ṽ33 − ṽ31ξπi) λt

2

∞

∑
t=0

6
λ
−(t+1)
3 − βt+1

7
(it − rn)−

v23 (ṽ23 − ṽ21ξπi) λt
2

∞

∑
t=0

βt+1 (it − rn) + v23 (ṽ23 − ṽ21ξπi) λt
2

t−1

∑
k=0

λ
−(k+1)
2 (ik − rn)−

v33 (ṽ33 − ṽ31ξπi) λt
3

∞

∑
k=t

λ
−(k+1)
3 (ik − rn)

and it satisfies ∑∞
t=0 βtcS

t = 0. Moreover, we can rewrite capital as

kt = kS
t +

sc
sI
δ

8
1
β + (1 − δ)

9
v24
v23

βλ2 + sc

1 − βλ2

βλ2
λt

2Γ0 +

v24
v23

sI
δ

8
1
β + (1 − δ)

9
v24
v23

βλ2 + sc

1 − βλ2

1 − β
λt

2Ω0

where

kS
t = −ξkπ (ṽ13 − ṽ11ξπi) (it−1 − rn)−

1 − βλ2

βλ2

:
−ξkπ (ṽ13 − ṽ11ξπi) +

v24

1 − βλ2
(ṽ23 − ṽ21ξπi)

;
λt

2

∞

∑
t=0

βt+1 (it − rn) +

1
βλ2

v34
1 − βλ2

1 − βλ3
(ṽ33 − ṽ31ξπi) λt

2

∞

∑
t=0

6
βλ−t

3 − βt+1
7
(it − rn) +

1
βλ2

1 − βλ2

1 − βλ4
(ṽ43 − ṽ41ξπi) λt

2

∞

∑
t=0

6
βλ−t

4 − βt+1
7
(it − rn) +

v24 (ṽ23 − ṽ21ξπi) λt
2

t−1

∑
k=0

λ
−(k+1)
2 (ik − rn)− v34 (ṽ33 − ṽ31ξπi) λt

3

∞

∑
k=t

λ
−(k+1)
3 (ik − rn)−

(ṽ43 − ṽ41ξπi) λt
4

∞

∑
k=t

λ
−(k+1)
4 (ik − rn)

ki
t ≡ ξπi

!
ξkπ ṽ11 (it−1 − rn)−

1 − βλ2

βλ2
λt

2

∞

∑
k=0

:
ξkπ ṽ11 −

v24ṽ21

1 − βλ2
− v34ṽ31

1 − βλ3
− ṽ41

1 − βλ4

;
βk+1 (ik − rn)

− 1 − βλ2

λ2
λt

2

∞

∑
k=0

:
v34ṽ31

1 − βλ3
λ−k

3 +
ṽ41

1 − βλ4
λ−k

4

;
(ik − rn)− v24ṽ21λt

2

t−1

∑
k=0

λ
−(k+1)
2 (ik − rn) +

v34ṽ31λt
3

∞

∑
k=t

λ
−(k+1)
3 (ik − rn) + λt

4

∞

∑
k=t

λ
−(k+1)
4 ṽ41ξπi (ik − rn)

"

and it satisfies ∑∞
t=0 βtkS

t = 0.
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For inflation, recall that we have
πt = βπt+1 + ψmct

hence

πt = ψ
∞

∑
k=0

βkmct+k

Moreover,
mct = ct +

γ

1 − γ
yt −

γ

1 − γ
kt

therefore

πt = ψ
∞

∑
k=0

βk
:

ct+k +
γ

1 − γ
yt+k −

γ

1 − γ
kt+k

;

or

πt = πS
t + EΨΓλt

2Γ0 +
EΨΩ

1 − β
λt

2Ω0

where

πS
t ≡ ψ

∞

∑
k=0

βk
:&

1 +
γ

1 − γ
sc

'
cs

t+k +
γ

1 − γ

sI
δ

kS
t+1+k −

γ

1 − γ

&
1 +

1 − δ

δ
sI

'
kS

t+k

;

EΨΓ ≡ ψ
−

6
1 + γ

1−γ sc

7
sI
δ

8
1
β + (1 − δ)

9
+ γ

1−γ
sI
δ sc

1
β − γ

1−γ

6
1 + 1−δ

δ sI

7
sc

1
βλ2

sI
δ

8
1
β + (1 − δ)

9
v24
v23

βλ2 + sc

EΨΩ ≡ ψ
1 + γ

1−γ sc +
γ

1−γ
sI
δ

v24
v23

λ2 − γ
1−γ

6
1 + 1−δ

δ sI

7
v24
v23

sI
δ

8
1
β + (1 − δ)

9
v24
v23

βλ2 + sc

For t = 0

π0 = ψ

*

+−
sI
δ

8
1
β + (1 − δ)

9
+ γ

1−γ
sc

βλ2

sI
δ

8
1
β + (1 − δ)

9
v24
v23

βλ2 + sc

Γ0 +

,

- γ

1 − γ
+

1 − γ
1−γ

v24
v23

sI
δ

8
1
β + (1 − δ)

9
v24
v23

βλ2 + sc

.

/ Ω0

1 − β

0

1

Hence, in general, π0 ∕= 0 when Ω0 = 0.
Finally, recall that

Ω0 =
∞

∑
t=0

βt [(1 − τ) yt + (it − πt+1 − rn) Qb + Tt]−
!

∞

∑
t=0

(βρ)t (it − rn) ρ +
1
β

π0

"
Qb

Thus, we can write Ω0 as

Ω0 =
1 − β

τ + ΨΩQb

!
∞

∑
t=0

βt
86

it − πS
t − rn

7
Qb + Tt

9
−

!
∞

∑
t=0

(βρ)t (it − rn) ρ + ΨΓΓ0

"
Qb

"

where

ΨΓ ≡ 1 − βλ2 + β

β (1 − βλ2)
EΨΓ, ΨΩ ≡ 1 − βλ2 + β

β (1 − βλ2)
EΨΩ.
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B Derivation of TANK model

This section derives the TANK model. Time is discrete and runs forever. The economy is populated by
households, firms and a government. The model nests the standard RANK model as a special case.

Households. The economy is populated by a continuum of measure one of households. A measure 1 −
ω of households are savers, indexed by s: they are forward-looking and can trade in asset markets. The
complementary fraction ω corresponds to households that are hand-to-mouth (HtM), indexed by h: they
have no access to financial markets and consume their labor income each period. The RANK model is a
particular case in which ω = 0.

Households receive labor income WtNj,t, profits from corporate holdings Πj,t, and government transfers
Pt ETj,t, for j ∈ {s, h}. We assume that corporations are owned by savers, so Πh,t = 0 for all t ≥ 0.

The problem of a saver is given by

max
{Cs,t ,Ns,t}∞

t=0

∞

∑
t=0

βtU(Cs,t, Ns,t)

subject to the flow budget constraint

PtCs,t + QtBs,t+1 ≤ (1 + ρQt)Bs,t + WtNs,t + Πs,t + Pt ETs,t,

where the price of long-term bonds satisfies Qt =
1+ρQt+1

1+it
.

The saver’s optimality conditions are given by

−
Un

s,t

Uc
s,t

=
Wt

Pt

1 = (1 + it)β
Uc

s,t+1

Uc
s,t

Pt

Pt+1
,

where Uc
j,t ≡

∂U(Cj,t ,Nj,t)

∂Cj,t
and Un

j,t ≡
∂U(Cj,t ,Nj,t)

∂Nj,t
, and we used that 1 + it =

1+ρQt+1
Qt

.
The problem of a HtM household is

max
{Ch,t ,Nh,t}∞

t=0

∞

∑
t=0

βtU(Ch,t, Nh,t)

subject to
PtCh,t ≤ WtNh,t + Pt ETh,t.

The HtM household’s optimality condition is given by

−
Un

h,t

Uc
h,t

=
Wt

Pt
.

In what follows, we assume that U(Cj,t, Nj,t) =
C1−σ

j,t
1−σ −

N1+ϕ
j,t

1+ϕ .

Firms. There are two types of firms in the economy: final-goods producers and intermediate-goods pro-
ducers. Final-goods producers operate in a perfectly competitive market and combine a unit mass of inter-
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mediate goods Yt(i), for i ∈ [0, 1], using the production function

Yt =

$
ˆ 1

0
Yt(i)

ε−1
ε di

% ε
ε−1

. (29)

The problem of the final-good producer is given by

max
[Yt(i)]i∈[0,1]

PtYt −
ˆ 1

0
Pt(i)Yt(i)

subject to (29). The solution to this problem gives the standard CES demand

Yt(i) =
&

Pt(i)
Pt

'−ε

Yt, (30)

where Pt ≡
6
´ 1

0 Pt(i)1−εdi
7 1

1−ε .
Intermediate goods are produced using the following technology:

Yt(i) = Nt(i)1−γ,

with γ ∈ [0, 1). Firms choose the price for their good, Pt(i), subject to the demand for their good, given by
(30), taking the aggregate price level Pt and aggregate output, Yt, as given. As is standard in New Keynesian
models, we assume that firms are subject to a pricing friction à la Calvo: each firm may set a new price with
probability 1− θ in each period. Let P∗

t denote the price chosen by a firm that is able to set the price in period
t. Then, P∗

t is the solution to the following problem:

max
P∗

t

∞

∑
k=0

θkQt,t+k[(1 − τ)P∗
t Yt+k|t − Ψt+k(Yt+k|t)]

subject to

Yt+k|t =

&
P∗

t
Pt+k

'−ε

Yt+k,

where Qt,t+k ≡ βkUc
s,t+k/Uc

s,tPt/Pt+k is the savers’ stochastic discount factor for nominal payoffs, Ψt(Yt+k|t) =

Wt+kY
1

1−γ

t+k|t is the cost function, Yt+k|t denotes output in period t + k for a firm that last set price in period t,
and τ is a proportional sales tax. The first-order condition associated with this problem is given by

∞

∑
k=0

θkQt,t+kYt+k|t

:
(1 − τ)P∗

t − ε

ε − 1
Ψ′

t(Yt+k|t)

;
= 0.

Dividing this expression by Pt, we get

∞

∑
k=0

θkQt,t+kYt+k|t

:
(1 − τ)

P∗
t

Pt
− ε

ε − 1
MCt+k|t

Pt+k
Pt

;
= 0,

where MCt+k|t ≡ Ψ′
t(Yt+k|t)/Pt+k is the real marginal cost in period t + k for a firm whose price was last set

in period t.
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Government. We assume that the monetary authority follows an interest rate rule of the form

log(1 + it) = rn + φππt + φy log
&

Yt

Y

'
+ εm,t,

where rn ≡ − log β, πt ≡ log
6

Pt
Pt−1

7
, Y is the zero-inflation steady-state level of output, and εm,t denotes a

monetary policy shock.
Moreover, the government chooses transfers to savers and HtM households, {ETs,t, ETh,t}∞

t=0, and the sales
tax rate τ, to satisfy the flow budget constraint

QtBt+1 = (1 + ρQt)Bt + Pt(ωETh,t + (1 − ω)ETs,t)− τ

ˆ 1

0
Pt(i)Yt(i)di

and the No-Ponzi condition limt→∞ QtBt+1 = 0.

Market clearing. The market clearing conditions for goods, labor and bonds are given by

ωCh,t + (1 − ω)Cs,t = Yt,

ωNh,t + (1 − ω)Ns,t = Nt,

(1 − ω)Bs,t = Bt,

where Nt =
´ 1

0 Nt(i)di denotes the aggregate labor demand in period t.
Because of the Calvo friction, the price level can be written as

Pt =

!
(1 − θ)(P∗

t )
1−ε +

ˆ

S(t)
(Pt−1(i))1−εdi

" 1
1−ε

,

where S(t) ⊂ [0, 1] is the set of firms that do not set a new price in period t. Since a random set of firms is
able to change prices every period (independent of any firm characteristic), we have that

ˆ

S(t)
(Pt−1(i))1−εdi = θP1−ε

t−1 .

Hence, we can write the price level as

Pt =
8
(1 − θ)(P∗

t )
1−ε + θP1−ε

t−1

9 1
1−ε .

Steady state. Let the variables without subscript denote the value of the variables in a zero-inflation steady
state.

Consumption of the HtM households is given by

Ch =
W
P

Nh + ETh.

Consumption of savers is given by

Cs =
W
P

Ns +
(1 − τ)Y − W

P N
1 − ω

+ T̃s +
1 − β

β

QBs

P
,
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where Bs = B
1−ω , and Q = β

1−βρ . Combining these two conditions, we obtain the government’s budget
constraint

τY − ωT̃h − (1 − ω)ETs =
1 − β

β

QB
P

.

Optimal labor implies
W
P

= Nϕ
j Cσ

j

From the optimal pricing equation, we obtain

P =
ε

ε − 1
W

1 − τ

Y
γ

1−γ

1 − γ
,

with Y = N1−γ. Note that
WN
PY

= (1 − τ) (1 − γ)
ε − 1

ε
.

The distribution of consumption in steady state will depend on fiscal policy. Fix a steady state with a
given value for (Ch, Cs) and government debt B. The required value of transfers that implement the given
level of consumption are

ETh = Ch −
&

W
P

' 1+ϕ
ϕ

C
− σ

ϕ

h ,

ETs = Cs −
&

W
P

' 1+ϕ
ϕ

C
− σ

ϕ
s − 1 + (ε − 1)γ

ε

1 − τ

1 − ω
Y − 1 − β

β

QB
1 − ω

,

where Y = ωCh + (1 − ω)Cs.

Log-linearization. As is standard, we study the dynamics of the economy around a steady-state equilib-
rium with zero inflation. For a variable Xt, let xt ≡ log

6
Xt
X

7
, where X denotes the zero-inflation steady-state

value. We derive the equilibrium conditions for the general case where Ch may differ from Cs, and then
specialize to the Ch = Cs case considered in Section 4.2.

The log-linearized version of the savers’ Euler equation is given by

cs,t+1 = cs,t + σ−1 (it − πt+1 − rn) ,

where we used that log 1 + it ≈ it.
The labor supply condition can be written as

wt − pt = ϕnj,t + σcj,t.

Log-linearizing the market clearing conditions for consumption and labor, we obtain

ωcch,t + (1 − ωc)cs,t = yt, ωnnh,t + (1 − ωn)ns,t = nt,

where ωc ≡ ωCh
Y and ωn ≡ ωNh

N .
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From the labor-supply condition, we obtain

ns,t = nh,t + ϕ−1σ(ch,t − cs,t)

= nh,t + ϕ−1σ(1 − ωc)
−1(ch,t − yt),

using the market-clearing condition for goods to eliminate cs,t. Plugging this expression into the market-
clearing condition for labor, we obtain

nh,t =

&
1

1 − γ
+ ϕ−1σ

'
yt − ϕ−1σch,t + ϕ−1σ

ωc − ωn

1 − ωc
(yt − ch,t),

where we used that nt =
1

1−γ yt. The real wage is then given by

wt − pt =

&
ϕ

1 − γ
+ σ

'
yt + σ

ωc − ωn

1 − ωc
(yt − ch,t).

Linearizing the borrowers’ budget constraint, we obtain

ch,t =
WNb
PCb

(wt − pt + nh,t) + Th,t,

where Th,t ≡
"Th,t−"Th

Ch
. Plugging the expressions for the real wage and labor supply into this expression, we

obtain

ch,t =
WNh
PCh

:6
1 + ϕ−1

7&
ϕ

1 − γ
+ σ

'
yt − ϕ−1σch,t +

6
1 + ϕ−1

7
σ

ωc − ωn

1 − ωc
(yt − ch,t)

;
+ Th,t.

Then,
ch,t = χyyt + χTTh,t,

where

χy ≡
WNh
PCh

8(
1 + ϕ−1)

6
ϕ

1−γ + σ
7
+

(
1 + ϕ−1) σ ωc−ωn

1−ωc

9

1 + WNh
PCh

8
ϕ−1σ + (1 + ϕ−1) σ ωc−ωn

1−ωc

9

χT ≡ 1

1 + WNh
PCh

8
ϕ−1σ + (1 + ϕ−1) σ ωc−ωn

1−ωc

9

The symmetric steady state case is obtained by imposing Ch = Cs = Y, so ωc = ωn = ω, and 1 − α ≡ WN
PY =

(1 − τ) (1 − γ) ε−1
ε .

From the borrower’s consumption and market clearing, we obtain

cs,t =
1 − ωcχy

1 − ωc
yt −

ωcχT
1 − ωc

Th,t.

Introducing this expression into the saver’s Euler equation, we get

yt+1 = yt + σ̃−1 (it − πt+1 − rn) + vt,
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where
σ̃−1 ≡ 1 − ωc

1 − ωcχy
σ−1, vt ≡

ωcχT
1 − ωcχy

(Th,t+1 − Th,t) .

The flow budget constraint for savers can be written as

cs,t +
QBs

PCs
bs,t+1 +

QBs

PCs
(1 − ρ) qt +

QBs

PCs
πt+1 ≤ 1

β

QBs

PCs
bs,t +

WNs

PCs
(wt − pt + ns,t) +

(1 − τ) yt − WN
PY (wt − pt + nt)

1 − ωc
+ Ts,t.

Multiplying by βt, summing over time and using the government’s No-Ponzi condition, we get

∞

∑
t=0

βtcs,t ≤ −QBs

PCs

1
β

π0 +
QBs

PCs
ρq0 +

∞

∑
t=0

βt
:

1 − τ

1 − ωc
yt +

WNs

PCs
(wt − pt + ns,t)−

1
1 − ωc

WN
PY

(wt − pt + nt) + (it − πt+1 − rn)
QBs

PCs
+ Ts,t

;
,

where we used that βρqt+1 − qt = it − rn. Finally, noting that q0 = −∑∞
t=0 (βρ)t (it − rn), we get

∞

∑
t=0

βtcs,t ≤
∞

∑
t=0

βt
:

1 − τ

1 − ωc
yt +

WNs

PCs
(wt − pt + ns,t)−

1
1 − ωc

WN
PY

(wt − pt + nt) +

(it − πt+1 − rn)
QBs

PCs
+ Ts,t

;
−

!
∞

∑
t=0

(βρ)t (it − rn) ρ +
1
β

π0

"
QBs

PCs
.

Evaluating this expression at ω = 0, we obtain equation (3) in Section 2.
Note that summing the flow budget constraint of savers and HtM households, we get

ct +
QB
PY

bt+1 +
QB
PY

(1 − ρ) qt +
QB
PY

πt+1 ≤ (1 − τ) yt +
1
β

QB
PY

bt + Tt,

where Tt = (1 − ωc) Ts,t +ωcTh,t and bt = bs,t. Thus, we obtain the intertemporal aggregate budget constraint
of the households,

∞

∑
t=0

βtct ≤
∞

∑
t=0

βt
:
(1 − τ) yt + (it − πt+1 − rn)

QB
PY

+ Tt

;
−

!
∞

∑
t=0

(βρ)t (it − rn) ρ +
1
β

π0

"
QB
PY

.

Now, consider the firms. The log-linear approximation of the intermediate-goods producers’ first-order
condition around the zero inflation steady state yields

p∗t − pt = (1 − θβ)
∞

∑
k=0

(θβ)k
6

mct+k|t + pt+k − pt

7
.

Approximating the expression for the marginal cost, we get

mct+k|t = wt+k − pt+k +
γ

1 − γ
yt+k|t,

where
yt+k|t = −ε (p∗t − pt+k) + yt+k.
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Let mct+k denote the average marginal cost in the economy, which is given by

mct+k = wt+k − pt+k +
γ

1 − γ
yt+k.

Introducing the labor supply optimality condition, and using that nt =
1

1−γ yt, we get

mct+k =

&
σ +

ϕ + γ

1 − γ

'
yt+k + σ

ωc − ωn

1 − ωc
(yt+k − ch,t+k).

Moreover, approximating the price level equation we get

p∗t − pt =
θ

1 − θ
πt.

Hence, we can write the firm’s optimality condition as

πt = βπt+1 + [κyt + κh(yt − ch,t)] ,

where κ ≡ (1−θ)(1−θβ)
θ

1−γ
1−γ+γε

6
σ + ϕ+γ

1−γ

7
and κh ≡ (1−θ)(1−θβ)

θ
1−γ

1−γ+γε σ ωc−ωn
1−ωc

. Imposing a symmetric steady
state, κh = 0.

Finally, let’s calculate the change in aggregate households’ wealth. Let

EΩ0 ≡ (1 + ρQ0)
B0

P0
+

∞

∑
t=0

t−1

∏
s=0

&
Ps+1/Ps

1 + is

' :
Wt

Pt
Nt +

Πt

Pt
+ ETt

;
.

Then, the households’ intertemporal budget constraint can be written as

∞

∑
t=0

t−1

∏
s=0

&
Pt+1/Pt

1 + is

'
Ct = EΩ0.

In steady state
∞

∑
t=0

βtC = EΩ =⇒
EΩ
C

=
1

1 − β
.

Let ct ≡ log Ct
C , ÊΩ0 ≡ log

"Ω0
"Ω

, and note that, up to first order, it ≃ log 1 + it. Then, a first order approximation
of the households’ intertemporal budget constraint around a zero-inflation steady state is given by

∞

∑
t=0

βtct =
1

1 − β
ÊΩ0 +

β

1 − β

∞

∑
t=0

βt (it − πt+1 − rn) ,

where rn ≡ − log β. Let

Ω0 ≡ ÊΩ0 + β
∞

∑
t=0

βt (it − πt+1 − rn) .
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Note that

Ω0 = (1 − β)

!
∞

∑
t=0

βt [(1 − τ) yt + Tt]−
β

1 − β

(1 − τ)Y + T
Y

∞

∑
t=0

βt (it − πt+1 − rn)−
!

∞

∑
t=0

(βρ)t (it − rn) ρ +
1
β

π0

"
QB
YP

"
+ β

∞

∑
t=0

βt (it − πt+1 − rn) ,

or

Ω0 = (1 − β)

!
∞

∑
t=0

βt [(1 − τ) yt + Tt] +
∞

∑
t=0

βt (it − πt+1 − rn)
QB
PY

−
!

∞

∑
t=0

(βρ)t (it − rn) ρ +
1
β

π0

"
QB
PY

"
,

where we have used that the government’s budget constraint in steady state satisfies τY−T
Y = 1−β

β
QB
PY . Hence

∞

∑
t=0

βtct =
Ω0

1 − β
=

∞

∑
t=0

βt [(1 − τ) yt + Tt] +
∞

∑
t=0

βt (it − πt+1 − rn)
QB
PY

−
!

∞

∑
t=0

(βρ)t (it − rn) ρ +
1
β

π0

"
QB
PY

.
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C Hicksian Demand

This appendix presents an extension of the Slutsky equation of microeconomic theory to a general equilib-
rium setting. We begin by computing the Hicksian demand, i.e. the solution to the expenditure minimization
problem subject to delivering a minimum level of utility. In this setting, the different goods are consumption
at different dates, and the price of one unit of consumption at date t is ∏t−1

s=0

6
Ps+1/Ps

1+is

7
. After that, we show

that {cS
t }∞

t=0 in the decomposition of Section 2 (see Proposition 1) can be reinterpreted as the (log-linearized)
Hicksian demand evaluated at the inflation rate consistent with the Hicksian demand according to the New
Keynesian Phillips curve. Finally, we compare the decomposition in this paper with one that looks at the
direct and indirect effects of monetary policy, as in Kaplan et al. (2018).

C.1 Derivation of the Hicksian demand

The Hicksian demand of the non-linear model is obtained as the solution to the following problem:

min
{Ct}∞

t=0

∞

∑
t=0

t−1

∏
s=0

&
Ps+1/Ps

1 + is

'
Ct

subject to
∞

∑
t=0

βt C1−σ
t

1 − σ
≥ U,

for some U ∈ R. The FOCs of this problem are given by

t−1

∏
s=0

&
Ps+1/Ps

1 + is

'
= λβtC−σ

t ,

where λ is the Lagrange multiplier associated to the constraint. This implies that

Ct =
t−1

∏
s=0

&
1 + is

Ps+1/Ps

' 1
σ

λ
1
σ β

1
σ t =⇒

∞

∑
t=0

βt C1−σ
t

1 − σ
=

∞

∑
t=0

β
1
σ t

∏t−1
s=0

6
1+is

Ps+1/Ps

7 1−σ
σ

λ
1−σ

σ

1 − σ
= U,

and hence

λ =

*

CC+
(1 − σ)U

∑∞
t=0 β

1
σ t ∏t−1

s=0

6
1+is

Ps+1/Ps

7 1−σ
σ

0

DD1

σ
1−σ

.

Replacing in the FOC for Ct, we get

Ct =
β

1
σ t ∏t−1

s=0

6
1+is

Ps+1/Ps

7 1
σ

:
∑∞

t=0 β
1
σ t ∏t−1

s=0

6
1+is

Ps+1/Ps

7 1−σ
σ

; 1
1−σ

[(1 − σ)U]
1

1−σ .

Log-linearizing around the zero inflation steady state, we get

cH
t =

1
σ

t−1

∑
s=0

(is − πs+1 − rn)−
1
σ

∞

∑
s=0

βs+1 (is − πs+1 − rn) ,
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where rn ≡ − log β, and we used that, in steady state, C = [(1 − β)(1 − σ)U]
1

1−σ . The present value of the
Hicksian demand is given by

∞

∑
t=0

βtcH
t =

∞

∑
t=0

βt 1
σ

t−1

∑
s=0

(is − πs+1 − ρ)−
∞

∑
t=0

βt 1
σ

∞

∑
s=0

βs+1 (is − πs+1 − ρ)

=
1
σ

∞

∑
s=0

∞

∑
t=s+1

βt (is − πs+1 − ρ)− 1
1 − β

1
σ

∞

∑
s=0

βs+1 (is − πs+1 − ρ)

= 0.

Moreover, note that
cH

t+1 = cH
t + σ−1 (it − πt+1 − rn) ,

that is, the Hicksian demand satisfies the households’ Euler equation.

C.2 The Intertemporal Substitution Effect in General Equilibrium

To find the inflation rate consistent with the Hicksian demand we need to solve the following system of
difference equations:

cH
t+1 = cH

t + σ−1
6

it − πH
t+1 − rn

7

πH
t = βπH

t+1 + κcH
t ,

with terminal condition
∞

∑
t=0

βtcH
t = 0.

It should be straightforward that this system is equivalent to the system in Section 2 with the terminal con-
dition Ω0 = 0. Thus, the solution is

cH
t = cS

t , πH
t = πS

t .

C.3 An alternative consumption decomposition: direct and indirect effects

An alternative decomposition separates the response of equilibrium consumption into a direct effect of the
real interest rate, keeping output and fiscal policy fixed, and an indirect effect that incorporates the changes
in output and fiscal policy. Let c̃H

t denote the Hicksian demand in period t evaluated at the equilibrium path
of the inflation rate.43 Recall that Proposition 3 states that the equilibrium inflation rate satisfies

πt = πS
t +

κ

1 − β
λtΩ0.

Introducing this expression into the Hicksian demand we get

c̃H
t =

1
σ

t−1

∑
s=0

&
is − πS

s+1 −
κ

1 − β
λs+1Ω0 − rn

'
− 1

σ

∞

∑
s=0

βs+1
&

is − πS
s+1 −

κ

1 − β
λs+1Ω0 − rn

'
,

43In contrast, cS
t is the Hicksian demand evaluated at the Hicksian inflation rate πS

t .
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and after some algebra,

c̃H
t =

1
σ

t−1

∑
s=0

6
is − πS

s+1 − rn

7
− 1

σ

∞

∑
s=0

βs+1
6

is − πS
s+1 − rn

7

? @A B
=cS

t

+

&
1 − λβ

1 − β
λt − 1

'
Ω0.

Hence,
ct = c̃H

t + Ω0.

Introducing the definition of Ω0, we get

ct = c̃H
t + (1 − β)

!
∞

∑
t=0

βt (it − πt+1 − rn)−
∞

∑
t=0

(βρ)t (it − rn) ρ − 1
β

π0

"
Qb

? @A B
direct effect

+

(1 − β)
∞

∑
t=0

βt [(1 − τ) yt + Tt]

? @A B
indirect effect

.

This decomposition appears in, for example, Kaplan et al. (2018).
There are two main differences between this decomposition and the one proposed in Proposition 1. On

the one hand, the direct effect includes the wealth effect arising from the holdings of government bonds
(interest payments, revaluation of long-term bonds and surprise inflation). On the other hand, and more
importantly, the direct effect and the ISE can both be interpreted as a Hicksian demand, but evaluated at
different paths of the inflation rate. While the ISE is evaluated at the Hicksian-consistent inflation rate, the
direct effect is evaluated at the equilibrium rate. This is the main distinction between the two approaches
and it reflects the different objectives pursued in both papers. Kaplan et al. (2018) are interested in under-
standing the micro channels of transmission, which justifies evaluating the households’ Hicksian demand at
the equilibrium inflation rate. Our focus is on macro channels, so distinguishing between the inflation rate
arising from the ISE and the wealth effect is crucial. It is this feature that allows us to identify the importance
of the wealth effect in the equilibrium dynamics of the economy and later connect to the fiscal response to
monetary policy. Notably, while neither the direct nor the indirect effect are uniquely determined by the path
of the nominal interest rate, the ISE is. This feature uncovers new insights about the source of multiplicity
in the New Keynesian model. Finally, note that both decompositions coincide when b = 0 and prices are
fully rigid. In this case, there is no wealth effect arising from government bonds and the general equilibrium
multiplier is equal to 1. we
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D Observational Equivalence Between Monetary-Active and Fiscally-

Active Regimes

Proposition 2 shows that if the interest rate rule (5) satisfies the Taylor principle and the sequence of mone-
tary shocks decays sufficiently fast, the Taylor equilibrium is the unique purely forward-looking solution to
the New Keynesian model for a given equilibrium path of the nominal interest rate. Since a fiscally-active
regime can rationalize any solution to the New Keynesian model, it implies that except for one particular
value of Ω0, monetary-active and fiscally-active regimes are not observationally equivalent. If we restrict the
sequence of monetary shocks to follow an AR(1) process, imposing that it decays sufficiently fast is equiva-
lent to imposing that a positive shock generates an increase in the nominal interest rate. This is a standard
assumption in the monetary literature.

Here, we study two extensions. First, we show that if the sequence of monetary shocks follows an AR(1)
process, the monetary-active and fiscally-active regimes are not observationally equivalent even if the se-
quence of monetary shocks does not decay sufficiently fast. As a byproduct of this result, we show that in
the knife-edged case in which the persistence of the shock is equal to the lower eigenvalue of the system (i.e.
ψ = λ in our notation), it is possible to obtain any value for the equilibrium wealth effect without the nominal
interest rate ever moving from its steady-state level. This result is crucial for understanding the more general
case.

Second, we show that if we instead restrict the sequence of the nominal interest rate to follow an AR(1)
process (but no restriction on the sequence of shocks), we can recover observational equivalence. Notably,
the restriction on the nominal interest rate implies that the sequence of monetary shocks needs to follow
an ARMA(2,1) process with appropriately chosen coefficients. We conclude that two necessary conditions
for observational equivalence are that the monetary shocks do not decay sufficiently fast and that they do not
follow an AR(1) process.

D.1 General AR(1) process for the sequence of monetary shocks

Suppose that the sequence of monetary shocks follows an AR(1) process, so that εt = ψtε0 for some ε0 ∕= 0
and ψ ∈ (0, λ) ∪ (λ, 1). Relative to Proposition 2, here we do not impose ψ < λ. We consider the case with
ψ = λ separately.

Under this assumption, we cannot guarantee that the Taylor equilibrium is the unique purely forward-
looking solution to the system. However, it is still true that, for a given equilibrium value of i0, Ω0 in the
Taylor equilibrium is uniquely determined.

Proposition 11. Suppose that the equilibrium path of the nominal interest rate, {it}∞
t=0, was generated by an interest

rate rule (5) with κ(φπ − 1) + (1 − β)φy > 0 and φy >

√
4βσ−1(κ(φπ−1)+(1−β)φy)−(1−β+σ−1κ)

σ−1β
, given a sequence

of shocks {εt}∞
t=0 that satisfies εt = ψtε0, with ψ ∈ (0, λ) ∪ (λ, 1) and ε0 ∕= 0. Then, the equilibrium path of

consumption is given by

cTaylor
t = −1

ν

(1 − ψβ)σ−1

β
(
λ − ψ

)
(λ − ψ)

ψt(iTaylor
0 − rn).

where ν ∕= 0 is a constant independent of i0 − rn. The corresponding wealth effect is

ΩTaylor
0 = −1

ν

1 − β

β

σ−1
(
λ − ψ

)
(λ − ψ)

(iTaylor
0 − rn).
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The nominal interest rate satisfies
iTaylor
t = rn + ψtνε0.

Finally,
∂iTaylor

0
∂ε0

> 0 ⇐⇒ ψ < λ.

Proof. Plugging in εt = ψtε0 in the formulas of the Taylor equilibrium (see proof of Proposition 2), we get

c∗t = −1
ν

(1 − βψ) σ−1

β
(
δ − ψ

)
(δ − ψ)

ψt (i∗0 − rn) ,

π∗
t = −1

ν

κσ−1

β
(
δ − ψ

)
(δ − ψ)

ψt (i∗0 − rn) ,

i∗t = rn + ψtνε0,

where ν ≡ 1 − φπ
κσ−1

β(δ−ψ)(δ−ψ)
− φy

(1−ψβ)σ−1

β(δ−ψ)(δ−ψ)
. Moreover, since π0 = κ

1−β Ω0, we have

Ω∗
0 = −1

ν

1 − β

β

σ−1
(
δ − ψ

)
(δ − ψ)

(i∗0 − rn) .

Hence, given i∗0 , Ω∗
0 is uniquely determined. Finally, note that ∂i∗0

∂ε0
> 0 if and only if ν > 0, or

βψ2 −
6

1 + β + σ−1κ
7

ψ + 1 > 0,

where we used that δδ =
1+σ−1κφπ+σ−1φy

β and δ + δ =
1+β+σ−1κ+σ−1βφy

β . Since ψ ∈ (0, λ) ∪ (λ, 1), this condi-
tion holds if and only if

ψ < λ.

Proposition 11 considers all the possible parametrizations of the AR(1) process, except for ψ = λ. It
turns out that this case is rather pathological: the shock and the response of inflation and output are such
that all the terms in the interest rate rule cancel out and the nominal interest rate does not change after a
monetary shock. In terms of the decomposition, this implies that the ISE is equal to zero and all the response
of consumption is given by the GE amplified wealth effect. Notably, we can parametrize any magnitude of
the wealth effect by the size of the initial shock.

Proposition 12. Suppose that the equilibrium path of the nominal interest rate, {it}∞
t=0, was generated by an interest

rate rule (5) with κ(φπ − 1) + (1 − β)φy > 0 and φy >

√
4βσ−1(κ(φπ−1)+(1−β)φy)−(1−β+σ−1κ)

σ−1β
, given a sequence of

shocks {εt}∞
t=0 that satisfies εt = ψtε0, with ψ = λ) and ε0 ∕= 0. Then, the equilibrium path of consumption is given

by

cTaylor
t = −σ−1

β

1 − βλ(
δ − λ

)
(δ − λ)

λtε0,

where δ, δ > 1. The corresponding wealth effect is

ΩTaylor
0 = −σ−1 1 − β

β

1(
δ − λ

)
(δ − λ)

ε0.
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The nominal interest rate satisfies
iTaylor
t = rn.

Proof. Immediate from evaluating the formulas characterizing the Taylor equilibrium at εt = λtε0.

Proposition 12 identifies a Taylor equilibrium in which the monetary shock affects Ω0 independently of any
effect on the path of the nominal interest rate. Thus, a promising path towards observational equivalence
is to assume that the sequence of monetary shocks follows a process that combines the properties of ψ ∈
(0, λ) ∪ (λ, 1) and ψ = λ. Next, we formalize this idea.

D.2 General AR(1) process for the sequence of the nominal interest rate

Suppose that the equilibrium path of the nominal interest rate satisfies

it − rn = ψt(i0 − rn),

for some given initial value i0 − rn. The question we ask is the following: can we find a sequence of monetary
shocks that obtains any solution of the New Keynesian system as a Taylor equilibrium? It turns out that the
answer is yes, and that the sequence of monetary shocks needs to satisfy

εt =
F
χψt + (1 − χ)λtG ε0,

with ψ ∈ (0, λ) ∪ (λ, 1), and χ, ε0 ∕= 0. Note that this process is neither an AR(1) nor it generates a sequence
of shocks that decays sufficiently fast. In particular, it can be represented by an ARMA(2,1) process with
appropriately chosen coefficients.44 Notably, it combines the properties of the AR(1) processes studied above.
The first term determines the equilibrium path of the nominal interest rate, while the second term determines
the magnitude of the wealth effect. Thus, by choosing χ appropriately, we can obtain any solution to the New
Keynesian system as a Taylor equilibrium of the model.

Proposition 13. Consider an economy characterized by equations (1)-(2) and a path of the nominal interest rate,
{it}∞

t=0, that satisfies it − rn = ψt(i0 − rn), with ψ ∈ (0, λ) ∪ (λ, 1). Then, any solution to the system (1)-(2) given
{it}∞

t=0 can be obtained as a Taylor equilibrium. The sequence of monetary shocks satisfies

εt =
F
χψt + (1 − χ)λtG ε0,

where χ and ε0 are appropriately chosen constants.

44To see this, start with the general representation

εt = χ
∞

∑
s=0

ψsζt−s + (1 − χ)
∞

∑
s=0

λsζt−s.

This expression can be written as

εt = χ
ζt

1 − ψL
+ (1 − χ)

ζt
1 − λL

,

or
(1 − ψL) (1 − λL) εt = χ (1 − λL) ζt + (1 − χ) (1 − ψL) ζt.

Therefore
εt = (ψ + λ) εt−1 − ψλεt−2 + ζt − [(1 − χ)ψ + χλ] ζt−1.

This process is an ARMA(2,1) that simplifies to an AR(2) if (1 − χ)ψ + χλ = 0.
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Proof. Recall that any solution to the New Keynesian system can be written as

ct = cS
t +

1 − βλ

1 − β
λtΩ0

and
πt = πS

t +
κ

1 − β
λtΩ0

for some Ω0. Plugging in the sequence of interest rates it − rn = ψt (i0 − rn) and after some algebra, we get

ct = − σ−1 (1 − βψ)

β
(
λ − ψ

)
(λ − ψ)

ψt (i0 − rn) +
1 − βλ

1 − β
λt

!
σ−1 (1 − β)

β
(
λ − ψ

)
(λ − ψ)

(i0 − rn) + Ω0

"

πt = − σ−1κ

β
(
λ − ψ

)
(λ − ψ)

ψt (i0 − rn) +
κ

1 − β
λt

!
σ−1 (1 − β)

β
(
λ − ψ

)
(λ − ψ)

(i0 − rn) + Ω0

"

Then, we can recover the monetary shocks that lead to this equilibrium as

εt = it − rn − φππt − φyct.

Plugging in the expressions for ct and πt, and after some algebra, we get

εt =

&
1

1 + χ
ψt +

χ

1 + χ
λt
'

ε0

where ε0 ≡ (1 − χ) ν̃ (i0 − rn), ν̃ ≡ 1 + φπ
σ−1κ

β(λ−ψ)(λ−ψ)
+ φy

σ−1(1−βψ)

β(λ−ψ)(λ−ψ)
, and χ ≡ −

φπ
κ

1−β +φy
1−βλ
1−β

ṽ:
σ−1(1−β)

β(λ−ψ)(λ−ψ)
+ Ω0

i0−rn

;
. By choosing ε0 = (1 − χ)ν̃ (i0 − rn) we get the full path of the nominal interest rate

from the Taylor rule. Then, we can freely vary χ depending on the choice of Ω0. Since the model is linear, the
equilibrium can be obtained as the weighted average of two different equilibria: one with εt = ψtε0 and the
other with εt = χλtε0, for the same value of ε0. Then, the result follows from Propositions 11 and 12.

The proof of the proposition shows how each term of the monetary shock process plays a different role.
The first term matches the desired path of the nominal interest rate. The second term matches the desired
magnitude of the wealth effect.
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E Liquidity Trap

This appendix provides additional analysis of the liquidity trap equilibrium.

E.1 Fiscal Policy in the liquidity trap

Figure 12 provides an alternative perspective of the role of fiscal policy in the liquidity trap equilibrium.
The figure shows different combinations of monetary and fiscal policy responses. As a benchmark, we plot
the dynamics of consumption and inflation under the discretionary monetary policy in the SLTE, which we
label the “Discretionary Monetary - Discretionary Fiscal” case. We also plot the forward guidance SLTE:
the interest rate is kept at zero for an extra period and fiscal policy is at the level that sustains the SLTE
equilibrium. The other two lines are the alternative combinations of the monetary and fiscal policies. For
example, consider the “Forward Monetary - Discretionary Fiscal.” This case corresponds to the nominal
interest rate path in the forward guidance SLTE and the fiscal policy of the discretionary SLTE. The figure
shows that the path of consumption barely changes relative to the discretionary SLTE. The response in period
0 is virtually the same. The differences arise close to the end of the trap, where the “forward monetary” case
generates a small boom and then a small recession before converging back to steady state from below. In
contrast, notice what happens when we consider the “Discretionary Monetary - Forward Fiscal.” The path
of consumption is now virtually equivalent to the forward guidance SLTE. A similar pattern emerges for
inflation. Thus, Figures 10 and 12 together highlight the importance of fiscal policy in the liquidity trap
dynamics.

Panel A: Consumption Panel B: Inflation

Figure 12: Consumption and inflation in a liquidity trap under different monetary and fiscal re-
sponses
Calibration: quarterly time period, β = 0.99, σ = 1, κ = 0.1275. The natural rate of interest is set to −rn until T = 4.
Discretionary Monetary - Discretionary Fiscal sets T∗ = T and the fiscal transfers to the “discretionary” SLTE; Forward
Monetary - Forward Fiscal sets T∗ = T + 1 and the fiscal transfers to the “forward” SLTE; Discretionary Monetary - Forward
Fiscal sets T∗ = T and fiscal transfers to the “forward” SLTE; Forward Monetary - Discretionary Fiscal sets T∗ = T + 1 and
fiscal transfers to the “discretionary” SLTE.
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E.2 Comparison with Cochrane (2017)

To better compare and contrast with the results in Cochrane (2017), we provide a mapping between the three
main equilibria considered in that paper and the indexation through Ω0 in this one.

The standard equilibrium. The standard equilibrium is selected by imposing ct = πt = 0 for all t ≥ T∗.
Then, for all t ≤ T∗, consumption and inflation are given by

cSLTE
t = − σ−1

λ − λ

!
T

∑
s=t

$
λ − 1
λs−t +

1 − λ

λ
s−t

%
−

T∗

∑
s=T+1

$
λ − 1
λs−t +

1 − λ

λ
s−t

%"
rn,

πSLTE
t = − κσ−1

λ − λ

!
T

∑
s=t

$
λ

λs−t −
λ

λ
s−t

%
−

T∗

∑
s=T+1

$
λ

λs−t −
λ

λ
s−t

%"
rn.

This equilibrium coincides with the unique purely forward-looking solution to the system (1)-(2) in Section
2. Thus, the solution corresponds to the following level of the wealth effect:

Ω0 = −(1 − β)
σ−1

λ − λ

!
T

∑
s=0

$
λ

λs −
λ

λ
s

%
−

T∗

∑
s=T+1

$
λ

λs −
λ

λ
s

%"
rn.

The backward-stable equilibrium This equilibrium corresponds to the solution in which, if the shock
were anticipated, inflation and consumption would not explode as we move back in time. Consider the path
of inflation. We have

lim
t→−∞

πt = lim
t→−∞

λt

!
− σ−1κ

λ − λ

∞

∑
s=0

λ

λ
s (is − rn) +

κ

1 − β
Ω0

"
.

Thus, limt→−∞ πt = 0 if and only if

Ω0 = (1 − β)
σ−1

λ − λ

∞

∑
s=0

λ

λ
s (is − rn) .

Note that for the natural rate and discretionary interest rate paths in the liquidity trap equilibrium, Ω0 > 0
so π0 > 0, as found in Cochrane (2017).

The no-inflation-jump equilibrium. This equilibrium is immediate from the analysis in Section 2. We
have that π0 = 0 ⇐⇒ Ω0 = 0. Thus, the no-inflation-jump equilibrium is the unique equilibrium with a zero
wealth effect.

E.3 Monetary Paradoxes: The Discounted Euler equation

Consider a model characterized by the following system of equations: a discounted Euler equation

ct = δct+1 − σ−1(it − πt+1 − rn)

with δ ∈ (0, 1); and a New Keynesian Phillips curve,

πt = βπt+1 + κct.

71



This system can be written as

!
ct+1

πt+1

"
=

*

+
1
δ

6
1 + σ−1κ

β

7
− σ−1

δβ

− κ
β

1
β

0

1
!

ct

πt

"
+

!
σ−1 (it − rn)

0

"
.

The eigenvalues of the system are

λd =

(
δ + β + σ−1κ

)
+

#
(δ + β + σ−1κ)

2 − 4βδ

2βδ
,

λd =

(
δ + β + σ−1κ

)
−

#
(δ + β + σ−1κ)

2 − 4βδ

2βδ
.

Note that for δ ∈ [0, 1], λd > 1. Uniqueness of the solution requires that λd > 1, which holds if and only if

δ < 1 − σ−1κ

1 − β
.

For standard calibrations, 1 − σ−1κ
1−β < 0. For example, for σ−1 = 1, κ = 0.1275 and β = 0.99, the condition

becomes δ < −11.75. Even if we set σ−1 = 0.1, we still have δ < −0.2745. Thus, in what follows we assume
that δ > 1 − σ−1κ

1−β , which implies λd ∈ (0, 1).
The eigenvectors are given by

v =

$
1 − βλd

κ
, 1

%
,

v =

&
1 − βλd

κ
, 1
'

.

Let

P ≡
!

1−βλd
κ

1−βλd
κ

1 1

"
.

Then, we can write the system as

!
Z1,t+1

Z2,t+1

"
=

!
λd 0
0 λd

" !
Z1,t

Z2,t

"
+

σ−1κ

β(λd − λd)

!
− (it − rn)

(it − rn)

"
,

where Zt ≡ P−1

!
ct

πt

"
. Since λd > 1, we can solve the first equation forward

Z1,t = δ
σ−1κ

λd − λd
λ

t
d

∞

∑
s=t

λd

λ
s
d
(is − rn) .

Moreover, since λd ∈ (0, 1), we can solve the second equation backward

Z2,t = λt
dZ2,0 + δ

σ−1κ

λd − λd
λt

d

t−1

∑
s=0

λd
λs

d
(is − rn) .
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Recall that

Zt = − κ

β(λd − λd)

!
1 − 1−βλd

κ

−1 1−βλd
κ

" !
ct

πt

"
.

Hence

Z1,t = − κ

β
(
λd − λd

)
&

ct −
1 − βλd

κ
πt

'
,

Z2,t = − κ

β
(
λd − λd

)
$
−ct +

1 − βλd
κ

πt

%
.

And therefore

ct =
1 − βλd

κ
πt − σ−1λ

t
d

∞

∑
s=t

1

λ
s+1
d

(is − rn) , (31)

πt =
κ

1 − βλd
ct − β

λd − λd

1 − βλd
λt

dZ2,0 −
σ−1κ

1 − βλd
λt

d

t−1

∑
s=0

1
λs+1

d

(is − rn) . (32)

Introducing (31) into (32), we get

πt = λt
dZ2,0 + δ

σ−1κ

λd − λd
λt

d

t−1

∑
s=0

λd
λs

d
(is − rn) + δ

σ−1κ

λd − λd
λ

t
d

∞

∑
s=t

λd

λ
s
d
(is − rn) . (33)

Introducing (33) into (31), we get

ct =
1 − βλd

κ
λt

dZ2,0 + δσ−1 1 − βλd

λd − λd
λt

d

t−1

∑
s=0

λd
λs

d
(is − rn) + δσ−1 1 − βλd

λd − λd
λ

t
d

∞

∑
s=t

λd

λ
s
d
(is − rn) . (34)

Multiplying (34) by βt and summing across time, we get

Ω0

1 − β
=

∞

∑
t=0

βtct =
1
κ

Z2,0 + δ
σ−1

λd − λd

∞

∑
s=0

λd

λ
s
d
(is − rn) .

Hence

Z2,0 =
κ

1 − β
Ω0 − δ

σ−1κ

λd − λd

∞

∑
s=0

λd

λ
s
d
(is − rn) . (35)

Introducing (35) in (34), we get

ct = δcS
t +

1 − βλd
1 − β

λt
dΩ0,

where

cS
t ≡ σ−1 1 − βλd

λd − λd
λt

d

*

+
t−1

∑
s=0

$
λd
λs

d
− λd

λ
s
d

%

(is − rn) +
∞

∑
s=t

,

-1 − βλd
1 − βλd

$
λd
λd

%t

− 1

.

/ λd

λ
s
d
(is − rn)

0

1 .

Recall that the SLTE is the unique purely-forward looking equilibrium. Hence

cSLTE
t =

σ−1

λd − λd

∞

∑
s=t

$
δλd − 1

λ
s−t
d

− δλd − 1
λs−t

d

%

(is − rn) .
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Note that
∂cSLTE

0
∂it

= − σ−1

λd − λd

$
δλd − 1

λt
d

+
1 − δλd

λ
t
d

%
.

Since δλd > 1 and λd < 1, the model shares the same properties as when δ = 1. Thus, extending the results in
Proposition 6 we can establish that the discounted Euler equation equilibrium features the Forward Guidance
Puzzle and the Paradox of Flexibility.
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F Derivation of the RANK model with capital

This section derives the standard New Keynesian model with capital. Time is discrete and runs forever. The
economy is populated by households, firms and a government.

Households. There is a representative infinitely-lived household with preferences over consumption Ct

and labor Nt represented by

E0

∞

∑
t=0

βtU(Ct, Nt).

The household faces a per-period budget constraint given by

PtCt + Pt It + QtBt+1 ≤ (1 + ρQt) Bt + WtNt + RtKt + Πt + PtT̃t,

and the law of motion of capital
Kt+1 = (1 − δ)Kt + It,

where Pt is the price level, Bt+1 denotes purchases of long-term risk-free bonds with price Qt (which satisfies
Qt =

1+ρQt+1
1+it

, where it is the risk-free nominal interest rate), Wt is the nominal wage, Πt denotes corporate
profits, and T̃t is a lump-sum government transfer. Moreover, the household faces a solvency condition given
by limT→∞ BT ≥ 0 for all t.

The household’s optimality conditions are given by

−Un,t

Uc,t
=

Wt

Pt
,

1 = (1 + it)β
Uc,t+1

Uc,t

Pt

Pt+1
,

1 =

:
Rt+1

Pt+1
+ 1 − δ

;
β

Uc,t+1

Uc,t
.

where Uc,t ≡ ∂U(Ct ,Nt)
∂Ct

and Un,t ≡ ∂U(Ct ,Nt)
∂Nt

. In what follows, we assume that U(Ct, Nt) = log(Ct)− Nt.

Firms. There are two types of firms in the economy: final-good producers and intermediate-goods produc-
ers. Final-goods producers operate in a perfectly competitive market and combine a unit mass of intermedi-
ate goods Yt (i), for i ∈ [0, 1], using the production function

Yt =

$
ˆ 1

0
Yt (i)

ε−1
ε di

% ε
ε−1

. (36)

The problem of the final-good producer is given by

max
[Yt(i)]i∈[0,1]

PtYt −
ˆ 1

0
Pt (i)Yt (i) di

subject to (36). The solution to this problem gives the standard CES demand

Yt (i) =
&

Pt (i)
Pt

'−ε

Yt, (37)
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where Pt ≡
6
´ 1

0 Pt (i)
1−ε

7 1
1−ε .

Intermediate goods are produced using the following technology:

Yt(i) = Kt (i)
γ Nt(i)1−γ,

where γ ∈ [0, 1]. Given a demand for the intermediate good i, the cost-minimization problem is given by

min
Kt(i),Nt(i)

RtKt (i) + WtNt (i)

subject to
Yt(i) = Kt (i)

γ Nt(i)1−γ.

The optimality conditions imply
Kt (i)
Nt (i)

=
γ

1 − γ

Wt

Rt
,

or, noting that Nt(i) =
6

Yt(i)
Kt(i)

γ

7 1
1−γ ,

Kt (i)
Yt(i)

=

&
γ

1 − γ

Wt

Rt

'1−γ

.

Thus, the firm’s cost function is given by

Ψt (Yt (i)) =
&

Wt

1 − γ

'1−γ &
Rt

γ

'γ

Yt (i) .

Firms choose the price for their good, Pt(i), subject to the demand for their good, given by (37), taking
the aggregate price level Pt and aggregeate output, Yt, as given. As is standard in New Keynesian model,
we assume that firms are subject to a pricing friction à la Calvo: each firm may set a new price only with
probability 1 − θ in any period. Let P∗

t denote the price chosen by a firm that is able to set the price in period
t. Then, P∗

t is the solution to the following problem:

max
P∗

t

∞

∑
k=0

θkQt,t+k

8
(1 − τ)P∗

t Yt+k|t − Ψt+k(Yt+k|t)
9

subject to

Yt+k|t =

&
P∗

t
Pt+k

'−ε

Yt+k,

where Qt,t+k ≡ βkUc,t+k/Uc,tPt/Pt+k is the stochastic discount factor for nominal payoffs, Yt+k|t denotes
output in period t + k for a firm that last set price in period t, and τ is a proportional sales tax. The first-order
condition associated with this problem is given by

∞

∑
k=0

θkQt,t+kYt+k|t

&
(1 − τ)P∗

t − ε

ε − 1
Ψ′

t(Yt+k|t)

'
= 0.

Dividing this expression by Pt, we get

∞

∑
k=0

θkQt,t+kYt+k|t

&
(1 − τ)

P∗
t

Pt
− ε

ε − 1
MCt+k|t

Pt+k
Pt

'
= 0,

76



where MCt+k|t ≡ Ψ′
t(Yt+k|t)/Pt+k is the real marginal cost in period t + k for a firm whose price was last set

in period t.

Government. We assume that the monetary authority follows an interest rate rule of the form

log(1 + it) = ρr log(1 + it−1) + (1 − ρr)(rn + φππt) + εm,t,

where ρr ∈ [0, 1), rn ≡ − log β, πt ≡ log
6

Pt
Pt−1

7
, and εm,t denotes a monetary policy shock. The per-period

budget constraint of the government is given by

QtBt+1 = (1 + ρQt)Bt − τPtYt + PtT̃t,

where we used that
6
´ 1

0 (τYt (i))
ε−1

ε di
7 ε

ε−1
= τ

6
´ 1

0 Yt (i)
ε−1

ε di
7 ε

ε−1
= τYt.

Equilibrium. Market clearing in the goods market requires

Ct + It = Yt.

Market clearing in the factor markets requires

Nt =

ˆ 1

0
Nt(i)di, Kt =

ˆ 1

0
Kt (i) di.

From the production function, we get

Yt (i) =
&

Nt (i)
Kt (i)

'1−γ

Kt (i)

=

&
1 − γ

γ

Rt

Wt

'1−γ

Kt (i) ,

where the second equality follows from the firm’s cost-minimization problem. Integrating across firms, we
get

Kt =

&
γ

1 − γ

Wt

Rt

'1−γ ˆ 1

0
Yt (i) di

=

&
γ

1 − γ

Wt

Rt

'1−γ

Yt

ˆ 1

0

&
Pt (i)

Pt

'−ε

di,

where the second equality follows from the demand for differentiated goods.
Because of the Calvo friction, the price level can be written as

Pt =

!
(1 − θ)(P∗

t )
1−ε +

ˆ

S(t)
(Pt−1(i))1−ε

" 1
1−ε

,

where S(t) ⊂ [0, 1] is the set of firms that do not set a new price in period t. Since a random set of firms is
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able to change prices every period (independent of any firm characteristic), we have that

ˆ

S(t)
(Pt−1(i))1−εdi = θP1−ε

t−1 .

Hence, we can write the price level as

Pt =
8
(1 − θ)(P∗

t )
1−ε + θP1−ε

t−1

9 1
1−ε .

Steady state. Let the variables without subscript denote their value in a zero-inflation steady state. The
steady-state equilibrium of this economy is the solution to the following system of equations:

Y = KγN1−γ

K
N

=
γ

1 − γ

W
R

MC =

&
W/P
1 − γ

'1−γ &
R/P

γ

'γ

(1 − τ) =
ε

ε − 1
MC

Y = C + δK
W
P

= C

i =
R
P
− δ

i =
1 − β

β

1 − β

β
QB = τY − T.

Log-linearization. We study the dynamics of the economy around a steady-state equilibrium with zero
inflation. For a variable Xt, let xt ≡ log

6
Xt
X

7
, where X denotes the zero-inflation steady-state value.

The log-linear versions of the household’s optimality conditions are given by

wt − pt = ct,

ct = ct+1 − (it − πt+1 − rn),

and the rental rate of capital is given by

r(rt+1 − pt+1) = β(it − πt+1 − rn),

where r = 1−β(1−δ)
β .

The log-linear approximation of the firms’ first-order condition around the zero inflation steady state
yields

p∗t − pt = (1 − θβ)
∞

∑
k=0

(θβ)k [mct+k + pt+k − pt] .
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Moreover, approximating the price level equation we get

p∗t − pt =
θ

1 − θ
πt.

Hence, we can write the firm’s optimality condition as

πt = βπt+1 + ψmct, (38)

where ψ ≡ (1−θ)(1−θβ)
θ . Approximating the expression for the marginal cost, we get

mct = (wt − pt)− γ (wt − rt) . (39)

Note that the cost-minimization optimality condition implies

kt − yt = (1 − γ) (wt − rt) ,

and the production function implies

nt =
1

1 − γ
yt −

γ

1 − γ
kt,

where we used that
´ 1

0

6
Pt(i)

Pt

7−ε
di ≃ 1 up to first order. Introducing these two expressions and the labor

supply equation into (39), we get
mct = ct +

γ

1 − γ
yt −

γ

1 − γ
kt. (40)

Moreover, approximating the resource constraint, we get

yt = scct + sI

&
1
δ

kt+1 −
1 − δ

δ
kt

'
,

where sc ≡ C
Y and sI ≡ I

Y . Introducing into (40),

mct =

&
1 +

γ

1 − γ
sc

'
ct +

γ

1 − γ

sI
δ

kt+1 −
γ

1 − γ

&
1 +

1 − δ

δ
sI

'
kt. (41)

Introducing (41) into (38) and rearranging, we get

kt+1 = −ξkπ βπt+1 + ξkππt − ξkcct + ξkkkt,

where

ξkπ ≡ 1
ψ

1 − γ

γ

δ

sI
, ξkc ≡

δ

sI

&
1 − γ

γ
+ sc

'
, ξkk ≡ 1 − δ +

δ

sI
.

Consider now the expression for the rental rate of capital

r(rt+1 − pt+1) =
1
β
(it − πt+1 − rn). (42)

Combining the cost-minimization optimality condition and the labor supply, and iterating forward one pe-
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riod, we get

rt+1 − pt+1 = ct+1 +
1

1 − γ
(yt+1 − kt+1) . (43)

Note that introducing (40) into (38) and rearranging, we get

yt − kt =
1 − γ

γ

:
1
ψ
(πt − βπt+1)− ct

;
.

Iterating this expression forward one period and introducing into (43), we get

rt+1 − pt+1 = −1 − γ

γ
ct+1 +

1
γ

1
ψ
(πt+1 − βπt+2) .

Replacing ct+1 by the Euler equation for bonds, we get

rt+1 − pt+1 = −1 − γ

γ
ct −

1 − γ

γ
(it − rn) +

&
1 − γ

γ
+

1
γ

1
ψ

'
πt+1 −

1
γ

1
ψ

βπt+2.

Introducing this expression into (42) and rearranging, we get

πt+2 = ξπππt+1 − ξπi (it − rn)− ξπcct,

where

ξππ ≡ 1
β

&
1 + ψ +

ψγ (1 − δ)

r

'
, ξπi ≡

ψ

β

&
1 +

γ (1 − δ)

r

'
, ξπc ≡

ψ

β
(1 − γ) .

The log-linear approximation of the intertemporal budget constraint is given by

∞

∑
t=0

βt [scct + sI ιt] ≤
∞

∑
t=0

βt [(1 − τ) yt + (it − πt+1 − rn) Qb + Tt]−
!

∞

∑
t=0

(βρ)t (it − rn) ρ +
1
β

π0

"
Qb,

where b ≡ B
PY and Tt ≈ T̃t−T

Y , and we used that, up to first order, the price of the bond satisfies

it − rn = βρqt+1 − qt.

Note that we assume that B0 = B and P−1 = P, so that the economy starts in steady state.
As is standard, the approximation of the interest rate rule is given by

it = ρrit−1 + (1 − ρr)(rn + φππt) + εm,t,

where, with a slight abuse of notation, we are using that it ≈ log(1 + it).
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