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ABSTRACT 
 
Generic penetration in the U.S. pharmaceutical market has increased, providing significant gains in 
consumer surplus. What impact has this had on the rate and direction of pharmaceutical innovation? 
While the overall level of drug development activity has increased, our estimates suggest a sizable, 
robust, negative relationship between generic penetration and early-stage pharmaceutical innovation. A 
10% increase in generic penetration is associated with an approximately 8% decline in early-stage 
innovations in the same therapeutic market. When we restrict our sample to novel innovations, we find 
that a 10% increase in generic penetration is associated with a roughly 6% decline in early-stage 
innovations in the same market. Our estimated effects appear to vary across therapeutic classes in sensible 
ways, reflecting the differing degrees of substitution between generics and branded drugs. Finally, we 
document that with increasing generic penetration, firms are shifting their R&D activity towards more 
biologic-based products and away from chemical-based products. We conclude by discussing potential 
implications of our results for long-run welfare, policy, and innovation. 
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1 Introduction 

 In his provocative paper, “The Health of Nations,” Yale University economist William Nordhaus 

(1999) argues that the advances in human welfare generated by better medical science over the past half 

century have been equal in value to the consumption increases from all other sources put together. Victor 

Fuchs (1982) has suggested that most of the real improvement in human health generated over this period 

stems from modern medicine’s expanding arsenal of pharmaceutical products. While documenting these 

claims in a way that meets modern evidentiary standards is challenging, the work of scholars such as 

Frank Lichtenberg (e.g., 2001, 2004, 2007) has provided evidence suggesting that the gains from 

pharmaceutical innovation have been very large. In the long run, global investments in pharmaceutical 

research have proven to be good ones. 

 These benefits have come with significant costs; pharmaceutical innovation is risky and 

expensive. Recent estimates of the cost to develop a new drug and win marketing approval are now 

approaching $2.6 billion.1 These costs are passed on to consumers in the form of higher prices for 

branded pharmaceuticals. In recent years, prescription drug spending in the U.S. has exceeded $300 

billion, an increase of $135 billion since 2001. Consumption of prescription drugs now accounts for 

approximately 12 percent of total health care spending (GAO, 2012). However, over this time period, 

generic products have accounted for an increasing share of prescription drug expenditures, saving 

consumers an estimated $1 trillion (GAO, 2012). Current regulation attempts to strike a balance between 

access to lower cost generics on the one hand and adequate incentives to promote pharmaceutical 

innovation on the other. While the rise in generic penetration has brought benefits to consumers 

(Branstetter et al., 2016), some have argued that the regulatory balance has shifted so far in the direction 

of access to inexpensive drugs that it has undermined the incentives for new drug development (Higgins 

and Graham, 2009; Knowles, 2010). Such a shift could have strong implications even for non-U.S. drug 

companies because the global industry relies disproportionately on the U.S. market as a source of its 

profits. Has the increase in generic entry affected pharmaceutical innovation? Our study attempts to 

address this question and quantify, for the first time, the impact of generic entry on early-stage 

pharmaceutical innovation.   

 We start by constructing a new dataset that allows us to analyze this issue at a disaggregate level. 

Instead of relying on patents as measures of innovation, we focus on early-stage drug development. While 

patenting is certainly important in the pharmaceutical industry, it can occur anytime throughout the drug 

                                                           
1 Based on the Tufts Center for the Study of Drug Development’s recent cost study: 
http://csdd.tufts.edu/news/complete_story/cost_study_press_event_webcast.  

http://csdd.tufts.edu/news/complete_story/cost_study_press_event_webcast
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development process, and it often occurs long before the actual therapeutic value of a compound has been 

demonstrated. As a consequence, patent counts can be imperfect indicators of the real innovative success 

of pharmaceutical firms, in terms of bringing new drugs to market.  Our outcome variable, on the other 

hand, allows us to measure what is actually happening in the early stages of the drug development 

process. We also utilize comprehensive data on branded and generic drug sales across all therapeutic 

categories in the U.S. market, obtained at the firm-product-year level, such that we can measure the 

differential exposure of individual firms to generic competition across these different therapeutic 

markets.2 Finally, we seek to control for changes in scientific opportunity by building a comprehensive 

database of citation-weighted scientific journal articles in the medical sciences and mapping them to our 

therapeutic product markets. 

 Using these data, we find that the aggregate level of new drug development has not declined as 

generic penetration in the U.S. market has risen; the total number of new compounds (including both 

small and large molecules) in early stage development has risen over our sample period (Figure 1). 

However, rising generic competition has had a statistically and economically significant impact on how 

pharmaceutical product development is undertaken and where those efforts are focused. We show this by 

using an empirical framework that models the flow of early-stage pharmaceutical innovations as a 

function of generic entry and penetration, as well as scientific opportunity and challenges, firm innovative 

capability and a vector of additional controls. Using this framework, we document a negative and 

significant relationship between generic entry (penetration) and early-stage innovation at the ATC 2-digit 

therapeutic category level. The elasticity from our specification implies that a 10% increase in generic 

penetration in a particular market will lower early-stage innovations, in that same market, by about 8%.  

 The interpretation that an increase in generic penetration within a market lowers early-stage 

innovation is strengthened by a series of alternative specifications and robustness checks. First, we 

demonstrate that a statistically and economically significant negative impact of generic penetration on 

early-stage innovation remains even when we limit our measure of innovation to activity associated with 

novel drugs. Second, we show that our estimated effect is strongly negative for early-stage innovation, 

where it is possible to redirect R&D in response to market shifts, but much weaker for late-stage 

innovation, where firms have stronger incentives to introduce products that have survived the clinical 

trials process, even if generic competition is limiting the addressable market. Third, we limit our sample 

to a set of therapeutic categories where substitution between generics and branded products is limited for 

                                                           
2 We use the phrases therapeutic area, therapeutic market, therapeutic category and markets interchangeably in this 
paper. In our empirical work, they correspond to 2-digit categories within the World Health Organization's 
Anatomical Therapeutic Chemical (ATC) classification system 
(http://www.whocc.no/atc/structure_and_principles/). 

http://www.whocc.no/atc/structure_and_principles/
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clinical reasons, and we find that our measured effect attenuates to the point of insignificance, as 

expected. Finally, we show that our baseline effect is robust to inclusion of therapeutic market-year 

interaction terms (ATC market*Year) that effectively removes all the unobserved market-specific effects 

that change in a common way across firms over time.   

 Next, we consider the possibility that, within therapeutic markets, a shift is occurring out of 

chemical-based (small molecule) products and into biologic-based (large molecule) products. The 

regulatory mechanisms that have accelerated generic entry in chemical-based drugs did not extend to 

biologics during our sample period; biologic-based generics (known in the industry as ‘biosimilars’) did 

not enter the U.S. market until 2015.3 Exploiting this regulatory difference between chemical-and 

biologic-based innovations, we find a positive relationship between generic entry and a shift towards 

biologic-based products within therapeutic categories. As conjectured by Golec et al. (2010), this 

movement suggests that the nature of innovation taking place in the pharmaceutical industry is changing.  

Is this shift in the direction and nature of drug development socially beneficial or socially 

harmful? At this stage in the research process, it is not yet possible to produce a definitive answer to this 

question. On the one hand, one could argue that current regulation is ‘pushing’ innovation toward 

therapeutic markets for which significant numbers of viable generics do not exist. In other words, R&D 

efforts and expenditures could be flowing to therapeutic areas that are relatively underserved, thereby 

generating welfare gains. On the other hand, our evidence of a significant movement in the data from 

development of chemical-based to biologic-based products may have important implications for the 

future, especially since biologics tend to be more expensive, on average, than chemical-based products. 

These higher prices may persist for long periods of time. As the regulatory playing field tilts sharply in 

the direction of biologics, and firms respond rationally to the incentives they confront, we cannot rule out 

the possibility that recent efforts to balance access with incentives for innovation will give us cheaper 

drugs today, but more expensive drugs tomorrow.  

The paper proceeds as follows. Section 2 provides a discussion of the U.S. regulatory 

environment in which pharmaceutical firms operate and a brief description of the rise in generic 

penetration. Section 3 reviews important features of the drug development process and discusses prior 

work on the potential impact of rising generic penetration on pharmaceutical innovation. Our empirical 

                                                           
3 The Affordable Care Act created a legal pathway for biosimilars to enter the U.S. market, but it took several years 
for the FDA to finalize implementing regulations. The first biosimilar (Zarxio) entered the U.S. market in March 
2015 (http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm436648.htm). Large-molecule drugs 
will have a much longer period of data exclusivity than small-molecule drugs, and their complexity makes them 
more difficult to copy even after patents expire. These differences could affect the economic incentives for 
developing generic versions of biologics, even in the long run.  

http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm436648.htm
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specification and data are outlined in Section 4. Results are presented in Section 5, and we conclude in 

Section 6. 

 

2 The U.S. regulatory environment and the rise of generic penetration 

The current regulatory environment faced by pharmaceutical companies in the U.S. can be traced 

to the passage of the Drug Price Competition and Patent Term Restoration Act in 1984, informally known 

as the “Hatch-Waxman” Act. One of the hallmarks of this legislation is the balance it tries to strike 

between access by consumers to inexpensive generic drugs, on the one hand, and the protection of 

adequate incentives for new drug development on the other. Hatch-Waxman allows expedited Food and 

Drug Administration (FDA) approval for generic entry while extending the life of pharmaceutical patents 

in order to compensate innovators who lost time on their “patent clocks” waiting for FDA approval 

(Grabowski, 2007). 4   

When a pharmaceutical company submits a New Drug Application (NDA) to the FDA for 

approval, the law requires the company to identify all relevant patented technologies necessary to create 

the drug; these patents are subsequently listed in the FDA Orange Book.5 Upon approval, the FDA will 

grant each new approved product regulatory protection lasting for five years (“data exclusivity”) that runs 

concurrently with patent protection.6  During this data exclusivity period, regardless of the status of the 

underlying patent(s), no generic entry may occur. At the conclusion of data exclusivity only patents 

protect branded products. This period running from the cessation of data exclusivity to the expiration of 

the patent(s) is commonly referred to as “market exclusivity.”   

Prior to the passage of Hatch-Waxman, generic manufacturers seeking to sell their products in the 

U.S. market had to demonstrate the safety and efficacy of their products by putting them through clinical 

trials. While the outcome of these trials lacked the uncertainty involved in the trials of an innovative new 

drug, the time and expense involved were a significant disincentive for generics manufacturers to put 

products on the market, since they could not charge a premium price to offset the costs of clinical trials. 

Before Hatch-Waxman, it is estimated that more than 150 products existed without any patent protection 

and without any generic entry (Mossinghoff, 1999).7 While Hatch-Waxman did not lessen the burden of 

                                                           
4 There are limits to this. Pharmaceutical firms cannot receive a patent extension of more than five years, nor are 
they entitled to patent extensions that give them effective patent life (post approval) of greater than 14 years.   
5 For biologics the initial application is a Biologics License Application. However, a similar requirement to disclose 
patents exists, and this disclosure also becomes a matter of public record. 
6 There are exceptions to the general rule of 5 years of data exclusivity. Drugs targeting small patient populations 
(i.e., orphan drugs) receive 7 years of data exclusivity. Reformulations of existing drugs receive only 3 years of data 
exclusivity. New drugs that treat pediatric illnesses receive an additional 6 months of data exclusivity.   
7 The complexity of biologics, and the likelihood that most “biosimilars” will need to undergo at least limited 
clinical trials to prove they have the same therapeutic impact as the original drug, raises the concern that 
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the clinical trials process for branded pharmaceutical companies seeking approval for new drugs, it 

essentially eliminated the requirement for separate clinical trials for generic manufacturers. All generic 

manufacturers had to do was demonstrate bioequivalence with branded products by showing that the 

active ingredient in their product diffused into the human bloodstream in a manner similar to the original 

product. It is important to emphasize, however, that Hatch-Waxman applies only to chemical-based or 

small molecule drugs.  

Throughout our sample period (1998-2010), there was no legal mechanism (in the U.S. market) 

through which the manufacturer of a biosimilar demonstrate that its substance was equivalent to the 

original drug. With no way to establish bioequivalence, any generic version of a biologic-based drug 

would have to undergo separate clinical trials to receive FDA approval. This historical absence of an 

entry pathway for biosimilars reflects, in part, the nascent state of the biotech industry when Hatch-

Waxman was passed, as well as the real scientific challenges of determining bioequivalence for biologic-

based drugs, which are far more complicated than chemistry-based drugs and interact with human 

biophysical systems in ways that are not always perfectly understood.  

Under the Obama Administration, legislation in the form of the Affordable Care Act (2010) 

provided the legal basis for biosimilar entry, but that legislation guarantees biologic-based drugs 12 years 

of data exclusivity - a period of legal monopoly 2.4 times longer than that afforded to chemical-based 

drugs.8 In March 2013 the FDA finalized the enabling regulations that would permit biosimilar entry 

(which did not occur for the first time until March 2015), approximately six years after the first 

biosimilars were approved in Europe. Generally these regulations require limited clinical trials to confirm 

bioequivalence and similar clinical effects prior to approval. Additionally, both markets (U.S. and 

Europe) require post-approval safety monitoring.9 The longer European experience with biosimilars 

suggests that entry will be much less frequent, occur at a later point in the product lifecycle, and offer a 

much smaller price discount, relative to the innovator drug, than has been the case for generic entry in 

chemistry-based drug markets.   

                                                           
genericcompetition in biologics will be limited in the same way that it was for small molecule drugs in the pre-
Hatch-Waxman world. 
8 The section of the Affordable Care Act that details entry provisions for biologics is referred to as the Biologics 
Products Competition and Innovation Act (BPCIA). 
9 “Guidance for Industry Scientific Considerations in Demonstrating Biosimilarity to a Reference Product.” 
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM291128    
Accessed 30 November 2015. 

 

http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM291128
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While a starkly different statutory treatment of chemical-based and biologic-based drugs has been 

established in U.S. law since the passage of Hatch-Waxman, the practical impact of these very different 

regulatory regimes has significantly strengthened in recent years. Generic penetration at the end of the 

1980s and in the early 1990s was constrained by a FDA scandal that temporarily slowed down the 

processing of new generic drug applications, and by an unusually productive era of new drug 

introductions by the branded drug companies that extended into the mid-1990s (Berndt et al, 2015).10  

Since then, however, generic penetration has intensified sharply (e.g., Palermo et al., 2015; Higgins and 

Graham, 2009; Berndt et al., 2007). 

 

3 Pharmaceutical innovation and generic entry 

 We began our paper with the claim advanced by Nordhaus (1999) that the advances in human 

welfare generated by better medical science over the past half century may equal in value the 

consumption increases from all other sources put together. Nordhaus’s claim is backed up by evidence 

documenting the extensive gains in longevity and other dimensions of human health over the period; 

multiplying these gains by even conservative estimates of the value of a “statistical life” result in very 

large numbers (e.g., Murphy and Topel, 2006). The work of Lichtenberg (2001, 2004, 2007) and others 

has lent credence to Victor Fuchs' (1982) assertion that the most important driver of this improvement has 

been pharmaceutical innovation. Efforts to infer the welfare impact of pharmaceutical innovation using 

modern models of demand for differentiated products, such as Ellickson et al. (2001), Cleanthous (2002), 

and Dunn (2012), have also yielded large estimates. Coincident advances in nutrition, pollution 

abatement, diagnostic techniques, and the gradual decline of unhealthy behaviors like tobacco smoking 

make it difficult to determine exactly what fraction of the observed improvement in health outcomes is 

attributable to new drugs, but few would contest the unique importance and impact of pharmaceutical 

innovation. This implies that public policies affecting the rate and direction of pharmaceutical innovation 

also take on special importance. 

3.1 Pharmaceutical innovation: costs and controversies 

                                                           
10 The FDA scandal was widely covered in the media at the time; see for example, New York Times (1989). 
Cockburn (2006) discusses shifts in the measured research productivity of the pharmaceutical industry. A large 
cohort of new and successful branded products entered in the marketplace in the 1980s and 1990s, limiting the 
market importance of generic competition. As this wave of products lost patent protection, or was challenged under 
Paragraph IV, and was not fully replaced by newly introduced branded products, the financial pressure generated by 
generic competition increased. 
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               Pharmaceutical innovation is not just important. It is also difficult, time-consuming, risky, and 

expensive. A comprehensive accounting of costs has to include expenditures on drug candidates that fail 

at some point in the process. Recent estimates by DiMasi, Grabowski and Hansen (2014) suggest that 

these costs have risen to almost $2.6 billion ($1.4 billion in out-of-pocket expenses and $1.2 billion in 

opportunity costs). These new cost estimates, along with previous estimates generated through a similar 

methodology (DiMasi and Grabowski, 2012) have been subjected to considerable criticism and 

controversy. What we can say with certainty, however, is that costs are high and they continue to increase 

(Berndt et al, 2015). Previous studies have described the various stages of the drug development process, 

including DiMasi, Hansen, and Grabowski (1991, 2003), DiMasi and Grabowski (2012), and 

Mossinghoff (1999). 

 When drug companies have identified compounds they wish to subject to clinical trials in human 

subjects, they submit an Investigational New Drug (IND) application to the FDA; this is legally required 

in order to move drug samples across state lines for the purposes of clinical testing. Firms must then move 

through three separate phases of clinical trials, each involving a larger number of human subjects. In 

Phase 1, a small group is tested to determine a safe dosage level and identify side effects. In Phase 2, the 

treatment is administered to a larger group, to determine effectiveness and also further evaluate its safety. 

In Phase 3, the treatment is administered to a still larger group and compared to commonly used 

treatments. When Phase 3 is successfully completed, the drug company submits a New Drug Application 

(NDA) to the FDA, including clinical trials results. The FDA evaluates this information before approving 

the drug. Once it is approved and sales begin, drug companies continue to do Phase 4 trials to acquire 

additional information on risks, benefits, and optimal use. DiMasi and Grabowski (2012) contend that 

only one drug obtains FDA approval for every 5 compounds that enter Phase 1, and it can take 6-7 years 

for a compound to move through all 3 phases. The total development cycle from discovery through 

approval can take, on average, nearly 12 years, and the distribution of approved drugs is characterized by 

highly skewed returns. Pharmaceutical firms rely disproportionately on a small number of very successful 

products to maintain their financial viability.  

 Starting in the mid-1990s, however, the number of drug approvals fell sharply, even as industry 

R&D expenditures continued to increase. This led to an intense debate about the industry's research 

"productivity crisis" (Cockburn, 2006 and Scherer, 2010). The relatively low level of new product 

approvals persisted throughout our sample period and beyond. Experts disagree as to the causes or future 

persistence of this productivity slowdown. Nevertheless, it has created a rising level of concern (and 
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financial stress) within the industry. Accelerating generic competition has been one factor narrowing the 

profits of branded firms faster than successful new drug development has expanded them.11 

3.2 The rise of generic penetration and implications for pharmaceutical innovation 

 A number of recent studies have studied the intensification of generic competition in recent years 

and the impact of this shift on branded drug companies. We lack the space here to offer a comprehensive 

review of all the work in this domain, and, instead, cite selectively the work that is most relevant to our 

own analysis. Caves et al. (1991) offered an influential look at the early impact of Hatch-Waxman. More 

recent work includes Reiffen and Ward (2005), Saha et al. (2006), Grabowski (2007), Grabowski and 

Kyle (2007), and Berndt and Aitken (2011). Efforts to calculate the welfare impact of generic entry 

include Bokhari and Fournier (2013) and Branstetter et al. (2016). The latter study shows that the rising 

incidence of Paragraph-IV challenges has increased gains to consumers.12 Hemphill and Sampat (2011, 

2012) also focus on Paragraph-IV challenges, analyzing, among other things, which incumbent firms' 

patents tend to be challenged. 

 The possibility that rising generic penetration could undermine the incentives to undertake new 

drug development has been recognized in prior work. For example, Hughes et al. (2002) show in a 

theoretical model that providing greater access to a current stock of branded prescription drugs yields 

large benefits to existing customers. However, this access comes at a cost in terms of lost consumer 

benefits from reductions in the flow of future drugs.13 Other papers have also discussed this possibility, 

including Grabowski and Kyle (2007), Higgins and Graham (2009), Knowles (2010), and Panattoni 

(2011). This research stream has provided (mostly indirect or anecdotal) evidence suggesting that an 

intensification of generic competition has undermined incentives for R&D. However, to the best of our 

knowledge, no published study has yet provided direct econometric evidence demonstrating that generic 

                                                           
11 Berndt et al. (2015) suggest additional demand side factors have also chipped away at the economic profitability 
of new drugs. These factors include: downward pressures on price due to consolidation among payers, wholesalers, 
and PBMs (pharmaceutical benefits management firms); increased experience with cost containment; and increased 
focus on incremental value in coverage decisions. 
12 Paragraph IV challenges are a mechanism under Hatch-Waxman that allow generic firms to challenge branded 
patents after data exclusivity has ended but prior to the expiration of patents. Interested readers are directed to FTC 
(2002), Branstetter et al. (2016) or Palermo et al. (2015).  
13 Empirically this trade-off seems to be supported by Goldman et al. (2011). They study the impacts of extending 
small-molecule data exclusivity to twelve years – the same data exclusivity as large-molecule drugs – and found that 
by doing so they would expect 228 extra drug approvals over the 2020 to 2060 time period.  



11 

 

entry has caused a change in the rate or direction of new drug development.14 The extent to which this 

occurs in practice remains an open question. 

4 Empirical methodology and data 

Previous research in this area has struggled with data limitations. We are fortunate to have access 

to a range of unique and comprehensive data sets that provide us with a useful degree of leverage over 

some of the econometric and measurement challenges we confront. Since we seek to measure the impact 

of rising generic penetration on drug development effort, it is especially important to have high-quality 

measures of pharmaceutical innovation and of exposure to generic competition. Our data allow us to track 

both variables by firm (i), therapeutic market (j), and year (t). The disaggregate nature of our data allows 

us to make a choice in terms of the unit of observation. We could focus on either therapeutic market (j) 

and year (t) or firm (i), therapeutic market (j) and year (t). We are interested in how firms are responding 

to generic competition, and firms differ significantly from one another in terms of their research 

capabilities and marketing investments in different therapeutic categories. A firm with strong research 

capabilities in and heavy financial reliance on a particular drug market may respond to generic 

competition in that market in a very different way than firms with limited research capacity in that 

domain and limited economic commitments to it. We want to be able to control for these differences, so 

we choose to utilize all the dimensions of our data – firm, market, and year.  

 We depend on the Pharmaprojects classification of drug candidates into the various therapeutic 

market categories. Unfortunately, this data is most consistently reported only at the 2-digit level. Other 

key variables are available at a greater level of disaggregation (i.e., ATC 4-digit), but because we are 

seeking to relate these to innovative effort, we can disaggregate no further than the level of our innovation 

data. Therefore, in our firm-market-year (ijt) level of analysis, discussed above, our markets will be 

constrained to the ATC 2-digit level. Finally, firms are included in our sample if they have at least one 

approved product and at least one early-stage innovation. This limitation excludes some smaller, research-

intensive firms that have yet to market their own products.15 We argue below that the bias introduced by 

this sample selection, to the extent that it exists, likely weakens our estimated results relative to what 

holds in reality. The paragraphs below describe our data and our empirical approach. 

4.1 Measuring and modeling pharmaceutical innovation 

                                                           
14  In related work, Budish, Roin, and Williams (2015) provide evidence that variation in effective patent life distorts 
incentives for investment in cancer drugs. This study does not consider the impact of rising generic competition 
15 Note, the innovation from these research-intensive firms will show up in our data if they have been licensed to one 
of our sample firms at any time in the development process.  
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The regulatory structure imposed on the pharmaceutical industry makes early-stage product 

development relatively easy to track. Because the introduction of new drugs is important for the financial 

health of drug companies, the progress of new candidate drugs through the development pipeline is 

closely monitored, and commercial databases contain rich data on these candidates. We draw our 

measures of drug innovation from one such commercial database, Pharmaprojects. Not only is there 

nearly universal coverage of all candidate drugs being tested for eventual sale in the U.S. market, but we 

also know the chemical composition of the drug, the prospective disease targets, the therapeutic market in 

which it is likely to be sold, and the development history (some drugs are initially developed to fight one 

disease but then are discovered to have positive effects against others). The database also records 

information on product development suspensions and discontinuations as well as product withdrawals 

from the market after introduction.     

Attempts to assess the relationship between generic penetration and drug development confront a 

major challenge. At the same time that generic entry has been rising, the pharmaceutical industry has 

encountered a widely publicized productivity crisis (Cockburn, 2006). Although there has been no 

measured slowdown in aggregate early-stage drug development, new drug approvals peaked in the mid-

1990s and were stagnant or falling through the rest of our sample period. While this opinion is by no 

means universally held, there are some inside and outside the industry who suggest that this decline 

reflects an emerging exhaustion of research opportunities. In this view, the easy-to-discover drugs have 

already been introduced, and the diseases that are now the focus of research effort are extremely complex 

and difficult to treat. To the extent that there really is a decline in research productivity, this could lead 

firms to ratchet back their drug development efforts, even in the absence of a growing generic threat. Our 

empirical challenge will be to assess the impact of increased generic entry on new pharmaceutical 

innovation while controlling, as best we can, for contemporaneous changes in research opportunities and 

other demand-side factors that might influence drug development (Berndt et al, 2015).  

 We propose to do this using a regression specification that models innovation as a function of 

generic entry, scientific opportunity and challenges, firm innovative capability, downstream co-

specialized assets, and a vector of additional controls: 

 

𝐼𝑖𝑗𝑡 = 𝛼𝑖 + 𝛼𝑗 + 𝛼𝑡 + 𝛽1𝐺𝑖𝑗𝑡−1 + 𝛽2𝑂𝑗𝑡−1 + 𝛽3𝑍𝑖𝑗𝑡−1 + 

𝛽4𝐷𝑖𝑗𝑡−1 + 𝛽5𝑃𝑖𝑗𝑡−1 + 𝛽6𝑆𝐴𝑖𝑗𝑡 + 𝛽7𝑆𝑖𝑡 + 𝜀𝑖𝑗𝑡    (1) 
 
 
where Iijt, measures early-stage innovations by firm i in ATC 2-digit market j in time t. We define early 

stage innovations as the count of individual compounds in preclinical development or in Phase 1 clinical 
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trials. If firms are responding to changes in the intensity of generic competition, changes in perceived 

scientific opportunity, or changes in expected market opportunity, we would expect a measurable impact 

to show up at this stage. In contrast, drugs that have already successfully moved on to Phase 2 or Phase 3 

trials are likely to continue through the development process to the end, even if the firm plans to curtail or 

eliminate future research in that area in response to rising competition or diminished technological 

opportunity.16 Because the outcome variable is a count variable, the statistical model employed in our 

regression should be one designed to handle count data. As such, we use fixed effects Poisson and 

negative binomial estimators (Hausman et al., 1984; Woolridge, 1999). Given that not all firms innovate 

in each therapeutic category in each year, it is possible that the data may contain zeros.17 Our count data 

models have the advantage of dealing with this outcome in a natural way. 

 The specification, as written, includes fixed effects for year (αt), firm (αi), and therapeutic (ATC) 

market (αj). There are 13 years, 178 firms, and 126 ATC 2-digit categories in our data, and we run into 

convergence challenges when we seek to estimate our Poisson and negative binomial count data models 

using the full set of year and ATC 2-digit dummies.18 In the results we will report below based on count 

data models, we get around this convergence challenge by estimating ATC 1-digit dummy variables and, 

in some specifications, we also include a paired fixed effect, interacting therapeutic market dummies with 

year dummies, (αj*αt). As a robustness check, we also run linear versions of our models with the full set 

of 2-digit ATC fixed effects as well as interaction terms of 2-digit ATC fixed effects and year dummies.  

 The robustness of our results to the inclusion of this full set of fixed effects and interaction terms 

is quite important. Since Schmookler (1966), economists have understood that changes in expected future 

market size could influence the distribution of R&D investment across product markets, and recent 

research has shown this to be true in the pharmaceutical industry (Acemoglu and Linn, 2004; Finkelstein, 

2004; Trusheim and Berndt, 2012; Dubois et al., 2015). We maintain that in Equation (1) changes in 

expected market size across ATC categories over time will be controlled for by the interacted therapeutic 

market and year fixed effects (ATC market*Year).19 These interaction terms will also control for changes 

                                                           
16 We present empirical results later in the paper that are consistent with this view. 
17 In each specification where we utilized a count model we performed a Vuong test to determine the applicability of 
relevant zero-inflated models. In no case was the test statistic significant.  
18 We note that we have an unbalanced panel because not all firms are active every year in every ATC-2 digit market 
in terms of their innovative pipeline. 
19 In an earlier version of this paper (Branstetter et al, 2014) we controlled for the expected future market size for 
new drugs in a particular therapeutic class by averaging total sales from IMS MIDAS™ in therapeutic area j over 
year t, year t+1, and year t+2, measured in inflation-adjusted dollars. As it turns out, the sign and significance of the 
coefficients on our measures of generic penetration are not sensitive to the inclusion or exclusion of this variable, so 
it is omitted from the current specification and we rely instead on the ATC*Year interaction terms to control for 
changes in expected market size.   
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in underlying scientific opportunity or research productivity across product markets that are common to 

all firms. Finally, to the extent that the demand-side factors impacting drug profitability described by 

Berndt et al. (2015) (and discussed previously in Footnote 11) also vary across therapeutic markets and 

time, these effects should also be controlled for by the same interaction terms. Additionally, we also 

present results from instrumental variables and Arellano and Bond system GMM regressions. In all cases, 

these alternative specifications yield results consistent with those reported in the main text - our measures 

of generic penetration are negative and statistically (and economically) significant.   

4.2   Measuring generic penetration (Gijt-1) 

 Hatch-Waxman laid out the modes by which generic manufacturers can enter chemical-based 

therapeutic markets. This entry leads to rapid deterioration in the sales of branded products (Saha et al., 

2006). However, the incidence of rising generic impact is quite uneven across therapeutic categories and 

time. Firms also differ in terms of their exposure to this competition. Fortunately, we are able to employ 

disaggregated data from the IMS MIDAS™ database. This database tracks the sales (quantity) of nearly 

every pharmaceutical product sold in the U.S. by firm, product, and quarter, and the data are mapped to 

ATC categories. We note that IMS creates a ‘standard unit’ that equates capsules, tablets and liquid 

dosages that we use as our unit of measure. Our data is limited to the years 1998-2010, and this data 

restriction determines the time dimension of our study. 

Fortunately, this window covers a period of intensifying generic competition. Within this period, 

we are able to determine the extent of generic penetration that firm i faces in therapeutic area j in time t-1. 

We define our measure of generic penetration, Gijt-1, as the sum of generic sales in therapeutic area j at 

time t-1 divided by the sum of generic and firm i branded sales in therapeutic area j at time t-1.20 A 

negative coefficient implies that as generic penetration faced by firm i, in therapeutic market j increases, 

the flow of early-stage innovation decreases.  

4.3   Measuring scientific opportunity (Ojt-1) 

 In order to identify the effect of changes in generic competition on innovation, we must also 

effectively control for underlying scientific opportunities within each therapeutic market j at time t-1.  

Prior research has demonstrated the link between academic research and industrial R&D (e.g., Mansfield, 

                                                           
20 As a robustness check, we defined a second measure of generic penetration, Gjt-1Mijt-1, as the ratio of generic sales 
to total sales in therapeutic area j in time t-1 multiplied by the ratio of branded sales by firm i in therapeutic area j in 
year t-1 divided by total branded sales of firm i in year t-1. Our earlier working paper (Branstetter et al., 2014) 
demonstrates that this alternative measure yields results qualitatively similar to the ones obtained with Gijt-1. For that 
reason, we focus on the latter measure in this version of the paper. 
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1995; Gittelman and Kogut, 2003); these linkages are particularly strong in pharmaceuticals. Similar to 

Furman et al. (2005), we construct a bibliographic measure that captures publicly available academic 

research in the life sciences.  

We start by merging data from IMS MIDAS™, our comprehensive database of pharmaceutical 

products, with the IMS NDTI™ database, which captures physician prescription behavior. This latter 

database identifies the diseases for which physicians are actually prescribing the drugs in IMS 

MIDAS™.21  IMS MIDAS™ is categorized by ATC codes and the IMS NDTI™ database is categorized 

by International Statistical Classification of Disease (ICD-9) diagnostic codes. Merging these two 

databases enabled us to generate a concordance between ICD-9 diagnostic codes and ATC product codes 

(at the 4-digit level). Next, we extracted the top 10 ICD-9 diagnostic codes for each ATC 4-digit category. 

These ICD-9 codes have unified keywords associated with them that were used as search terms in the 

National Library of Medicine’s PUBMED database. This search yielded journal articles published 

between 1950 and 2010 relating to our various keywords that we were then able to map back to 

disaggregate ATC 4-digit categories. Ultimately, we identified a unique sample of 6.5 million journal 

articles. However, some journal articles were mapped to multiple ATC 4-digit categories, thereby 

yielding 20.9 million raw article counts.  

Next, we used the unique PMID identifiers for these articles to gather their forward citations from 

the year of publication to the end of 2010 in the SCOPUS Sciverse database. Our sample of 20.9 million 

articles generated over 345 million forward citations. Since our unit of observation in a therapeutic market 

is at the ATC 2-digit level, we aggregate our annual, citation-weighted counts of journal articles up from 

the ATC 4-digit level to the ATC 2-digit level. While some science is basic and universal, earlier science 

tended to be more chemical-based while newer research may be more relevant to biologic-based science.  

This suggests that older science is likely to be less relevant for current drug development than more recent 

science, as such, we apply a 15% discount rate, take natural logs, and lag the stock by one year to create 

our control variable, Ojt-1.22  

4.4 Scientific challenges (Zijt-1) 

 In contrast to scientific opportunities that may potentially “pull” firms towards a specific 

therapeutic market, we control for scientific challenges that may “push” firms away from a specific 

                                                           
21 Because the IMS NDTI™ database is based on surveys of practicing physicians, it captures “off-label” 
prescribing behavior; that is, the prescribing of medicines for diseases for which they are not officially approved by 
the FDA as treatments. 
22 A 15% discount rate is a standard assumption in the R&D and innovation literature. Results are not sensitive to 
alternative assumptions regarding the discount rate. 
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therapeutic market. Utilizing data from Pharmaprojects we identify all suspended, discontinued and 

withdrawn products across the entire research pipeline from pre-clinical candidates to approved products. 

Development can be ended and products pulled for a multitude of reasons many of which, at their most 

fundamental level, are due to some type of scientific challenge. For example, Merck pulled Vioxx® from 

the market due to negative side-effects, while the Alzheimer disease drug candidate semagacestat was 

discontinued by Eli Lilly in Phase III clinical trials after disappointing results. The failure of one or more 

leading products within a broader drug development program could indicate the presence of common or 

related flaws in the products that are still under development. This, in turn, could lead the firm to scale 

back, terminate, or redirect research and development efforts in response. Seeking to control for this, we 

define our proxy for the scientific challenges faced by the firm, Zijt-1, as the number of products 

suspended, discontinued or withdrawn by firm i, in therapeutic market j at time t-1. 

 

4.5 Firm capabilities (Dijt-1 and Pijt-1), marketing assets (SAijt), and firm size (Sit) 

 

Clearly, pharmaceutical companies differ in the drug development capabilities they have built 

over time. A given firm is more likely to introduce a new compound in a therapeutic category in which it 

already has substantial research expertise. In order to control for this persistence of firm-level capabilities 

we use data from Pharmaprojects to create a three-year moving average of past drug introductions, Dijt-1, 

by firm i in the same therapeutic market j. This three-year moving average is lagged one period, (t-1).  In 

addition to controlling for past products, we also control for late-stage innovations within the product 

pipeline. Again, using data from Pharmaprojects we define Pijt-1 as the number of compounds under 

development by firm i that are in Phase 2 or Phase 3 clinical trials in therapeutic market j at time t-1.  

Prior research has also documented the connection between downstream co-specialized assets and 

a strong commitment to research efforts within a particular therapeutic class (Teece, 1986; Chan et al., 

2007). The presence of these assets can create a ‘lock-in’ effect, influencing the allocation of research 

effort across therapeutic categories. Similar to Ceccagnoli et al. (2010), we control for the distribution of 

a firm’s downstream co-specialized assets across therapeutic categories by including a ratio of promotions 

to product sales, SAijt, for firm i within therapeutic category j at time t. Promotions and product sales are 

collected from IMS MIDAS™ and the promotions activity includes detailing, journal advertising and 

direct-mail. Detailing is the direct promotion of products by pharmaceutical representatives to physicians. 

Finally, firm size can impact innovation rates. As such, we control for firm size with pharmaceutical sales 

by firm i in year t, Sit. Sales data was gathered from IMS MIDAS™ and natural logs were taken. All 

financial variables are converted into real dollars using a base year 2000 GDP deflator. 
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4.6 The econometric challenges created by unmeasured research capabilities 

 It would be convenient to presume that the error term in Equation (1) is independently and 

identically distributed across firm-market-year observations, once we have included a full set of firm, 

market, and year fixed effects. However, one can imagine that the error term is potentially more 

complicated than that.23 To fix ideas and illustrate the inferential challenges that arise, we presume that 

the error term takes on the following form: 

 

   (2) 
 

The second term in (2) is presumed to be identically and independently distributed, and causes no 

econometric problems. The first term, , can be thought of as a research productivity parameter that 

determines the effectiveness with which firm i translates research resources into new drugs in market j at 

time t. It is not fixed – instead, it evolves over time across firms and markets, and is therefore not 

accounted for by the usual fixed effects. If  is highly correlated across firms, but varies widely across 

markets and time, then we could largely control for it by including interacted therapeutic market and year 

(ATC market*Year) fixed effects, essentially allowing all firms to respond positively over time to 

therapeutic markets that hold promise, or negatively over time to therapeutic markets where scientific 

exhaustion and diminishing returns to research are setting in. However, if  varies across firms as well 

as markets and time, inclusion of this interacted fixed effect (ATC market*Year) may not be sufficient.  

 To the extent that the firm is aware of its , it will invest more in markets where  is high 

and less where it is low, inducing a positive correlation between early-stage drug development activity 

and . Of course, if  declines significantly, and remains low, then the flow of new drugs will 

decline, and generic penetration may rise, inducing a negative correlation between our measure of generic 

penetration and Ijit. To summarize 𝐶𝑜𝑣(𝐼𝑖𝑗𝑡, 𝜔𝑖𝑗𝑡) > 0 and 𝐶𝑜𝑣(𝜔𝑖𝑗𝑡, 𝐺𝑖𝑗𝑡−1) < 0, so that 

𝐶𝑜𝑣(𝐼𝑖𝑗𝑡, 𝐺𝑖𝑗𝑡−1) < 0, but the latter relationship could emerge purely as an artifact of omitted variable 

bias.   

 In order to gain any empirical leverage around this problem, we need to presume some functional 

form for . We presume that it takes on the form: 

   (3) 

                                                           
23   This section was inspired, in part, by Olley and Pakes (1996) and Pavcnik (2002), and the notation used here 
reflects that influence. 
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where 𝜏 is the usual well-behaved error term and  

 
   (4) 

 
If  follows this functional form, then its earlier (t-1, t-2, t-3, etc.) realizations will be plausibly 

correlated with our measure of late-stage clinical activity, Pijt-1. Later realizations will be plausibly 

correlated with our measure of recent drug introductions, Dijt-1, and, to the extent that marketing 

expenditures are well targeted, with SAijt. By explicitly including these covariates in Equation (1), we may 

effectively eliminate  from our error term, significantly reducing the possibility that our inference is 

driven by omitted variables bias. Of course, this line of argument raises the possibility of serial correlation 

in the error term, so we will want to include a specification that allows for this. We explore two 

alternatives in an attempt to obtain leverage around this problem. First, we instrument for Gijt-1 and 

include a lagged dependent variable that allows for serial correlation in the error term.24 Second, we can 

include an interacted firm and year (Firm *Year) fixed effect along with our full set of fixed effects: firm, 

year, therapeutic market and an interaction between therapeutic market and year (ATC market*Year). 

Given convergence issues this will only be possible in our linear specifications. 

 

4.7 An empirical specification for measuring the shift into biologic-based drugs  

Current regulation suggests an alternative approach to estimating the impact of generics on 

innovation. Chemical-based pharmaceutical products become susceptible to Paragraph III generic entry 

after patent expiration (i.e., end of market exclusivity). They also become susceptible to early generic 

entry via Paragraph IV challenges only five years after approval (i.e., end of data exclusivity). As 

discussed above, the same legal frameworks did not (yet) provide a pathway for biosimilar entry after 

biologic patent expiration during our sample period, nor was (or is) there the equivalent of a Paragraph IV 

challenge to biologic-based drugs.  

Biologic-based drugs face a different regulatory regime. During our sample period, there was no 

legal pathway through which biosimilars could enter the U.S. market. This suggests that the difference in 

regulation during our sample period created an incentive for pharmaceutical companies to favor biologic-

based therapies over chemical-based therapies, even if the latter was more effective in a purely 

                                                           
24 We note, however, that the Breusch-Godfrey test fails to reject the null of no first-order serial correlation (prob > 
F: 0.6483) 
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therapeutic sense. Even as biosimilars begin to enter the U.S. market, for reasons discussed previously, 

those incentives are likely to remain in the longer run. This suggests an alternative specification: 

 (5) 

Here, the dependent variable measures the difference between chemistry-based innovations and 

biologic-based innovations. Likewise, our controls for firm-specific development capability and market 

presence are redefined to reflect relative capability in chemistry-based versus biologic-based 

development. Given these controls, we would not expect generic penetration (Gijt-1) to have an impact on 

the choice of technology – unless firms’ research choices are being affected by the prospect of generic 

competition.      

4.8  Difference in early-stage innovation (CIijt – BIijt) 

 If current regulation is causing biologic-based innovation to be preferred to chemical-based 

innovation, then we need to modify our innovation measure in order to capture this change. Using the 

Origin of Material field within Pharmaprojects we are able to sort early-stage innovation (Iijt) into either 

biologic-based (BIijt) or chemical-based (CIijt) innovation. In operationalizing Equation (5), the dependent 

variable is the difference between these two types of innovation, CIijt – BIijt. A negative coefficient on a 

right-hand side (RHS) variable (such as Gijt-1) would imply that as that variable increased the difference 

(CIijt – BIijt) would decline. In other words, BIijt is greater than CIijt or the flow of biologic-based 

innovations exceeds the flow of chemical-based innovations.25 

 It is possible for firm i to have more biologic-based innovations than chemical-based innovations 

in therapeutic market j at time t. In this case, our difference variable (CIijt – BIijt) will become negative, 

preventing us from using count data models. We therefore create a new variable, cat(CIijt – BIijt), that 

equals 1, 2 and 3 if (CIijt – BIijt) is negative, zero or positive, respectively. This reclassification allows us 

to use an ordered logit specification (Hausman et al., 1992). Again, a negative coefficient on an 

independent variable would imply that as that variable increased, the dependent variable, cat(CIijt – BIijt), 

will decline. In this case the difference, (CIijt – BIijt), will become negative and the interpretation is the 

same as above.  

                                                           
25 As a robustness check for this specification we also employ a seemingly unrelated regression specification (SUR 
model) where firms simultaneously decide their innovation decisions in chemicals and biologics (Table 7). Results 
are consistent between our various specifications and will be discussed more fully in Section 5. We thank Ivan Png 
for this suggestion. 

CIijt - BIijt =a i +a t +a j +b1Gijt-1 +b2Ojt-1 +b3Zijt-1 +b4(CDijt-1 - BDijt-1)+
b5(CPijt-1 - BPijt-1)+b6(CSAijt - BSAijt )+b7Sit +eijt
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For our specification in Equation (5), we can use the Origin of Material field within 

Pharmaprojects to decompose our measure of late-stage innovations, Pijt-1, past drug introductions, Dijt-1, 

and our measure of scientific challenges, Zijt-1, faced by firm i in therapeutic market j, into their chemical-

based (CPijt-1, CDijt-1 and CZijt-1, respectively) and biologics-based (BPijt-1, BDijt-1 and BZijt-1, respectively) 

components. We can also decompose our ratio of promotions to product sales, SAijt, for firm i within 

therapeutic market j at time t, into its chemical-based (CSAijt) and biologic-based (BSAijt) components. 

Empirically, in Table 6 we create the variables diff(Pijt-1), diff(Zijt-1), diff(Dijt-1), and diff(SAijt) defined as 

the difference between the chemical- and biologic-based components: (CPijt-1 – BPijt-1), (CZijt-1 – BZijt-1), 

(CDijt-1 – BDijt-1) and (CSAijt – BSAijt), respectively.26 

5  Empirical results 

5.1  Descriptive statistics 

Descriptive statistics for our variables are presented in Table 1. Our dependent variable, Iijt, 

captures early-stage innovation and varies between 0 and 36 for firm i, in therapeutic market j, at time t. 

While our firms had, on average, 0.78 early-stage innovations within a therapeutic market at time t, it 

should be remembered that not every firm has an early-stage innovation in every therapeutic market in 

each year. If we focus solely on therapeutic categories with activity, then the average increases to 2.12 

early-stage innovations. Firms in the top quartile of firm size had, on average, 3.07 innovations within 

therapeutic market j at time t, as compared to 1.45 innovations for the smallest quartile firms. ATC N, 

focusing on the nervous system, had the largest number of innovations, while ATC P, which focuses on 

anti-parasitic products, had the lowest number of innovations. The relative contribution to total 

innovations of each broad therapeutic category (ATC 1-digit) over our sample period, as identified by 

Pharmaprojects, is displayed in Figure 2. 

Inspection of the raw data shows that, in the aggregate, there has been no decline in early-stage 

innovation over our sample period, even as the level of generic penetration has risen and the number of 

approved drugs has fallen (Figure 1). This suggests that generics have had limited impact on the overall 

                                                           
26  Unfortunately, we have not found a credible way to split Ojt-1 into chemical-based and biologic-based 
components. It is extremely difficult to identify all facets of biologic-based research from PubMed. Even after 
utilizing experts within these respective fields and experts at the U.S. National Library of Medicine (PubMed) to 
help construct keywords, we still found examples where our biologic-based measure would be undercounted. Such 
an undercount is problematic since we are trying to control for biologic-based scientific opportunities. Our 
alternative solution is to discount Ojt-1 in order to deemphasize older research and emphasize more recent research 
that would be more relevant (and consistent) with the focus on biologic-based products. Ultimately, this is variation 
we are pulling out of the interacted therapeutic market and year fixed effect. The removal of Ojt-1 does not change 
our core findings. 
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aggregate rate of early-stage innovation. However, we find strong evidence that generics have had a 

statistically and economically significant impact on where development activity is concentrated and how 

it is undertaken.   

Our baseline measure of generic penetration, Gijt-1, has a mean value of 54% and a median value 

of just over 80%. Our measure of technological opportunity, Ojt-1, measured by the logarithm of the 

discounted stock of citation weighted articles in year t-1 for therapeutic market j, varied between 0 and 

14.4, with an average of 8.04. This translates into an average value of approximately 3.8 million citations 

for each therapeutic market j in each year. Over our sample period the greatest technological opportunity 

existed in ATC categories N5 (psycholeptics) and N6 (psychoanaleptics). Our measure of technological 

challenges, Zijt-1, had an average value of 0.05. The number of challenges varied between 0 and 6 with the 

greatest technical challenges experienced in ATC T2, which includes various recombinant-based 

products, such as interferon. 

On average, our firms had a lagged three-year moving average of 0.24 recently introduced 

products (Dijt-1) and 0.09 drug candidates in the latest stages of product development (Pijt-1) in therapeutic 

market j at time t-1. Our control for downstream co-specialized assets, SAijt, the ratio of promotions to 

sales for firm i in therapeutic market j at time t, averaged 48%. This suggests firms are making significant 

downstream investments in therapeutic areas in which they operate (and plan to operate).27  

5.2  Impact of generic entry on the flow of innovation 
 

Do changes in generic penetration have an effect on the flow of early-stage drug innovation? We 

estimate Equation (1) with a fixed effects Poisson specification, and report results in Table 2. We also 

present results using a fixed effects negative binomial specification in Table 3. The dependent variable in 

all specifications is Iijt , or the count of firm i innovations in therapeutic market j at time t. Model 1 in both 

tables (Table 2 and Table 3) presents a baseline regression with firm-level control variables, including our 

measures of new product introductions (Dijt-1), late-stage product development (Pijt-1), downstream co-

specialized assets (SAijt), sales (Sit), and firm, year, and therapeutic market fixed effects (estimated at the 

ATC 1-digit level). Model 2 in each table adds controls for scientific opportunity (Ojt-1) and scientific 

challenges (Zijt-1). Finally, in Models 3 and 4, we include our measure of generic penetration (Gijt-1) along 

with differing sets of fixed effects. Model 3 includes just firm and year fixed effects; Model 4 includes 

                                                           
27  Note that SAijt ranges from 0 to 2225. The very high maximum value appears implausible, but this simply shows 
there are market/year combinations where firm i was ramping up advertising significantly prior to introduction.  The 
minimum value of zero reflects market/year combinations where firms lower their advertising to zero – a frequent 
occurrence after generic entry. 
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therapeutic market fixed effects and an interaction between year and therapeutic market fixed effects. As 

discussed previously, this interaction, we argue, controls for unobserved variance in a particular 

therapeutic market in a specific year. The results presented in this table are obtained using clustered 

standard errors at the firm level. When we cluster our standard errors at the therapeutic area level, we 

obtain results qualitatively similar to those shown here.28 

Across all specifications and models we find negative and statistically significant coefficient 

estimates for our measure of generic penetration. This negative relationship suggests that, at the firm 

level, increases in generic penetration are related to decreases in the flow of early-stage innovation in that 

therapeutic area. Taking the coefficient from our complete negative binomial specification (Model 4, 

Table 3) as our baseline estimate, we calculate an elasticity equal to -0.796. In other words, a 10% 

increase in generic penetration experienced by a firm in a particular market corresponds to a 7.96% 

decrease in early-stage innovation by that firm in that market. To our knowledge this is the first empirical 

evidence that documents the effect of generic penetration in the U.S. market on early-stage 

pharmaceutical innovation. If fewer candidates are entering a given therapeutic pipeline within a given 

firm, then fewer approved drugs will eventually come out.  

Generic penetration into a market is clearly harmful for branded producers. From a social welfare 

perspective, however, the interpretation is more nuanced. If the presence of viable generics in a market 

rises, our results indicate that innovation will decrease in that market.29 However, the stability of early-

stage drug development effort at the aggregate level suggests that much of the decline in innovation 

within markets facing a high degree of generic competition is offset by increased innovative effort 

elsewhere. Indeed, Pammolli et al. (2011) argues that one of the reasons R&D productivity has declined 

                                                           
28 We have replicated Tables 2 and 3 with clustered standard errors at the therapeutic area level; results are 
qualitatively similar to those reported here and are available upon request.   
29 In theory, generics should be perfect substitutes for branded drugs since they are bioequivalent. Cleanthous (2002) 
shows that the data do not support this relationship and suggests this is the result of ‘spurious product 
differentiation’, which he defines as arising, “…when consumers perceive physically identical products to differ in 
quality.” Recent evidence, however, suggests that consumer perceptions have merit, at least some of the time, and 
while drugs may be bioequivalent, they may indeed differ in quality. Several articles appeared in the April 17, 2007 
edition of the prestigious journal Neurology discussing the high incidence of break-through seizures with generic 
anti-epileptics and recommending new protocols (Berg, 2007).  Insurance companies such as Blue Cross Blue Shield 
of Georgia allow pediatric customers to stay on branded anti-epileptic medications even though generics are 
available. Differences across generics for the same brand have also been reported. This debate ultimately led the 
FDA to fund a comparative effectiveness trial between branded and generic epilepsy drugs, which is still on-going 
(https://clinicaltrials.gov/ct2/show/NCT01733394?term=privitera&rank=4). We are not suggesting all generics have 
problems but it appears in some instances where the therapeutic window is very narrow consumer perceptions of a 
substantive difference between branded drugs and generics may have some merit.     

 

https://clinicaltrials.gov/ct2/show/NCT01733394?term=privitera&rank=4
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has been a shift into areas with unmet therapeutic needs, which also have higher risks of failure. Our 

results are consistent with the view that drug development is shifting out of therapeutic areas facing more 

intense generic competition and into domains facing less generic competition. Furthermore, our results 

provide one possible explanation for why this shift is occurring. In essence, Hatch-Waxman, by providing 

mechanisms of entry for generics, creates conditions under which the pharmaceutical industry redirects 

R&D efforts to markets less served by generics.  

If R&D efforts are shifting across therapeutic areas, this can have significant future 

consequences, with a net impact on social welfare that is difficult to calculate. On the one hand, if the 

therapeutic category that is seeing research expenditures leave has a different success probability than the 

therapeutic category to which expenditures are flowing, this could have consequences for the net flow of 

innovation (either increasing or decreasing). On the other hand, new product development in a domain 

with few (or no) existing effective therapies may have greater social value than similar development in an 

area with a broad range of existing effective therapies, even if the R&D success probabilities are lower in 

the domain with few therapies. In this paper, we do not take a strong stand on the ultimate welfare 

consequences of this shift. Instead, we seek to document its existence and magnitude. The welfare 

consequences of the shift remain the focus of ongoing research.   

Turning to our controls for scientific opportunity (Ojt-1) and scientific challenges (Zijt-1), we find 

that both positively and significantly influence the flow of early-stage innovation. Using a similar 

approach in the creation of their scientific opportunity variable, Furman et al. (2005) find a positive 

relationship with pharmaceutical patenting. Our results take this one step further and document a 

relationship with actual early-stage drug development. Much of the basic science research that is captured 

in our variable takes place in academic settings; as such this finding is broadly consistent with past work 

documenting the role of academic research in industrial innovation (e.g., Mansfield, 1995; Cohen et al., 

2002).  

Interestingly, while our findings are consistent with our a priori beliefs with respect to scientific 

opportunity, the same cannot be said with respect to scientific challenges. Our initial beliefs were that 

scientific opportunity might serve as a mechanism to ‘pull’ innovative effort into a particular area, while 

challenges might serve as a mechanism to ‘push’ innovation away from it. That would imply a negative 

coefficient on our challenges variable; but the coefficient is positive and significant at conventional 

levels. One interpretation of this positive coefficient is that that failures can serve as a learning 

mechanism for future endeavors (Chiou et al., 2012). Statin drugs, which today are one of the largest 

selling therapeutic areas, had a difficult beginning in 1978, with the unsuccessful launch of Mevacor®. 
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Over time, however, the industry worked through these difficulties as new technologies led to the five 

types of statin-molecules currently sold in U.S. A different, but related interpretation of the positive 

coefficient is simply that firms with a significant research commitment to a particular therapeutic category 

are more likely to have a few failures along the way, and the positive coefficient on our proxy for 

scientific challenges simply picks up that effect. 

We control for firms’ research capabilities by using past innovative output in a particular 

therapeutic market, as measured by the lagged count of products in late-stage product development, Pijt-1, 

and the lagged count of new product introductions, Dijt-1. As expected, both are positively and 

significantly related to the flow of early-stage innovations.  Across the two baseline specifications (Model 

4, Table 2 and Table 3), our measure for firm size, Sit, is positive and significant. This result should not be 

interpreted as necessarily indicating a positive relationship between firm size and ‘innovation,’ as our 

dependent variable is a simple count of early-stage pipeline products; we make no distinction between 

internally generated and externally acquired products.30 Finally, our measure of marketing intensity or 

downstream co-specialized assets, SAijt, is statistically indistinguishable from zero. 

5.3 Testing for robustness with four alternative specifications 

 Our baseline measure of innovation, Iijt, which is the count of products in early-stage 

development, does not discriminate between pharmaceutical products that are novel and those that come 

much later in the history of a therapeutic area. This reflects, in part, the difficulty of drawing a clear or 

meaningful line between “truly innovative” drugs and “me-too” drugs. The history of the industry 

provides several examples in which the first products in a class had significant shortcomings or side 

effects - and the real breakthroughs in terms of therapeutic efficacy came several product introductions 

later.31  Even when new products are merely recombinations or reformulations of existing active 

ingredients, the new products can often provide significant therapeutic benefits to certain categories of 

patients.     

 Despite these realities, critics of the pharmaceutical industry have accused branded firms of 

responding to generic entry or the threat of generic entry by coming up with branded “innovations” that 

are not true innovations, but merely minor modifications of earlier branded products. If the negative 

impact of rising generic entry on early-stage innovation, identified in our regressions, were limited to 

                                                           
30 See Cohen (2010) for an extensive discussion of the literature analyzing the relationship between firm size and 
innovation.   
31 See Arcidiacono et al. (2013). 
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incremental innovations with little or no therapeutic value, then that would have different policy 

implications from an effect that extended to the most novel compounds and drugs. 

 The Pharmaprojects database includes a variable that grades each product under development in 

terms of its novelty - the most novel compounds are ones that are first in their class. We do not accept the 

proposition that all compounds without this “novel” designation have limited therapeutic value. For the 

reasons discussed above, we believe the Pharmaprojects designation excludes a large number of socially 

useful new product introductions. Nevertheless, the designation allows us to introduce a useful robustness 

check that may address the concerns of those who are convinced that only pharmaceutical product 

introductions that satisfy a strict definition of novelty are socially useful. In Model 1, Table 4, we present 

the results of a regression in which we replace our comprehensive count of drugs in early-stage 

development with a count of only novel drugs in early-stage development, as defined by Pharmaprojects. 

In a fixed effects negative binomial regression, the coefficient on our measure of generic penetration is 

negative and statistically significant, indicating that rising generic penetration is associated with a 

statistically significant decline in the rate of introduction of novel products. The elasticity from Model 1 

implies that a 10% increase in generic penetration in a particular market will lower early-stage novel 

innovations, in that same market, by 5.96%. Put another way, our results are not driven by a crowding out 

of purely incremental inventions or reformulations.     

 Next, we test the robustness of our results and the correctness of our interpretation by applying 

what amounts to a placebo test. In our previous regressions, we carefully defined innovation as early-

stage product development. As compounds move through the costly, expensive, and risky clinical trials 

process, they require ever-higher levels of investment by the firm. A drug that has survived Phase 2 and 

Phase 3 clinical trials is likely to be introduced, even if generic penetration is rising sharply in a way that 

might lead to a throttling back of early-stage research in that therapeutic area. Drugs at these later stages 

of the development process should be significantly less responsive to our measures of generic penetration 

than our measures of earlier stage innovations.32 

 Following this logic, in Model 2, Table 4, we define a new dependent variable, Late Stage Iijt, as a 

count of firm i’s products in Phase 2 or Phase 3 trials in market j at time t. In this specification, we find 

that our measure of generic penetration, Gijt-1 is not significantly correlated with late-stage product 

                                                           
32 We thank Jeff Macher of Georgetown University for suggesting this robustness check.   
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innovation.33 This is in line with our expectations, and strengthens our interpretation of the results using 

measures of early-stage product development. 

Our next regression is a different sort of placebo test. Most prescription health plans in the U.S. 

allow for the use of branded products until generics become available. In most cases patients will be given 

the generic by retail pharmacies unless the prescription is written “Dispense as Written” or if the patient 

explicitly asks for a branded drug (in which case there is usually a much higher co-payment). More 

recently, however, insurance firms have begun to actively engage in “cross-molecular” substitution. For 

example, let’s assume there exist three branded products in a particular market, Drug A, Drug B and Drug 

C, sold by three different pharmaceutical firms. Each branded product has a different chemical 

composition (i.e., a different molecule), and uses a different biochemical pathway to address the 

underlying illness. Then, a generic for Drug B enters the market. To save money, insurance companies 

can encourage patients taking Drug A or Drug C to switch to Generic B. While insurance firms cannot 

force patients to move they can entice them with lower (or no) copayments for Generic B.   

Since physicians, not patients or insurance companies, write prescriptions, these financial 

incentives will only shift drug consumption to the generic products if physicians also consent to the 

change. However, in many therapeutic markets, practicing physicians have long regarded different drugs, 

based on different molecules and utilizing different biochemical pathways to attack the disease, as equally 

effective therapies for the underlying illness. In such cases, physicians will often consent to the insurance 

companies preferred change, especially if it saves their patients money. We refer to this possibility of 

substitution across drugs and molecules within a therapeutic category in response to emerging price 

differentials as that category's degree of cross-molecular substitution (Branstetter et al., 2016). Where 

cross-molecular substitution is high, the implications for branded products can be quite profound. In such 

markets, the emergence of a generic equivalent to any branded product can affect the revenue streams of 

all branded products, leading to wide-ranging declines in revenues and profits.  

The extent of these impacts will vary across therapeutic categories, depending on the degree of 

cross-molecular substitution within that category. For example, based on conversations with practicing 

physicians, we would expect higher substitution in therapeutic areas such as anti-infectives, hypertension 

and allergies and lower substitution in markets such as depression and epilepsy. In general, the 

complexity and sensitivity of the human brain and the complicated nature of neurological disorders work 

to strictly limit the degree of cross-molecular substitution in drugs that treat neurological and psychiatric 

                                                           
33  In these regressions, our dependent variable is identical to Pijt-1, so we omit this variable from our set of control 
variables. 
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disorders. They even limit the degree to which practitioners are willing to use allegedly “bioequivalent” 

generic versions of the branded drug. When practitioners find a good match between a drug treatment and 

a patient in these domains, they are often reluctant to switch to a cheaper generic. 

Economic intuition suggests that if a class of branded drugs was less susceptible to cross-

molecular substitution and generic competition, then we might expect to see a muted innovation response 

to rising generic competition in that particular market. Focusing on the markets that include anti-

epileptics, anti-depressants, and anti-psychotics, we indeed see this in our results in Model 3, Table 4. 

Increases in generic penetration do not appear to have any statistically significant effect on early-stage 

innovation in these therapeutic areas.34 This suggests that there are markets for which direct substitution 

to a generic may be problematic, cross-molecular substitution is low, and as a result the effect on early-

stage innovation is less of a concern.35 

 Our final robustness check seeks to incorporate ATC 2-digit therapeutic market fixed effects and 

the interaction between ATC 2-digit therapeutic market and year fixed effects into the specification. This 

is not feasible in our main fixed effects negative binomial models (Table 2); attempts to estimate these 

nonlinear specifications with so many fixed effects fail to reach convergence. However it is possible to 

incorporate firm, year, ATC 2-digit therapeutic market fixed effects along with the interaction between 

ATC 2-digit therapeutic market and year fixed effects (ATC 2-digit market*Year) into the linear 

specification of Equation (1). The results for this full specification are shown in Model 4, Table 4. We 

view this an especially strong test of the hypothesis that an increase in generic penetration is associated 

with a decline in innovative activity, because all of the factors associated with an ATC 2-digit therapeutic 

market that vary over time in a common way across firms are swept out with the interaction terms. 

 Despite this, and despite the imperfect fit between the count data in our dependent variable and 

the statistical assumptions undergirding our linear specification, we still find that generic penetration is 

negatively associated with early-stage drug development, and this effect is statistically significant at 

conventional levels. The elasticity from Model 4 implies that a 10% increase in generic penetration in a 

particular market will lower early-stage innovations, in that same market, by about 4.1%. Recall that our 

unit of observation is at the firm-market-year level, where market j is defined at the ATC 2-digit 

                                                           
34 Given the limited number of markets we are able to get convergence with a model that includes firm, year, ATC 
2-digit therapeutic market and an interaction between ATC 2-digit and year fixed effects (ATC 2-digit 
market*Year). In that specification, Gijt-1 remains statistically insignificant. 
35 As a further robustness check, through consultations with practicing physicians we identified markets that they 
deemed ‘high CMS’ (high degrees of cross-molecular substitution), namely the anti-infective markets J01-J04. 
When we replicate the findings in Table 4 for these high CMS markets the coefficients on Gijt-1 are negative and 
significant at the 1% level. This is consistent with our intuition about high CMS markets. 
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therapeutic level.  When we include ATC 2-digit therapeutic market fixed effects and the (ATC 2-digit 

market*Year) interacted fixed effects, Ojt-1 is no longer informative. So, we omit it from the list of 

coefficients in Model 4, and we do so in every specification that follows where we include ATC 2-digit 

fixed effects and the interactions of these fixed effects with year dummies. 

 

5.4 An instrumental variables approach 

 In this section, we take yet another approach to testing the robustness of our results: the use of 

instrumental variables.36 Here, we exploit the fact that our firm-market-year specific measure of generic 

penetration moves over time as a consequence of patent expirations and successful Paragraph-IV 

challenges to existing drugs. For each firm i, we construct a count of the flow and stock of patent 

expirations that occur in market j at time t. Likewise, we construct a count of the total number of 

Paragraph-IV challenges that occur in market j at time t, and a count of the total number of patent 

challenges to firm i’s products in market j at time t. We instrument for Gijt-1 using these four instruments, 

and present results of three separate linear specifications using these instruments in Table 5.  

 With patent expirations in market j at time t, generic products will enter market j and generic 

penetration will grow at a certain rate. Penetration rates across markets will vary due to many factors, 

including the degree of cross-molecular substitution in that market. These factors induce a degree of 

exogeneity into the evolution of generic penetration in that market that is plausibly exogenous to firm i’s 

actions. Paragraph-IV challenges are also plausibly exogenous to the actions of the challenged firm. 

When the patents protecting a significant product expire or are successfully challenged, this can lead to 

large changes in Gijt-1 that are plausibly uncorrelated with contemporaneous movements in firm i’s 

underlying research productivity or other factors directly influencing Iijt. Our instruments pass the usual 

overidentification test for instrumental validity, and the first-stage regression results indicate a high 

degree of correlation between our instrument and our potentially endogenous measure of generic 

penetration.37 

 Model 1, Table 5 presents results of a two-stage least squares regression with firm, year, ATC 1-

digit therapeutic market fixed effects along with an interaction between ATC 1-digit therapeutic market 

                                                           
36 While we explore the potential endogeneity of Gijt-1 we have reason to believe it remains exogenous. Stata’s estat 
endogenous command reports Wooldridge’s robust score test and a robust-regression based test. If the test statistic is 
significant the variable being tested, in this case Gijt-1, must be treated as endogenous. In our main model we fail to 
reject the null that Gijt-1 is exogenous (p = 0.18). 
37 The first stage F-statistic is 1,793.83. The p-value for the overidentification test is 0.5125, implying that the null 
hypothesis of instrument validity is not rejected. 
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and year fixed effects (ATC 1-digit market*Year). The effect of rising generic penetration is negative and 

statistically significant at conventional levels. The estimated coefficient implies that a 10% increase in 

generic penetration leads to a 4.7% decline in early-stage innovation. Model 2 incorporates the more 

disaggregate ATC 2-digit therapeutic market fixed effects and the interaction between ATC 2-digit 

therapeutic market and year (ATC 2-digit market*Year) fixed effects; the measured impact of rising 

generic penetration remains negative and statistically significant, implying that a 10% increase in generic 

penetration leads to a 8.4% decline in early-stage innovative activity. Model 3 uses a full-blown Arellano 

and Bond System GMM specification, in which we instrument for generic penetration, incorporate a 

lagged dependent variable, and allow for serial correlation in the error terms. Yet again, the estimated 

impact of generic penetration is negative and statistically (and economically) significant. In a final 

attempt to capture any potential effect of , we run a linear model with Gijt-1 along with firm, year, 

ATC 2-digit therapeutic market fixed effects along with an interactions between ATC 2-digit therapeutic 

market and year (ATC 2-digit market*Year) fixed effects and firm and year (Firm*Year) fixed effects. 

The coefficient on Gijt-1 is -0.7751 and significant at the 1% level, similar to reported results in Model 4, 

Table 4.38 Regardless of how we approach this relationship, all of the arrows continue to point in the same 

direction – the existence of a negative relationship between generic penetration and early-stage 

innovation.       

5.5 Are generics driving a switch to biologics-based drug development? 

Other researchers have conjectured that declining revenues associated with small-molecule 

(chemical-based) products are increasingly motivating firms to switch to large-molecule (biologic-based) 

products (Wong, 2009; Golec et al, 2010). As we have noted above, such a shift could have mixed 

consequences for future drug development. Biologics are more expensive than chemical-based products, 

on average (Aitken et al., 2009; Trusheim et al., 2010), and biologics are likely to experience far less 

generic competition than chemical-based drugs for the foreseeable future. If consumer uptake across the 

two types of products over their entire product lifecycle remains similar, then a shift from chemical-based 

to biologic-based drugs could imply that, all else equal, the percent of overall health care expenditures 

spent on pharmaceuticals will increase.39 

                                                           
38 This regression is unreported but available upon request. 
39 As long as the data exclusivity period remains at 12 years there will still be a significant difference between the 
regulatory incentives for biologic-based drugs and chemical-based drugs. As of this writing, data exclusivity for 
chemical-based drugs is 5 years (with additional extensions available for pediatric use, orphan designation and 
reformulations.) 

ijtZ
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In order to consider whether a shift to biologic-based products may be occurring as a 

consequence of rising generic penetration, we estimate the specification described in Equation (5). The 

dependent variable in this specification is the difference between early-stage chemical-based innovations 

and early-stage biologic-based innovations. As constructed, this variable can now take on negative values, 

which prevents us from using count data models. Instead, we create a variable, cat(CIijt-BIijt), that equals 

1, 2 and 3 if the difference (CIijt – BIijt) is negative, zero, or positive, respectively, and we estimate 

Equation (5) using an OLS specification (Models 1 and 2, Table 6) and for comparative purposes an 

ordered logit model (Models 3 and 4, Table 6). 40 Model 1 and Model 3, Table 6 report our complete 

baseline specification with all ATC 1-digit therapeutic market fixed effects, including the (ATC 1-digit 

market*Year) interaction. Model 2 includes the full set of ATC 2-digit therapeutic market and (ATC 2-

digit market*Year) fixed effects. Across all specifications our measure of generic penetration is 

negatively and significantly related to the difference in types of early-stage innovations. This suggests 

that as generic penetration increases, our dependent variable, cat(CIijt-BIijt), declines which, in turn, 

implies that the difference, (CIijt – BIijt) is decreasing. In other words as generic penetration increases, the 

flow of biologic-based innovations is greater than the flow of chemical-based innovations for firm i, in 

market j, at time t. Controlling for other factors, it appears that pharmaceutical firms are responding to 

generic competition by shifting to biologics, where they do not face similar competition. 

Table 7 provides results from an alternative approach - one in which two separate linear models 

predicting chemical-based product innovations and biologic-based production innovations, respectively, 

are run as a system, using the seemingly unrelated regressions (SUR) approach. In all specifications, we 

can see that generic competition is negatively associated with chemical-based innovation, but positively 

associated with biologic-based innovation, and both relationships are significant at the conventional 

threshold levels. We noted earlier in the paper that our sample is limited to firms with at least one 

approved product and at least one candidate drug in early-stage development. This sampling restriction 

excludes some small, research-intensive firms. However, these smaller entities are overwhelmingly 

focused on biologic drug development. We strongly believe their inclusion in our empirical analysis 

would, if anything, significantly strengthen the general tenor of our findings, especially those concerning 

the shift out of chemical-based drugs and into biologic-based drugs.   

As a final robustness check we consider markets where there is robust biologic-based early-stage 

innovation. It should be the case that once we restrict the sample, using the same methodology as Table 7, 

                                                           
40 As with the negative binomial fixed effects regression, ordered logit regressions do not converge when we employ 
the full set of (ATC 2-digit market*Year) fixed effects. 
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our results should strengthen. That is, we should see a greater negative effect on CIijt and a greater 

positive effect on BIijt in markets where biologic-based innovation is especially well developed, frequent, 

and, perhaps, easier for firms with the requisite knowledge capital.41 In Table 8 we therefore restricted the 

sample to the top three ATC markets (F, J and T) with the largest number of early-stage biologic-based 

innovations. Again using a SUR approach we find that across both specifications we obtain the predicted 

effects – a greater negative effect on CIijt and a greater positive effect on BIijt.    

6  Conclusion 

 For many years, researchers and industry observers have conjectured that rising generic 

penetration might have an impact on the rate and direction of pharmaceutical innovation. Using a new 

combination of data sets, we are able to estimate the effects of rising generic penetration on early-stage 

pharmaceutical innovation. While the overall level of early-stage drug development has continued to 

increase, generics have had a statistically and economically significant impact on where that development 

activity is concentrated and how it is done. In the full sample, we find that, as our baseline measure of 

generic penetration increases by 10% within a therapeutic market, we observe a decrease of 7.96% in 

early-stage innovation in that market. This implies that drug development activity is moving out of 

markets where generic competition is increasing and into domains where it is relatively less intense. 

 Our preferred interpretation of this relationship, namely that a rise in generic penetration leads to 

a decline in drug development in that market, is strengthened by the finding that this relationship varies 

across therapeutic areas in ways that conform to our prior expectations. In earlier work (Branstetter et al., 

2016), we pointed out that the degree of substitution between generics and branded products can vary 

substantially across therapeutic areas. In markets where the substitution possibilities between generics and 

branded drugs are more limited, changes in generic penetration could be expected to have a weaker 

impact on innovation. This is indeed what we observe when we focus on three markets containing drugs 

that treat neurological and psychiatric disorders, where clinicians are sometimes reluctant to move away 

from a good "match" between a patient and a drug, even when a cheaper generic alternative becomes 

available. In these markets, we find no statistically significant effect of generics on early-stage 

innovations. However, in markets with high levels of cross-molecular substitution we see the opposite. 

 In a similar manner, we would expect the measured negative correlation between rising generic 

penetration and new drug development to be strong and significant for early-stage drug development, 

where it is still feasible to redirect research efforts, but much weaker in late-stage drug development, 

                                                           
41 We thank Ariel Stern for making this suggestion. 
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where candidate drugs have already proved their safety and efficacy in a series of increasingly expensive 

and stringent clinical trials and are generally introduced even if the market is known to be limited by 

increasing generic competition. We find exactly this pattern in the data, providing further support for our 

preferred interpretation of the statistical relationship. The robustness of our results is also confirmed when 

we limit our sample to drugs candidates designated as novel by Pharmaprojects. This shows that our 

results are not driven by generic competition simply pushing out "me-to" drugs or 

reformulation/recombinations of existing therapies. For better or worse, the rise in generic penetration is 

associated with a decline in novel drug development. The elasticity from our results implies that a 10% 

increase in generic penetration in a particular market will lower early-stage novel drug development, in 

that same market, by 5.96%.  

 We also note that, in a linear specification, the negative relationship between drug development 

and rising generic penetration is robust to the inclusion of a full set of ATC 2-digit therapeutic market 

fixed effects and the interaction between ATC 2-digit therapeutic market and year fixed effects (ATC 2-

digit market*Year). In this specification, where all the unobserved factors impacting an ATC 2-digit 

therapeutic market over time in a common way across firms are effectively removed, the key empirical 

relationship remains negative, strong, and statistically robust. The elasticity from our results implies that a 

10% increase in generic penetration in a particular market will lower early-stage innovation, in that same 

market, by 4.7%. An instrumental variables approach confirms the robustness of the negative estimated 

relationship between generic competition and early stage innovation. 

 Finally, we also consider the economic incentives created by regulation to shift, within 

therapeutic markets, from chemical-based to biologic-based products. Currently, data exclusivity is much 

longer for biologic-based products, and the regulatory pathway to market for biosimilars is likely to be far 

more challenging than the pathway for small molecule generic drugs. We conjecture that as chemical-

based products are pressured by generics, pharmaceutical firms will change the nature of their innovation 

by shifting to biologics. This is indeed what we observe. Increases in generic penetration in market j 

appear to lead to an increase in the relative amount of biologic-based drug development. As generic 

penetration in market j rises, firms do not appear to be abandoning market j completely, but rather 

changing the nature of the innovation they pursue.  

Are our results simply an artifact of technological exhaustion in various therapeutic markets? We 

do not believe so. First, to the extent that there is variance in technological exhaustion across markets and 

through time then our interaction between ATC 1-digit (and 2-digit) therapeutic market and year fixed 

effects (αj*αt) should control for these trends. Second, we control directly for late-stage innovation (Pijt-1) 
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and recent drug introductions (Dijt-1); we argue that declines in these variables should further capture any 

exhaustion phenomenon. Third, we find no evidence of a negative relationship between generic 

penetration and innovation in markets with limited substitution possibilities between generic and branded 

drugs  (Model 3, Table 4). If technological exhaustion were driving our results, why do we not see its 

effect in these markets? Fourth, if our results could be explained by technological exhaustion, how do we 

explain the different results between early-stage (Model 4, Table 3) and late-stage (Model 2, Table 4) 

innovation? Finally, if technological exhaustion was the only factor driving our results, then why is 

innovation in biologic-based drugs (BIijt) increasing at the same time that innovation in chemical-based 

drugs (CIijt) is decreasing in the same therapeutic markets where generic competition is rising (Table 8)? 

In the end, we simply do not believe that technological exhaustion plausibly explains away the full range 

of our results.    

 We have shown that the rise of generic competition is reshaping the locus of drug development 

activity. Is this a good thing? In this paper, we have refrained from taking a strong stand on the welfare 

impact of this shift. The data we would need to determine this are not yet available, and, at this point, we 

can only speculate on the sign of the ultimate welfare impact. On the positive side, one can argue that 

social welfare is enhanced when pharmaceutical firms are induced to shift development efforts away from 

markets where a broad range of effective and cheap generic therapies already exist to ones with far fewer 

treatment options. This can be true even if the probabilities of research success are lower in the domains 

into which research effort is being pushed, because the social returns to expanding the range of treatment 

options is relatively high. Even an increasing shift to more expensive biologic-based drugs may be 

beneficial in the long run if further innovation in small-molecule drugs brings little social value.  

 However, it is equally easy - and for us, equally plausible - to imagine a less positive outcome. 

Rising generic competition could be eliminating the development of new small molecule drugs that have 

all the benefits of existing therapies without the side effects. Such new drugs would have social value, 

even in markets with an extensive range of existing therapies. The less explored domains into which the 

pharmaceutical industry's small-molecule developments are being pushed may yield little or no success. 

Such pessimism would be consistent with much of the discussion of the pharmaceutical industry's 

longstanding productivity crisis. Finally, by tilting the regulatory playing field so heavily against small-

molecule drug development and in favor of biologics, we may be inducing the global industry to give up 

on the former domain that has done so much to advance global health through the provision of cheap, 
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relatively simple, effective drugs long before the potential benefits of further research have been 

exhausted.42  

 The first step toward a more definitive conclusion about the welfare impact of the shift in drug 

development would be the creation of a map that locates the various therapeutic categories in terms of 

their proximity in technology space. It is reasonable that firms pressed by rising generic competition 

would seek to redeploy their R&D resources in domains that are not wholly dissimilar from the ones in 

which they have been working. Despite decades of high-quality empirical research on the pharmaceutical 

industry, no researchers have yet created such a mapping. With such data at hand, we could begin to 

explore not just the declines in drug development that have been induced by generic competition, but the 

increases in development in technologically proximate markets. These data would also facilitate the 

comparison of research success probabilities in the domains where drug development effort is declining 

and ones in which it is increasing.  

 Even with such data at hand, assessment of the full welfare impact of the recent shift will require 

strong assumptions that allow researchers to sketch out the counterfactual distribution of research effort 

that would have existed in the absence of the recent rise in generic competition. Despite this, we believe 

the effort is not just worthwhile, but necessary. Whether the effect was intended or not, the rise of 

generics in the U.S. market is significantly reshaping the pattern of global drug development efforts. We 

need to know if this is pushing that pattern closer to or further away from the social optimum. As is 

usually the case in research, much remains to be done.  

                                                           
42 In fact, many industry insiders believe that there are hundreds of small molecule compounds with as yet 
undiscovered therapeutic benefits. Because the patents on these compounds expired long ago, there is no mechanism 
by which a branded pharmaceutical company could appropriate the returns from R&D into these new therapeutic 
benefits. This line of thinking raises the possibility that there is a gold mine of potentially high-return research 
projects that are currently inaccessible to the global pharmaceutical industry. Meanwhile, the existing regulatory 
regime induces them to spend billions on extremely complex, large-molecule therapies whose full interaction with 
the human body is imperfectly understood, and where the rate of failure in clinical trials is correspondingly high.  
See Higgins et al. (2014) and Roin (2014) for an explication of this idea and potential policy solutions. 
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Figure 1. Early-stage innovations, 1998-2010. This figure tracks the aggregate flow of early-stage pharmaceutical 
innovations, defined as the annual count of compounds at the preclinical stage or in Phase 1 clinical trials.  We 
provide annual aggregate counts for our sample firms (solid line) and for the entire population (dotted line) of 
compounds contained in the Pharmaprojects database. Over our time period, 1998-2010, the number of early-stage 
innovations, including both small- and large-molecules, has increased. Our sample closely tracks the population, 
with differences being explained by our sample restrictions. Recall, firms must have at least one approved product 
and one early-stage innovation in order to be incorporated into our sample. 
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Figure 2. Relative contribution to total innovations across therapeutic categories. This figure plots the relative contribution of each therapeutic 
class at the ATC1-level based on Pharmaprojects data. Data includes all products for which Pharmaprojects identifies a therapeutic category. For a 
color version of this table we direct the readers to an earlier version of this paper, Branstetter et al., (2014). 
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Table 1. Variable definition and descriptive statistics. This table provides definitions, data sources along with descriptive statistics for our variables 
of interest. Our main dependent variable of interest will be early-stage innovations, Iijt, while our main independent variable is generic penetration, Gijt-1 
experienced by firm i, within market j, at time t-1.   

 

VARIABLES DEFINITION SOURCE OBS MEAN S. DEV. MIN MAX 

Iijt

 Early-stage innovations: Count of early stage pipeline (pre-
clinical + phase 1) at i, j, t level. Pharmaprojects 29,514 0.78 1.81 0 36 

Gijt-1

 Generic penetration, baseline measure: Ratio of generic sales 
to sum of focal firm and generic sales at i, j, t-1 level. IMS MIDAS™ 29,514 0.54 .46 0 1 

Ojt-1

 Technological opportunity: Logarithm of stock of citation-
weighted articles in year t-1 for jth therapeutic market. 
Discounted 15% per year. 

IMS NDTI™& MIDAS™, 
PubMed and 

SCOPUSSciverse 
29,514 8.04 7.30 0 14.4 

Zijt-1

 Technological challenges: Counts of suspended or 
discontinued pipeline projects and withdrawn approved 
products at i, j, t-1 level. 

Pharmaprojects 29,514 0.05 0.26 0 6 

Dijt-1

 Firm innovative capability I: Moving average of product 
introductions in t-1, t-2, t-3 at the i, j, t-1 level. Pharmaprojects 29,514 0.24 1.01 0 25.67 

Pijt-1

 Firm innovative capability II: Count of Phase II and Phase 
III products at the i, j, t-1 level. Pharmaprojects 29,514 0.09 0.35 0 6 

SAijt

 Downstream co-specialized assets: Ratio of promotions at 
the i,j, t level and total pharmaceutical sales at the i, j, t level. IMS MIDAS™ 29,514 0.48 20.12 0 2225 

Sit
 Firm size: Logarithm of total pharmaceutical sales at the i, t 

level. IMS MIDAS™ 29,514 12.71 4.44 0 17.23 
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Table 2. Flow of innovation (Poisson). This table presents results from Poisson 
models across four specifications over our full sample. Model 4 serves as our base 
specification as it contains our full array of fixed effects, including an interaction 
between market (ATC1) and time (Year). The dependent variable, Iijt, is defined as 
early-stage innovation. Standard errors are clustered at the firm level and are in 
parentheses. *** p<0.01, ** p<0.05, *p<0.1 
 
     
 (1) (2) (3) (4) 

VARIABLES Iijt Iijt Iijt Iijt 

     
Gijt-1   -1.373*** -1.360*** 
   (0.133) (0.133) 
Ojt-1  0.0118** 0.0347*** 0.0345*** 
  (0.00479) (0.00375) (0.00368) 
Zijt-1  0.398*** 0.367*** 0.369*** 
  (0.0299) (0.0249) (0.0228) 
Dijt-1 0.106*** 0.114*** 0.101*** 0.104*** 
 (0.00993) (0.0103) (0.00816) (0.00801) 
Pijt-1 0.246*** 0.138*** 0.132*** 0.141*** 
 (0.0447) (0.0365) (0.0351) (0.0375) 
SAijt -0.00271 -0.00266 -0.000823 -0.000766 
 (0.00310) (0.00304) (0.00124) (0.00122) 
Sit 0.00965 0.0116* 0.0195** 0.0198** 
 (0.00649) (0.00612) (0.00831) (0.00846) 
Constant 0.330 0.194 -0.438** 0.0626 
 (0.246) (0.245) (0.222) (0.349) 
Firm FE Y Y Y Y 
Year FE Y Y Y Y 
ATC1 FE Y Y N Y 
ATC1 x Year FE N N N Y 
Observations 29,514 29,514 29,514 29,514 
Pseudo log likelihood -28846.07 -28108.87 -26524.64 -26348.69 
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Table 3. Flow of innovation (Negative Binomial). This table presents results 
from Negative Binomial models across four specifications over our full sample. 
Model 4 serves as our base specification as it contains our full array of fixed 
effects, including an interaction between market (ATC1) and time (Year). The 
dependent variable, Iijt, is defined as early-stage innovation. Standard errors are 
clustered at the firm level and are in parentheses. *** p<0.01, ** p<0.05, *p<0.1 
    
  (1) (2)  (3) (4) 

VARIABLES Iijt Iijt Iijt Iijt 

     
Gijt-1   -1.476*** -1.465*** 

   (0.112) (0.112) 
Ojt-1  0.00778* 0.0356*** 0.0352*** 

  (0.00429) (0.00378) (0.00376) 
Zijt-1  0.653*** 0.573*** 0.570*** 

  (0.0329) (0.0310) (0.0311) 
Dijt-1 0.227*** 0.208*** 0.173*** 0.173*** 

 (0.0312) (0.0288) (0.0236) (0.0236) 
Pijt-1 0.202*** 0.127*** 0.104** 0.105** 

 (0.0410) (0.0433) (0.0406) (0.0407) 
SAijt -0.00490 -0.00468 -0.00188 -0.00180 

 (0.00345) (0.00351) (0.00183) (0.00180) 
Sit 0.00102 0.00485 0.0143* 0.0143* 
 (0.00729) (0.00715) (0.00838) (0.00842) 

Constant 0.410* 0.255 -0.409* 0.0140 
 (0.241) (0.233) (0.212) (0.345) 

Firm FE Y Y Y Y 
Year FE Y Y Y Y 

ATC1 FE Y Y Y Y 
ATC1 x Year FE N N N Y 

Observations 29,514 29,514 29,514 29,514 
Log likelihood -26759.09 -26336.31 -24936.29 -25031.03 
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Table 4. Robustness checks. This table presents three placebo tests based on a 
negative binomial specification (Models 1 – 3). Model 1 redefines the dependent 
variable as novel early-stage innovation, Novel Iijt while Model 2 redefines the 
dependent variable as late-stage innovation, Late Stage Iijt. The sample is restricted in 
Model 3 to markets where we anticipate low cross-molecular substation. These 
include: anti-epileptics, anti-depressants, and anti-psychotics. The dependent variable 
is defined as early-stage innovation, Iijt. Finally, in Model 4 we present a linear 
specification of our baseline model including our full array of fixed effects. However, 
Model 4 now includes fixed effects at a more disaggregate level of therapeutic 
markets, ATC2. Both the market fixed effect and the market-year interacted fixed 
effect are included in Model 4. Note, Ojt-1 is excluded from Model 4 as it is 
measured at the ATC2-level. Standard errors are clustered at the firm level in 
parentheses. *** p<0.01, ** p<0.05, * p<0.1 
 

  (1) (2) (3) (4) 
 NegBin NegBin NegBin OLS 

VARIABLES Novel Iijt Late Stage Iijt Low CMS Iijt Iijt 

     
Gijt-1 -1.096*** -0.0686 -0.106 -0.583*** 

 (0.187) (0.110) (0.268) (0.0700) 
Ojt-1 0.0258*** 0.0339*** 1.101  

 (0.00807) (0.00756) (1.426)  
Zijt-1 0.390*** 0.434*** 0.262*** 1.505*** 

 (0.0574) (0.0337) (0.0729) (0.179) 
Dijt-1 0.0837*** 0.168*** 0.154*** 0.364*** 

 (0.0188) (0.0230) (0.0409) (0.0424) 
Pijt-1 0.0597  -0.00779 0.478*** 

 (0.0740)  (0.110) (0.126) 
SAijt -0.000482 -0.00844** -0.0499 -0.000117 

 (0.00196) (0.00358) (0.529) (0.000167) 
Sit 0.00764 -0.00817 0.0184 0.00928 
 (0.00996) (0.0115) (0.0265) (0.0109) 

Constant -23.28*** -21.02*** -15.29 1.008*** 
 (1.100) (1.074) (19.30) (0.140) 

Firm FE Y Y Y Y 
Year FE Y Y Y Y 

ATC1 FE Y Y Y N 
ATC1 x Year FE Y Y N N 

ATC2 FE N N N Y 
ATC2 x Year FE N N N Y 

Observations 29,514 29,514 1,577 29,514 

Log likelihood/R2 -5603.75 -6616.19 -1189.71 0.404 
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Table 5. Flow of innovation (IV and System GMM Specifications). Models 1 and 2 
present results from two-stage least square regressions where we instrument for Gijt-1. 
Both models include our full array of fixed effects, including the interaction between 
market and time. The market level in Model 1 is ATC1 while Model 2 uses the more 
disaggregate ATC2-level. Model 3 implements an Arellano and Bond system GMM 
where we also instrument for Gijt-1 and incorporate a lagged dependent variable. Again, 
in Model 2, Ojt-1 is omitted because it is constructed at the ATC2-level. Robust 
standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1    

 
 

 (1) (2) (3)  

 IV IV 
SYSTEM 

GMM  
VARIABLES Iijt Iijt Iijt  

     
Gijt-1 -0.668*** -1.204*** -0.444***  

 (0.191) (0.582) (0.160)  
Iijt-1   0.506***  

   (0.113)  
Ojt-1 0.0135***  0.00105  

 (0.00361)  (0.00244)  
Zijt-1 1.800*** 1.542*** 0.720  

 (0.196) (0.108) (0.501)  
Dijt-1 0.402*** 0.395*** 0.445***  

 (0.0419) (0.025) (0.152)  
Pijt-1 0.667*** 0.495*** 0.0654  

 (0.150) (0,088) (0.372)  
SAijt -4.81e-06 0.0001 0.00164  

 (0.000161) (0.0001) (0.00399)  
Sit 0.0280*** 0.038*** 0.00678  
 (0.00621) (0.003) (0.00862)  

Constant 0.216 0.0609 0.414***  
 (0.140) (0.477) (0.144)  

Firm FE Y Y Y  
Year FE Y Y Y  

ATC1 FE Y N N  
ATC1 x Year FE Y N N  

ATC2 FE N Y Y  
ATC2 x Year N Y N  
Observation 29,514 29,514 21,088  
R2/Wald Χ2 0.384 0.479 1763.13  
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Table 6. Change in innovation (OLS and Ordered Logit). Across all four specifications the 
dependent variable cat(CIijt-BIijt), equals 1, 2 and 3 if the difference (CIijt – BIijt) is negative, 
zero, or positive, respectively. Note, CIijt is defined as chemical-based early-stage innovation 
while BIijt is defined as biologic-based early-stage innovation. Models 1 and 2 present results 
from OLS with a full array of fixed effects. Model 1 includes market fixed effects at the ATC1-
level while Model 2 includes market fixed effects at the more disaggregate ATC2-level.  Models 
3 and 4 present ordered logit models, with Model 4 including a full set of fixed effects, 
including the interaction between market and time, at the ATC1-level. In Model 2, Ojt-1 is 
omitted because it is constructed at the ATC2-level. Standard errors are clustered at the firm 
level in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
 
 
  (1) (2) (3) (4) 

 OLS OLS OLOGIT OLOGIT 

VARIABLES cat(CIijt-BIijt) cat(CIijt-BIijt) cat(CIijt-BIijt) cat(CIijt-BIijt) 

     
Gijt-1 -0.333*** -0.382*** -1.823*** -1.830*** 

 (0.0212) (0.0291) (0.0480) (0.0482) 
Ojt-1 0.00430***  0.0220*** 0.0222*** 

 (0.000988)  (0.00263) (0.00263) 
diff(Zijt-1) 0.174*** 0.136*** 2.428*** 2.448*** 

 (0.0284) (0.0243) (0.203) (0.204) 
diff(Dijt-1) 0.0628*** 0.0366*** 0.777*** 0.780*** 

 (0.00954) (0.00784) (0.0558) (0.0564) 
diff(Pijt-1) 0.210*** 0.153*** 1.874*** 1.880*** 

 (0.0180) (0.0167) (0.0651) (0.0656) 
diff(SAijt) -0.0073*** -0.0003 -0.000427*** -0.000422*** 

 (0.0021) (0.0003) (0.000152) (0.000156) 
Sit 0.00214 0.00323 0.0194* 0.0224** 
 (0.00204) (0.00199) (0.0111) (0.0112) 

Constant 3.094*** 2.802*** -20.81 -22.18 
 (0.0750) (0.0763) (30.94) (218.7) 

Firm FE Y Y Y Y 
Year FE Y Y Y Y 

ATC1 FE Y N Y Y 
ATC1 x Year FE Y N N Y 

ATC2 FE N Y N N 
ATC2 x Year FE N Y N N 

Observations 29,514 29,514 29,514 29,514 

R2/Pseudo R2 0.466 0.569 0.402 0.405 
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Table 7. Change in innovation (SUR). This table presents results from three  SUR specifications. CIijt is defined 
as chemical-based early-stage innovation while BIijt is defined as biologic-based early-stage innovation. The 
specifications differ in the mix of fixed effects included. Regardless of choice, our core results remain: generic 
penetration (Gijt-1) is negatively associated with chemical-based innovation but positively associated with 
biologic-based innovation. Clustered standard errors at the firm level in parentheses. *** p<0.01, ** p<0.05, * 
p<0.1 
 
 
 
  (1)   (2)   (3) 

 SUR  SUR  SUR 

VARIABLES CIijt BIijt   CIijt BIijt   CIijt BIijt 

         
Gijt-1 -0.594*** 0.0375**  -0.592*** 0.0392**  -0.612*** 0.0437** 

 (0.0207) (0.0170)  (0.0207) (0.0170)  (0.0242) (0.0204) 

Ojt-1 0.0168*** -0.00363***  0.0167*** -0.00368***  -0.00543 -0.0126 

 (0.00122) (0.001000)  (0.00122) (0.000998)  (0.0621) (0.0522) 

Zijt-1 1.306*** 0.404***  1.311*** 0.406***  1.107*** 0.375*** 

 (0.0281) (0.0231)  (0.0282) (0.0231)  (0.0256) (0.0215) 

Dijt-1 0.203*** 0.166***  0.204*** 0.166***  0.211*** 0.150*** 

 (0.00745) (0.00611)  (0.00744) (0.00611)  (0.00710) (0.00597) 

Pijt-1 0.132*** 0.492***  0.129*** 0.494***  0.0658*** 0.400*** 

 (0.0219) (0.0179)  (0.0219) (0.0179)  (0.0201) (0.0169) 

SAijt -0.000267 0.000144  -0.000493 0.000153  -0.000261 0.000140 

 (0.000358) (0.000294)  (0.000362) (0.000294)  (0.000358) (0.000294) 

Sit 0.00842** 0.000264  0.00845** 0.000196  0.0115*** -0.00119 

 (0.00414) (0.00339)  (0.00414) (0.00340)  (0.00374) (0.00314) 
Constant 0.843 0.00863  0.860 0.0362  0.844 0.0348 

 (1.151) (0.944)  (1.162) (0.954)  (1.040) (0.875) 
Firm FE Y Y  Y Y  Y Y 
Year FE Y Y  Y Y  Y Y 

ATC1 FE Y Y  Y Y  N N 
ATC1 x Year FE N N  Y Y  N N 

ATC2 FE N N  N N  Y Y 
Observations 29,514 29,514  29,514 29,514  29,514 29,514 

R2 0.322 0.369   0.326 0.372   0.449 0.462 
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Table 8. Robustness: Change in innovation (SUR). In these two SUR specifications we 
limit the sample to those markets where biologic-based innovation is most active. Based on 
data from Pharmaprojects, these include ATC1 markets: F, J and T. The intuition behind this 
approach is simple, if a rotation is taking place from chemical-based to biologic-based 
innovation, the effects should be amplified in markets where the rotation is easier for firms 
to undertake. Results are consistent with this intuition. CIijt is defined as chemical-based 
early-stage innovation while BIijt is defined as biologic-based early-stage innovation. 
Clustered standard errors at the firm level in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
 
 

 

  (1)   (2) 
 SUR  SUR 
VARIABLES CIijt BIijt   CIijt BIijt 

      
Gijt-1 -1.085*** 0.229*  -1.054*** 0.334** 

 (0.0732) (0.139)  (0.0776) (0.145) 
Ojt-1 0.0922*** -0.0467***  0.256 -0.100 

 (0.00449) (0.00855)  (0.201) (0.378) 
Zijt-1 0.558*** 1.192***  0.522*** 1.049*** 

 (0.0460) (0.0875)  (0.0435) (0.0815) 
Dijt-1 0.0555*** 0.195***  0.0788*** 0.175*** 

 (0.00939) (0.0179)  (0.00933) (0.0175) 
Pijt-1 -0.155*** 0.741***  -0.124*** 0.599*** 

 (0.0291) (0.0554)  (0.0279) (0.0523) 
SAijt -0.000623 0.00940*  -0.000128 0.0117** 

 (0.00272) (0.00518)  (0.00256) (0.00480) 
Sit 0.00536 -0.00200  0.00874 -0.00715 
 (0.00850) (0.0162)  (0.00801) (0.0150) 

Constant 0.958*** 0.417  0.785*** 0.805** 
 (0.197) (0.375)  (0.191) (0.357) 

Firm FE Y Y  Y Y 
Year FE Y Y  Y Y 

ATC1 FE Y Y  N N 
ATC1 x Year FE Y Y  N N 

ATC2 FE N N  Y Y 
Observations 4,958 4,958  4,958 4,958 

R2 0.284 0.429   0.365 0.509 

    
     

  


