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Abstract 

We analyze the effect of patent thickets on entry into technology areas by firms in the 
UK. We present a model that describes incentives to enter technology areas 
characterized by varying technological opportunity, complexity, and the potential for 
hold-up due to the presence of patent thickets. We show empirically that our measure 
of patent thickets is associated with a reduction of first time patenting in a given 
technology area controlling for the level of technological complexity and opportunity. 
Technological areas characterized by more technological complexity and opportunity, 
in contrast, see more entry. Our evidence indicates that patent thickets raise entry costs, 
which leads to less entry into technologies regardless of a firm’s size. 
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1 Introduction 

The past two decades have seen an enormous increase in patent filings worldwide (Fink 
et al., 2013). There are signs that the high level of patenting may be reducing innovation 
in certain technologies (Federal Trade Commission, 2011; Bessen and Meurer, 2008; 
Jaffe and Lerner, 2004; Federal Trade Commission, 2003). Companies drawing on these 
technologies face elevated legal costs of commercializing innovative products when 
patents that contain overlapping claims form so-called “patent thickets” (Shapiro, 
2001). Patent thickets arise where individual products draw on innovations protected 
by hundreds or even thousands of patents, often with fuzzy boundaries. These patents 
belong to many independent and frequently competing firms. Patent thickets can lead to 
hold-up of innovations, increases in the complexity of negotiations over licenses, 
increases in litigation, and they create incentives to add more, often weaker patents to 
the patent system (Allison et al., 2015). The increased transaction costs associated with 
patent thickets reduce profits that derive from the commercialization of innovation, and 
ultimately may reduce incentives to innovate. 

There is a growing theoretical (Bessen and Maskin, 2009; Clark and Konrad, 2008; 
Farrell and Shapiro, 2008; Fershtman and Kamien, 1992) and legal literature (Chien and 
Lemley, 2012; Bessen et al., 2011) on patent thickets. Related work analyzes firms’ 
attempts to form patent pools to reduce hold-up (Joshi and Nerkar, 2011; Lerner et al., 
2007; Lerner and Tirole, 2004) and the particular challenges posed in this context by 
standard essential patents (Lerner and Tirole, 2013).  

The existing empirical evidence on patent thickets is largely concerned with showing 
that they exist and measuring their density (von Graevenitz et al., 2011; Ziedonis, 2004). 
There is less evidence on the effects patent thickets have for firms. Cockburn and 
MacGarvie (2011) demonstrate that patenting levels affect product market entry in the 
software industry. They show that a 1 per cent increase in the number of existing 
patents is associated with a 0.8 per cent drop in the number of product market entrants. 
This result echoes earlier findings by Lerner (1995) who showed for a small sample of 
U.S. biotech companies that first-time patenting in a given technology is affected by the 
presence of other companies’ patents. These two papers use patent counts in narrow 
technological fields as a proxy for thickets; in this paper we move beyond this measure 
to use an indicator of the extent to which the patents actually might overlap. 

Bessen and Meurer (2013) suggest that patent thickets also lead to increased litigation 
related to hold-up. They (and we) use the term to describe a situation where an alleged 
infringer faces the threat of an injunction or high licensing costs after she has sunk 
investment.1 Patent thickets have remained a concern of antitrust agencies and 

                                                        
1 “High licensing costs” refers to costs that are higher than those that would have been negotiated ex ante 
in the present of possible “invent around” before the alleged infringer sank her investment. This 
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regulators in the U.S. for over a decade (Federal Trade Commission, 2011, 2003; USDoJ 
and FTC, 2007). Reforms that address some of the factors contributing to the growth of 
patent thickets have recently been introduced in the U.S. (America Invents Act (AIA) of 
2011) 2 and by the European Patent Office (EPO). 

However, it is sometimes argued that patent thickets are a feature of rapidly developing 
technologies in which technological opportunities abound (Teece et al., 2014). Thickets 
are seen as a reflection of fast technological progress that is paired with increased 
technological complexity (Lewis and Mott, 2013). This suggests that the increased 
transactions costs associated with patent thickets and the benefits of technological 
complexity and opportunity often coincide. There may be a trade-off between 
technological opportunity and growth on the one hand and increased transaction costs 
due to the emergence of patent thickets on the other - if the transaction costs of 
patenting in complex technologies are not avoidable. The challenge in assessing 
technologies with high levels of patenting is to develop a framework that captures the 
main factors that incentivize patenting and the costs and benefits thereof.  

This paper contains such a framework in the form of a model that incorporates 
technological patenting incentives and the effects of patenting by rivals on each firm’s 
incentives to enter and to patent. The aim of the paper is to empirically disentangle the 
effects of thickets and technological opportunity and complexity on entry into 
technology areas. Modeling patenting and entry we show that greater technological 
opportunity and complexity both encourage entry, while higher transaction costs 
associated with preexisting patent thickets reduce entry. These effects are quantified 
empirically using firm-level data on patenting by firms in the United Kingdom.  

In a first contribution, we develop a theoretical model of entry into patenting in discrete 
and complex technologies. Building on previous work on patenting incentives (von 
Graevenitz et al., 2013), we model how entry decisions are affected by the potential for 
hold-up due to patent thickets. The model focuses on the interaction between 
incumbents and new entrants through two channels: i) via legal costs associated with 
patent enforcement and ii) via incumbency advantages in R&D fixed costs. In contrast to 
previous work, we separate technological complexity and thicket density. Where 
previously granted patents raise thicket density, we assume that the expected legal 
costs of defending new patents are higher and the benefits of amassing portfolios of 
new patents are lower. This reflects higher potential for hold-up and leads firms to 
patent less and reduce entry, ceteris paribus. As in von Graevenitz et al. (2013), the 
model predicts that greater complexity of a technology leads to an increase of a firm’s 

                                                                                                                                                                            

possibility can arise because of either prohibitive search costs (Mulligan and Lee, 2012) or fuzzy patent 
boundaries or both. 

2 For further information see http://www.gpo.gov/fdsys/pkg/BILLS-112hr1249enr/pdf/BILLS-
112hr1249enr.pdf 
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patent applications, while greater technological opportunity reduces applications.3  The 
model also predicts that higher complexity and opportunity will increase entry, because 
competition for individual patents is reduced and the probability that entrants can 
establish themselves in a technology is increased. In addition, where incumbency 
implies that firms enjoy lower costs of R&D, incumbents patent more than entrants, 
which reinforces the growth of thickets. 

Our second contribution consists of an empirical test of these predictions and a 
quantification of the importance of the conflicting effects of opportunity, complexity, 
and patent thickets on entry. We use patent data from both the EPO and the USPTO to 
construct measures of technological opportunity, technological complexity and hold-up 
potential and relate these to entry into new technology areas by UK firms.  

To test the predictions of the model, we measure technological complexity and hold-up 
potential in patent thickets separately. This is an important improvement over the 
analysis in von Graevenitz et al. (2013), who conflated complexity and hold-up potential 
arising from existing patent portfolios. To distinguish complexity and hold-up potential, 
we introduce a new empirical measure of technological complexity and sharpen the 
definition of an existing measure of hold-up potential.4 

Our empirical analysis of entry confirms that greater technological opportunity and 
complexity increase entry and that hold-up potential reduces entry substantially. While 
we cannot quantify the overall net welfare effect, our results indicate that patent 
thickets raise entry costs for large and small firms alike. To the extent that more original 
and radical, rather than incremental ideas come from new entrants rather than 
incumbents (Tushman and Anderson, 1986; Henderson, 1993), this is likely to have 
negative long-run consequences on innovation and product market competition. In 
combination with earlier results by von Graevenitz et al. (2013), who point to a positive 
correlation between patenting levels and the presence of thickets, our results suggest 
that any increases in transaction costs due to thickets can potentially have important 
dynamic effects on innovation by reducing entry. 

The remainder of this paper is organized as follows. Section 2 presents a model of entry 
into patenting in a technology area and derives several testable predictions. Section 3 
describes the data, and the empirical measurement of the key concepts in the model. 
Section 4 discusses our results and Section 5 provides concluding remarks. 

                                                        
3 Opposite signs of complexity and opportunity are due to firms’ efforts to maintain a constant share of 
patents on each opportunity, to protect their profits from patenting (von Graevenitz et al., 2013). 

4 We also provide separate empirical tests of the measures we propose on the EPO patent data used by 
von Graevenitz et al. (2013) in Appendix D. 
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2 Theoretical Model 

This section summarizes the main results of a two-stage model of entry into patenting 
and subsequent patenting decisions. The model shows how complexity of a technology, 
technological opportunity and the potential of hold-up due to patent thickets affect 
firms’ decisions to enter into patenting in that technology.  

We assume that each technology consists of a set of opportunities, each of which 
consists of a number of patentable facets. The more facets opportunities in a technology 
have, the more complex is that technology.  

Greater technological opportunity attracts entrants to a technology as more avenues 
arise to earn a profit through application of the technology. Greater complexity of a 
technology also attracts entrants, because it is more likely that each entrant will be able 
to gain a share of the profits flowing from any one opportunity. Where multiple firms 
hold patents on the same opportunity, licensing negotiations or litigation ensue as firms 
divide the profits flowing from the opportunity. We assume that holding a larger share 
of patents on an opportunity is beneficial for firms in terms of licensing or litigation, but 
less so when thickets arise from poorly delineated patents that provide increased 
options to litigate. This captures the costs imposed by thickets on patentees. 

The model consists of two stages: entry and patenting. We solve the model by backward 
induction. Analysis of the entry decision shows that greater technological opportunity 
and complexity increase entry into patenting, while the threat of increased legal costs 
arising from denser patent thickets reduces entry into patenting.  

Analyzing patenting we show that denser thickets reduce patent applications, while 
greater technological opportunity increases applications in discrete technologies, but 
reduces them in complex technologies. This prediction is analogous to that in von 
Graevenitz et al. (2013). Finally, greater complexity increases patent applications.  

Below we set out the notation and the main findings from the model. Most proofs and 
derivations are relegated to appendices A and B. 

2.1 Notation and Assumptions 

The key variables of the model are the complexity of a technology k, measured by Fk 
(𝐹𝑘 ∈ ℝ0

+), the degree of technological opportunity, measured by Ok (𝑂𝑘 ∈ ℝ0
+), and 

hold-up potential hk. The value of all �̃�𝑘 patents in an opportunity is Vk. In the simplest 
discrete setting this is the value of the one patent (facet) that covers each technological 
opportunity. In more complex technologies this is the value of controlling all patents 
(facets) on a technological opportunity. Firms (indexed by i) choose the number of 
opportunities oi to invest in and the number of facets fi per opportunity to patent.  

In equilibrium only 0 1ˆ(1 (1 ( / ) ))N
k k kF f F � � �  facets are patented, where k̂f   is the 

equilibrium number of facets chosen by applicants and NO is the number of firms that 
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have chosen a specific opportunity.5 Since  may be smaller than Fk the total value of 

patenting in a technology is . Von Graevenitz et al. (2013) assume that the 

value function  is convex in covered facets. In Appendix B.1 we discuss how this 
assumption is relaxed and generalize the model by introducing a concave function 
relating the share of patents a firm holds on an opportunity sik to the proportion of the 
value Vk the firm can extract through licensing and its own sales: Δ(sik). This captures 
the benefits that a patent portfolio confers in the market for technology.  

In sum, the assumptions we make on the value function and portfolio benefits are: 

 ( ):   (0) 0,   0
k

VVF V
F
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 !
w

   (1)   
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( ) ( )( ):   (0) 0,   0  and  0ik ik

ik ik
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'  ! �     (2)  

The model contains three types of patenting costs: 

• Costs of R&D per opportunity, which depend on overall R&D activity in that 

technology area: . 

• Costs of maintaining each granted patent in force: Ca. 

• Costs of coordinating R&D on different technological opportunities Cc(oi), where  

 0c

i

C
o

w
!

w
  (3) 

These assumptions imply that R&D costs are fixed costs.6 We allow for the endogenous 
determination of the level of R&D fixed costs, which rise as more opportunities are 
researched simultaneously by rival firms. This reflects competition for inputs into R&D, 
e.g. scientists and engineers that are in fixed supply in the short run (Goolsbee, 1998). 

Where multiple firms own facets on an opportunity, their legal costs L(γik, sik, hk) depend 
on the absolute number of patented facets γik, on the share of patents per opportunity 
that a firm holds sik, and on the extent to which they face hold-up hk. The first two 
channels capture the costs of defending a patent portfolio as the number of patents 
increases, while leaving scope for effects on bargaining costs that derive from the share 

                                                        
5 The properties of N0 are summarized in Appendix A.2. 

6 It also implies that there is no technological uncertainty. However, introducing technological 
uncertainty into the model does not change the main comparative statics results.  

kF
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of patents owned: The hold-up parameter captures contexts in which several firms’ core 
technologies become extremely closely intertwined. Then each firm has to 
simultaneously negotiate with many others to commercialize its products, which 
significantly raises transaction costs.   

 

2 2

2 2

2 2

( ):   ( , , ),   where  0, 0, 0, 0,

                                               0, 0, 0

ik ik k
ik ik ik ik

k ik k ik k

L L L LLC L s h
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h h s h
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J J
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w w w w
! t d t

w w w w

w w w
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    (4) 

All remaining cross partial derivatives of the legal costs function are zero.  

In what follows, we use the following definitions:  

( ) ( ),     ,     ,     ,    and    
( ) ( )

i i k k k k i k
k k k k k

k k k k k k k i

o f F V F s d s f F
O F V F F s ds F f

Z I P [ Kw ' w
{ {    

w ' w
 . 

Here 𝜔𝑘 is the share of opportunities each firm chooses to pursue, 𝜙𝑘 is the share of 
facets each firm seeks to patent per opportunity, 𝜇𝑘 is the elasticity of the value function 
w.r.t. the level of complexity, 𝜉𝑘 is the elasticity of the benefits function ∆ w.r.t. the share 
of patents each firm is granted and 𝜂𝑘  is the elasticity of the number of covered facets 
w.r.t. the number of patent applications of each firm. 

2.2 Patenting and Entry 

Firm i’s profits in technology k,  , are a function of the number of 
opportunities oi which the firm invests in, the number of facets per opportunity fi the 
firm seeks to patent, the total number of patentable facets per opportunity Fk, the 
number of technological opportunities a technology offers Ok, the number of firms 
entering the technology Nk, and the degree of hold-up in that technology hk. 

In this section we analyze the following two-stage game G*: 

Stage 1: Firms enter until ( , , , , , ) 0ik i i k k k ko f F O N hS  ;7 

Stage 2: Firms simultaneously choose the number of opportunities, oi, to invest in and 
the number of facets per opportunity fi to patent in order to maximize profits πik. 

We solve the game by backward induction and derive local comparative statics results 
for the symmetric extremal equilibria of the second stage game. For the subsequent 
analysis it is important to note that all equilibria of this second stage game are 
symmetric. In case that the second stage game has multiple equilibria we focus on the 
                                                        
7 We treat Nk as a continuous variable here, which is an abstraction that simplifies our analysis. 

( , , , , , )ik i i k k k ko f F O N hS
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properties of the extremal equilibria when providing comparative statics results 
(Milgrom and Roberts, 1994; Amir and Lambson, 2000; Vives, 2005). Equilibrium 
values of the firms’ choices are denoted by a hat (^) and we drop the firm specific 
subscripts in what follows, e.g., . 

At stage two of the game each firm maximizes the following objective function: 

 � �0( , ) ( ) ( ) ( , , ) ( ) ( )ON
ik i i i k ik ik ik k j i k a c ij
o f o V F s L s h C o f p C C oS J ' � � � �¦    (5) 

This expression shows that per opportunity k, the firm derives profits from its share 
 of patented facets, while facing legal costs L to appropriate those profits, 

as well as costs of R&D C0, costs of maintaining its patent portfolio Ca, and coordination 
costs across opportunities Cc. 

2.3 Simultaneous Entry with Multiple Facets 

2.3.1 Comparative statics of patenting 
We show that the second stage of this game is smooth supermodular: 

Proposition 1: The second stage patenting game, defined in particular by assumptions 
(VF, eq. 1), (PB, eq. 2) and (LC, eq. 4) is smooth supermodular if k ikP [!  and if ownership 
of the technology is expected to be fragmented.  

This is shown in Appendix B.1. 

This result generalizes Proposition 1 derived by von Graevenitz et al. (2013).8 Given this 
result we can show that: 

Proposition 2: The potential for hold-up in complex technologies reduces patenting 
incentives. 

In Appendix B.2 we show that the expected legal costs of hold-up reduce the number of 
opportunities that firms invest in. In addition, firms with larger portfolios are more 
exposed to hold-up and benefit less from the share of patents they have patented per 
opportunity. Both effects combine to reduce the number of facets each firm applies for. 

2.3.2 Comparative statics of entry 

In Appendix B.3 we show that there is a free entry equilibrium. In this equilibrium the 
following propositions hold: 

Proposition 4: Under free entry greater complexity of a technology increases entry. 

                                                        
8 Here it is no longer the case that the value function has to be increasing in the number of patented facets 
for supermodularity of the patenting game. We relegate further discussion of this result to Appendix B.1. 

k̂I

/ik k i ks p f F{
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In the model, complexity has countervailing effects: first, it increases profits, because it 
is less likely that duplicative R&D arises making each opportunity more valuable; this 
clearly increases incentives to enter. Next, given the level of patent applications 𝑓𝑘, 
complexity reduces the probability that each facet is patented, which reduces profits 
and entry incentives. Finally, complexity reduces competition for each facet, which 
increases the probability of patenting and increases innovation incentives. Overall we 
show that the positive effects outweigh the negative effects and incentives for entry rise 
with complexity of a technology. 

To derive Proposition 4, consider how equilibrium profits are affected by the 
complexity of the technology Fk, the degree of technological opportunity Ok, and the 
potential for hold-up hk: 

 

𝜕𝜋(�̂�,�̂�)
𝜕𝐹𝑘

= �̂� �̂�𝑘
𝐹𝑘

((𝜀�̃̂�𝑘,𝐹𝑘 − 𝜀�̂�𝑘,𝐹𝑘�̂�𝑘) [𝑉 (�̂̃�𝑘) △(�̂�𝑘)
�̂�𝑘

(�̂�𝑘 − 𝜉𝑘) + 𝜕𝐿
𝜕�̂�𝑘

]) > 0  (6) 

 

𝜕𝜋(�̂�,�̂�)
𝜕𝑂𝑘

= �̂� 𝜕�̂�𝑜
𝜕𝑂𝑘

�̂�𝑘
�̂�𝑜

((𝜀�̃̂�𝑘,𝑁𝑜 − 𝜀�̂�𝑘,𝑁𝑜�̂�𝑘) [𝑉 (�̂̃�𝑘) △(�̂�𝑘)
�̂�𝑘

(�̂�𝑘 − 𝜉𝑘) + 𝜕𝐿
𝜕�̂�𝑘

] − 𝜕𝐶𝑜
𝜕�̂�𝑜�̂�

�̂�𝑜�̂�
𝜕�̂�𝑘

) > 0 (7) 

 

𝜕𝜋(�̂�,�̂�)
𝜕ℎ𝑘

= −�̂� 𝜕𝐿
𝜕ℎ𝑘

< 0 (8) 

   

Proposition 4 follows from the Implicit Function theorem once we know the sign of the 
derivative of profits w.r.t. F. Under free entry firms’ profits decrease with entry: 

 
𝜕𝑁𝑘
𝜕𝐹𝑘

= − 𝜕𝜋
𝜕𝐹𝑘

𝜕𝜋
𝜕𝑁𝑘

⁄   (9) 

Therefore, the Implicit Function theorem implies that the sign of the effect of 
complexity F on entry depends on the sign of the effect of complexity on profits. 

Equation (6) shows that the effect of complexity on profits depends on the difference 
between the elasticities 𝜀�̃̂�𝑘,𝐹𝑘  and 𝜀�̂�𝑘,𝐹𝑘�̂�𝑘, which are derived in Appendix A.3. The 
elasticity 𝜀�̂�𝑘,𝐹𝑘  is (see Appendix A.1): 

 𝜀�̂�𝑘,𝐹𝑘 = �̂�𝑜
2

�̂�𝑘−1
2(1+ 1

�̂�𝑜
)

1−�̂�𝑘
 (10) 

This elasticity is negative for �̂�𝑘 < 1
2
, which is also a precondition for supermodularity of 

game G*. Both terms in brackets in equation (6) are positive, when game G* is 
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supermodular. This implies that greater complexity raises profits and this induces 
entry.9 

Proposition 5: Under free entry greater technological opportunity increases entry. 

For any given number of entrants an increase in technological opportunity reduces 
competition between firms for patents. This increases firms’ expected profits and 
increases entry. 

Continuing from the proof of Proposition 4 above, by the Implicit Function theorem the 
sign of the derivative of profits w.r.t. technological opportunity determines the effect of 
technological opportunity on entry: 

  
𝜕𝑁𝑘
𝜕𝑂𝑘

= − 𝜕𝜋
𝜕𝑂𝑘

𝜕𝜋
𝜕𝑁𝑘

⁄  (11) 

An increase in technological opportunity increases profits and entry. In Appendix B.3 
we show that the term in brackets in Equation (7) is negative under free entry. Profits 
increase as technological opportunity increases, because fewer firms enter per 
opportunity. 

Proposition 6: Under free entry the potential for hold-up reduces entry. 

An increase in the potential for hold-up raises firms’ expected legal costs. This reduces 
expected profits and lowers potential for entry. 

To derive this prediction, note that by the Implicit Function theorem the sign of the 
derivative of profits w.r.t. the level of hold-up in a technology area determines the effect 
of hold-up on entry: 

 
𝜕𝑁𝑘
𝜕ℎ𝑘

= − 𝜕𝜋
𝜕ℎ𝑘

𝜕𝜋
𝜕𝑁𝑘

⁄  (12) 

Hence, equation (8) shows that the effect of hold-up on entry derives from the increased 
legal costs that the possibility of hold-up imposes on affected firms. 

2.4 Entry and Incumbency 

The previous section sets out a model in which all firms entered and then invested in 
patents. At both stages firms’ decisions were simultaneous. In Appendix B.5 we extend 
the model to a setting in which some firms, the incumbents, face lower costs ( , 

                                                        

9 When �̂�𝑘 ≥ 1
2
 we no longer have the assumptions necessary to show supermodularity. This situation 

corresponds to the case where one firm has more than half the patents in a particular technology 
opportunity within a technology area. Thus our results may not hold when a specific opportunity is highly 
concentrated. In general this will not be the case, especially at our level of empirical analysis, but it would 
be interesting to explore this possibility in future work. 

OC �<
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where ) of entering opportunities. This captures the fact that incumbents have 
previous experience of doing R&D in a technology area. We demonstrate that our main 
results derived above are robust to this extension of the model. We also show that 
incumbents will enter more new opportunities and that this will crowd out new 
entrants. The increased levels of entry by incumbents raise costs of entry to new firms, 
lowering their numbers. 

2.5 Predictions of the Model 

Our model predicts how the probability of entry into patenting depends on opportunity, 
complexity, hold-up potential and incumbents’ experience. Here we summarize these 
predictions, which are tested empirically below:10 

Prediction 1: Greater technological opportunity increases the probability of entry. 

Greater technological opportunity reduces competition for facets per opportunity, 
which raises expected profits and thereby attracts entry.  

Prediction 2: Greater complexity of a technology increases the probability of entry. 

Greater complexity has countervailing effects: it reduces competition per facet as well 
as duplicative R&D, attracting entry. It also increases the likelihood that some of a 
technology remains unpatented, reducing its overall value and entry. Our model shows 
that overall complexity increases entry.  

Prediction 3: Greater potential for hold-up reduces the probability of entry. 

Hold-up potential increases expected costs of entry, reducing it. 

Prediction 4: More experienced incumbents are more likely to enter technological 
opportunities new to them. 

We show that incumbency advantage raises the number of opportunities that 
incumbents enter. This implies that they also enter new opportunities, which they have 
not previously been active in. This expansion of activity by incumbents crowds out 
entry by new entrants. 

3 Data and Empirical Model 

This section of the paper describes the data we use in the empirical test of our 
theoretical predictions. In particular, we discuss how we measure entry, how the set of 
potential entrants is identified, and which measures and covariates are used. 

Our empirical model is a hazard rate model of firm entry into patenting in a technology 
                                                        
10 Note that von Graevenitz et al. (2013) tested predictions from a substantially more restrictive version 
of the model on the level of patent applications using data from the European Patent Office.  

0< !
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area as a function of technological opportunity, technological complexity, and hold-up 
potential that characterize a technology area. Additional firm level covariates include 
the age and size of firms. The models we estimate are stratified at the industry level. 
That is, the unit of observation for each entry hazard is a firm-technology area, but the 
hazard shapes and levels are allowed to vary by the industry that the firm is in. This 
approach recognizes that patenting propensities vary across industries for reasons that 
may not be technological (e.g., strategic reasons, or reasons arising from the historical 
development of the sector).  

We use a combination of firm level data for the entire population of UK firms registered 
with Companies House and data on patenting at the European Patent Office and at the 
Intellectual Property Office for the UK. The firm data come from the data held at 
Companies House provided by Bureau van Dijk in their FAME database. European 
patent registers do not include reference numbers from company registers, nor does 
Bureau van Dijk provide the identification numbers used by patent offices in Europe. 
Linking the data from patent registers to firm register data requires matching of 
applicant names in patent documents and firm names in firm registers. In our work 
both a firm’s current and previous name(s) were used for matching in order to account 
for changes in firm names. For more details on the matching of firm- and patent-level 
data see Appendix C. 

Economic studies of entry are frequently hampered by the problem of identifying the 
correct set of potential entrants (Bresnahan and Reiss, 1991; Berry, 1992). In our case 
this problem is slightly mitigated by the fact that one set of potential entrants into 
patenting in a specific technology area consists of all those firms that currently patent in 
other technology areas. We complement this group of firms with a set of comparable 
firms from the population of UK firms that have not patented previously.  

To construct the sample we deleted all firms from the data for which we have no size 
measure, because of missing data on assets. We select previously non-patenting firms 
from the population of all UK firms in two steps: 1) we delete all firms in industrial 
sectors with little patenting (amounting to less than 2 per cent of all patenting); and 2) 
we choose a sample of non-patenting firms that matches our sample of patenting firms 
by industry, size class, and age class. In principle, this approach will result in an 
endogenous (choice-based) sample. However our focus is on industry and technology 
area level effects rather than firm-level effects. Therefore we do not expect the sampling 
approach we adopt to introduce systematic biases into the estimates we report. We 
provide a number of robustness checks to ensure that our results are stable. These 
reveal that sample composition does not affect the key results we present below. All 
estimates are based on data weighted by the probability that a firm is in our sample.11 
                                                        
11 To check this, we estimated the model with and without weights based on our sampling methodology 
and find little difference in the results.  
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The sample that results from our selection criteria is a set of firms with non-missing 
assets in manufacturing, oil and gas extraction and quarrying, construction, utilities, 
trade, and selected business services including financial services that includes all 
(approximately 10,000) firms applying for a patent at the EPO or UKIPO during the 
2001-2009 period and another 10,000 firms that did not apply for a patent. 

The definition of technology areas that we use is based on the 2008 version of the ISI-
OST-INPI technology classification (denoted TF34 classes) (Schmoch, 2009). The list is 
shown in Table 1, along with the number of EPO and UKIPO patents applied for by UK 
firms with priority dates between 2002 and 2009. A comparison of the frequency 
distribution of patenting across the technology areas from the two patent offices shows 
that firms are more likely to apply for patents in Chemicals at the EPO, while Electrical 
and Mechanical Engineering predominate in the national patent data (see the bottom 
panel in Table 1). 

We treat entry into each technology area as a separate decision made by firms. More 
than half of firms we observe patent in more than one area and 10 per cent patent in 
more than four. From the 20,000 firms observed, each of which can potentially enter 
into each one of the 34 technology areas, we obtain about 700,000 observations at risk. 
We cluster the standard errors by firm, so our models are effectively firm random 
effects models for entry into 34 technology areas. Allowing firm choices to vary by 
technology area is sensible under the assumption that firms’ patenting strategies are 
contingent upon technology and industry level factors and are not homogeneous across 
technology areas. We confirmed the validity of this assumption through interviews with 
leading UK patent attorneys. 

There are some technology-industry combinations that do not occur, e.g. audio-visual 
technology and the paper industry, telecommunications technology and the 
pharmaceutical industry. In order to reduce the size of the sample, we drop all 
technology-industry combinations for which Lybbert and Zolas (2014) find no patenting 
in their data and for which there was no patenting by any UK firm from the relevant 
industry in the corresponding technology category. This removes about 30 per cent of 
observations from the data. We provide a robustness check for this procedure in Table 
E-2 in the Appendix.  

[Table 1 here] 

3.1 Variables 

Dependent Variable - Entry 

The dependent variable is a dichotomous variable taking the value one if a firm has 
entered a technology area k at time t and otherwise the value zero. Entry into a 
technology area is measured by the first time a firm applies for a patent that is classified 
in that technology area, dated by the priority year of the patent. 
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Technological opportunity 
Our first prediction from the theoretical model is that there will be more entry in 
technology areas with greater technological opportunity. Additional reasons that a 
sector may have more or less patenting include sector “size” or “breadth” and the 
propensity of firms to patent in particular technologies for strategic reasons or because 
of varying patent effectiveness in protecting inventions. To control for both 
technological opportunity and these other factors, we include the logarithm of the 
aggregate EPO patent applications in the technology sector during the year. To capture 
opportunity more specifically we also include the past 5-year growth rate in the non-
patent (scientific publication) references cited in patents in that technology class at the 
EPO.12 We have found that the growth rate in non-patent references is a better predictor 
of entry than the level of non-patent references, which has been used previously. 
Presumably the growth rate is a better indicator because it captures new or expanded 
technological opportunity. 

Technology complexity 

The second prediction of the theoretical model is that technological complexity 
increases entry, other things equal. Our interpretation of complexity is that it implies 
many interconnections between inventions in a particular field, rather than a series of 
fairly isolated inventions that do not connect to each other. To construct such a measure, 
we use the concept of network density applied to citations among all the patents that 
have issued in the particular technology area during the 10 years prior to the date of 
potential entry. We use citations at the U.S. patent office, both because these are richer 
(averaging 7 or so cites per patent during this period versus 3 for the EPO) and also to 
minimize correlation with the thickets measure, which is based on EPO data.13  

The network density measure is computed as follows: in any year t, there are Nkt patents 
that have been applied for in technology area k between 1975 and year t. Each of these 
patents can cite any of the patents that were applied for earlier, which implies that the 
maximum number of citations within the technology area is given by Nkt(Nkt-1)/2. We 
count the actual number of citations made and normalize them by this quantity, scaling 
the measure by one million for visibility, given its small size. 

Patent Thickets 
The third prediction of our model is that greater potential for hold-up reduces entry. We 
measure the potential for hold-up in patent thickets using the triples count proposed by 

                                                        
12 See von Graevenitz et al. (2013) for a more extensive discussion of this variable in the literature. 

13 It is important to emphasize that although patent offices cooperate and share search reports citations 
listed on U.S. patents are largely proposed by the applicant, whilst the citations listed on EPO and IPO 
patents are inserted by the examiner. This explains why the two measures are not highly correlated. 
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von Graevenitz et al. (2011). This is a narrower interpretation of this measure than in 
von Graevenitz et al. (2013), where it was used as a proxy for complexity and hold-up 
potential together.14 In contrast, our model separates the effect of previously existing 
patent thickets on entry from that of technological complexity. The hold-up potential of 
thickets is captured by measuring how often patent applicants in a technology area 
simultaneously face patents that overlap with and block their own applications from 
firms that also block each-other’s patent applications. This is more likely to happen in 
complex technologies, but does not necessarily arise as a result of complexity. Hence we 
use separate measures of complexity and hold-up potential. 

The triples measure is a count of the number of fully connected triads on the set of 
firms’ critical patent citations. At time t each unidirectional link between two firms A 
and B corresponds to one or more critical references to firm A’s patents in the set of 
patents applied for by firm B in the years t, t-1 and t-2. These critical references are 
obtained from examiner search reports issued by the EPO and represent prior art that 
calls in question novelty and/or the inventive step of the patent application under 
examination.15 Triples are then formed by groups of three firms where each firm has at 
least one patent that is cited as critical prior art in the search report for at least one 
patent held by each of the other two firms. That is, in a triple, each firm holds patents 
that potentially block the other firms’ patents creating mutually blocking triads.  

We use the same measure of triples as Harhoff et al. (2015), which contains all triples in 
each technology area. The citation data used is extracted from PATSTAT (October 2011 
edition).16 We normalize the count of triples by aggregate patenting in the same sector, 
so that the triples variable represents the intensity with which firms potentially hold 
blocking patents on each other relative to aggregate patenting activity in the technology. 

The triples measure has been used in a number of papers since it was suggested by von 
Graevenitz et al. (2011). They show that counts of triples by technical area are 
significantly higher for technologies classified as complex than for areas classified as 

                                                        
14 In Appendix D, we show that this confounded the separate effects of complexity and hold-up. Including 
the measures of complexity and hold-up potential proposed here in their empirical model, we find that 
the effects on patenting incentives predicted by our theoretical model for complexity (positive) and hold-
up potential (negative) apply. 

15 These are the so-called X- and Y-references in EPO search reports. According to 9.2.1 of the EPO’s 
Guidelines for Examination: “Category "Y" is applicable where a document is such that a claimed 
invention cannot be considered to involve an inventive step when the document is combined with one or 
more other documents of the same category, such combination being obvious to a person skilled in the 
art. If a document explicitly refers to another document as providing more detailed information on 
certain features and the combination of these documents is considered particularly relevant, the primary 
document should be indicated by the letter "X".” 

16 Triples data was kindly provided by Harhoff et al. (2015). 



15 

 

discrete by Cohen et al. (2000). Fischer and Henkel (2012) find that the measure 
predicts patent acquisitions by Non-Practicing Entities. Graevenitz et al. (2013) use the 
measure to study patenting incentives in patent thickets and Harhoff et al. (2015) show 
that opposition to patent applications falls in patent thickets, particularly for patents of 
those firms that are caught up in thickets.  

As a robustness check, we have also explored the use of duples, i.e. the count of mutual 
blocking relationships, to measure hold-up potential. Combining both measures in one 
regression leads to thorny problems of interpretation. Taken alone the measure has 
similar effects as the triples measure in this context. 

 [Table 2 here] 

Covariates 
It is well known that firm size and industry are important predictors of whether a firm 
patents at all (Bound et al. 1984 for U.S. data). Hall et al. (2013) show this for UK 
patenting during the period studied here. Therefore, in all of our regressions we control 
for firm size, industrial sector, and year of observation. We include the logarithm of the 
firm’s reported assets and a set of year dummies in all the regressions.17 To control for 
industrial sector, we stratify by industry, which effectively means that each industry has 
its own hazard function, which is shifted up or down by the other regressors.  

We also expect the likelihood that a firm will enter a particular technology area to 
depend on its prior patenting experience overall, as well as its age. Long-established 
firms are less likely to be exploring new technology areas in which to compete. Thus we 
include the logarithm of firm age and the logarithm of the stock of prior patents applied 
for in any technology by the firm, lagged one year to avoid any endogeneity concerns. 
The variables on firm size and patent stock also allow us to test Prediction 4 about the 
effect of incumbency advantage on entry.  

3.2 Descriptive Statistics 
Our estimation sample contains about 20,000 firms and 700,000 firm-TF34 sector 
combinations. During the 2002-2009 period there are about 10,000 entries into 
patenting for the first time in a technology area by these firms. Table C-1 in the appendix 
shows the distribution of the number of entries per firm: 2,531 enter one class, and the 
rest enter more than one. Table C-2 shows the population of UK firms obtained from 
FAME in our industries, together with the shares in each industry that have applied for a 
UK or European patent during the 2001-2009 period. These shares range from over 10 
per cent in Pharmaceuticals and R&D Services to less than 0.1 per cent in Construction, 

                                                        
17 The choice of assets as a size measure reflects the fact that it is the only size variable available for the 
majority of the firms in the FAME dataset. 
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Oil and Gas Services, Real Estate, Law, and Accounting. 

3.3 Empirical Model 

We use hazard models to estimate the probability of entry into a technology area. The 
models express the probability that a firm enters into patenting in a certain area 
conditional on not having entered yet as a function of the firm’s characteristics and the 
time since the firm was “at risk,” which is the time since the founding of the firm. In 
some cases, our data do not go back as far as the founding date of the firm, and in these 
cases the data are “left-censored.” When we do not observe the entry of the firm into a 
particular technology sector by the last year (2009), the data is referred to as “right-
censored.” 

In Appendix E, we discuss the choice of the survival models that we use for analysis, 
how to interpret the results, and present some robustness checks. We estimate two 
classes of failure or survival models: 1) proportional hazard, where the hazard of failure 
over time has the same shape for all firms, but the overall level is proportional to an 
index that depends on firm characteristics; and 2) accelerated failure time, where the 
survival rate is accelerated or decelerated by the characteristics of the firm. In the body 
of the paper we present results using the well-known Cox proportional hazards model 
stratified by industry. The effect of the stratification is that we allow firms in each of the 
industries to have a different distribution of the time until entry into patenting conditional on 
the regressors. That is, each industry has its own “failure” time distribution, where failure is 
defined as entry into patenting in a technology area, but the level of this distribution is also 
modified by the firm’s size, aggregate patenting in the technology, network density, and the 
triples density. 

Appendix Table E-1 shows exploratory regressions made using various survival models. 
None of the choices made large differences to the coefficients of interest, for instance results 
from the accelerated failure time models were similar to those of the Cox proportional 
hazards model, but the estimated effects are somewhat larger (shown in Table E-1).  

As indicated earlier, our data for estimation are for the 2002-2009 period, but many 
firms have been at risk of patenting for many years prior to that. The oldest firm in our 
dataset was founded in 1856 and the average founding year was 1992. Because the EPO 
was only founded in 1978, we chose to use that year as the earliest date any of our firms 
is at risk of entering into patenting. That is, we defined the initial year as the maximum 
of the founding year and 1978. Table E-2 in the appendix presents estimates of our 
model using 1900 instead of 1978 as the earliest at risk year and finds little difference 
in the estimates.18 We conclude that the precise assumption of the initial period is 

                                                        
18 The main difference is in the firm age coefficient. Because the models are nonlinear, this coefficient is 
identified even in the presence of year dummies and vintage/cohort (which is implied by the survival 
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innocuous. Our assumption amounts to assuming that the shape of the hazard for firms 
founded between 1856 and 1978 but otherwise identical is the same during the 2002-
2009 period.  

4 Results 

Our estimates of the model for entry into patenting are shown in Table 3. All 
regressions control for size, age, and industry. Both size and age are strongly positively 
associated with entry into patenting in a new technological area. Our indicator of 
technological opportunity and technology class size, the log of current patent 
applications in the technology class, is also positively associated with entry into that 
class, as predicted by our model.  

Column 3 of Table 3 contains the basic result from our data and estimation, which is 
fully consistent with the predictions of our theoretical model: greater complexity as 
measured by citation network density increases the probability of entry into a 
technology area (Prediction 2), as does technological opportunity (Prediction 1), 
measured both as prior patenting in the class and as growth in the relevant science 
literature. Controlling for both technological opportunity and complexity, firms are 
discouraged from entry into areas with a greater density of triple relationships among 
existing firms (Prediction 3). We interpret this latter result as an indicator of the 
discouraging effect of hold-up possibilities or the legal costs associated with negotiation 
of rights or defense in the case of litigation. 

We were concerned that our network density (complexity) and triples density (hold-up 
potential) measures might be too closely related to convey separate information, but we 
found that the raw correlation between these two variables was -0.001. To check for the 
impact of potential correlation conditional on year, industry, and the other variables, in 
columns 1 and 2 of Table 3 we included these two measures of complexity/thickets 
separately and found that although the coefficients were very slightly lower in absolute 
value, the results still hold, although it is clear that the aggregate class size is correlated 
negatively with the triples density via the denominator of the density (compare the 
change in the log (patents in class) coefficient between columns 1 and 2). 

As we show in Appendix E, the estimated coefficients in the table are estimates of the 
elasticity of the yearly hazard rate with respect to the variable, and do not depend on 
the industry specific proportional hazard. A one standard deviation increase in the log 
of network density is associated with a 32 percent increase in the hazard of entry 
(0.13*2.78), while a one standard deviation in the log of triples density is associated 
                                                                                                                                                                            

model formulation). However it will be highly sensitive to the assumptions about vintage due to the age-
year-cohort identity.  
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with a 20 percent decrease in the hazard of entry (0.14*1.44). Thus the differences 
across these technology areas in the willingness of firms to enter them is substantial, 
bearing in mind that the average probability of entry is only about 1.5 per cent in this 
sample.  

[Table 3 here] 

There are fixed costs to patenting, and a firm may be more likely to enter into patenting 
in a new area if it already patents in another area. To test this idea, in the fourth column 
of Table 3, we add the logarithm of past patenting by the firm. Inline with Prediction 4, 
firms with a greater prior patenting history are indeed more likely to enter a new 
technology area – doubling a firm’s past patents leads to an almost 100% higher hazard 
of entry.  

In the last column we interact the log of assets with the log of patents, the log of 
network density, the growth of non-patent literature, and the log of triples density to 
see whether these effects vary by firm size. The results show that the network density 
and technological opportunity effects decline slightly with firm size. The triples density 
effect does not show any size relationship, suggesting that hold-up concerns affect firms 
of all sizes proportionately. We show this graphically in Figure 1, which overlays the 
coefficients as a function of firm size on the actual size distribution of our firms. From 
the graph one can see that the impact of aggregate patenting in a sector is higher and 
more variable than the impact of the network density, and that both fall to zero for the 
largest firms. Growth in non-patent literature is positively associated with technology 
entry for small firms, but negatively for large firms, suggesting the role played by the 
smaller firms in newer technologies based on science. Large firms seem not to be as 
active in these areas. Controlling for all these features of a technology, the impact of 
triples density is uniformly negative across firm size, which contradicts the view that 
the potential for hold-up discourages entry by smaller firms more than by larger firms.  

4.1 Robustness 

One concern we may have with the relationship between entry and the triples variable 
is simultaneity. That is, technology areas with lots of entry may also be prone to a 
higher triples density, just because of the entries. To address this possibility, we use the 
aggregate form of our entry regression. For each year we regress the log of the number 
of first time entries in each technology-industry sector combination on the 
characteristics of the technology class together with industry and year dummies. As 
instruments for the triples density, we use the median examination lag in the 
technology for patents applied for 5 and 6 years prior to the current year, which is long 
enough so that most of them will have been granted, rejected, or withdrawn. The idea is 
that classes with long examination lags may also be those where it is more difficult to 
assess patentability, leading to the hold-up potential captured by the triples proxy 
variable. We find that the instrumental variables regression easily passes the 
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specification tests for under-, weak and over-identification, justifying our choice of 
instruments.  

Table 4 shows the results, both ordinary least squares and instrumental variables.19 
Note that we do not expect results to be identical when comparing the aggregate 
regressions to individual firm-level hazard rate estimations, as the functional forms of 
the models differ. However, the results are similar in sign to those in column 3 of Table 
3, with the exception of the technological opportunity coefficient (the past five-year 
growth in non-patent-literature references) which has the opposite sign. For our 
purposes, interest centers on the coefficient of triples density. The least squares 
estimate of the elasticity is negative and implies a 12 per cent reduction in entry per 
year when the triples density increases by one standard deviation. Instrumenting this 
variable triples its coefficient, which suggests that our hazard rate estimates may by an 
underestimate of the true impact of potential hold-up on entry.  

Table E-2 in the appendix explores some variations of the sample used for estimation in 
Table 3. Column 1 of Table E-2 is the same as column 4 of Table 3 for comparison. The 
first change (column 2) was to add back all the technology-industry combinations 
where Lybbert and Zolas (2012) find no patenting in their data and where there was no 
entry by any UK firm from the relevant industry into that technology category. These 
observations are about 20 per cent of the sample. The impact of network density on 
entry is weaker, but the impact of triples density and the technological opportunity 
variables is considerably stronger. That is, technology area-industry combinations with 
no patenting are also those where the technology area displays low technological 
opportunity.  

Next we removed all the firms with assets greater than 12.5 million pounds, to check 
whether large firms were responsible for our findings.20 This removed about 2 per cent 
of the 20,000 firms. Column 3 of Table E-2 shows that the results do not change a great 
deal, although they are somewhat stronger. In column 4, we removed the 
telecommunications technology sector from the estimation, because it is such a large 
triples outlier. Once again, there was little change to the estimates. The last column of 
Table E-2 shows the results of defining the minimum entry year as 1900. With the 
exception of firm age, the coefficients are nearly identical to those in column 1 of the 
table.  

                                                        
19 We also estimated this model by LIML and GMM, with almost no change in the resulting coefficients 
(not shown).  

20 12.5 million pounds is a cutoff based on the definition of Small and Medium-sized Enterprises (SMEs) 
as firms with fewer than 250 employees. We do not have employment for all our firms, so we assume that 
assets are approximately 50 thousand pounds per employee in order to compute this measure. For small 
firms only, this yields an assets cutoff of 2.5 million pounds.  
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5 Conclusion 

Patent thickets arise for a multitude of reasons; they are mainly driven by an increase in 
the number of patent filings and concomitant reductions in patent quality (that is, the 
extent to which the patent satisfies the requirements of patentability) as well as 
increased technological complexity and interdependence of technological components. 
The theoretical analysis of patent thickets (Shapiro, 2001) and the qualitative evidence 
provided by the FTC in a number of reports (FTC, 2003; 2011) suggest that thickets can 
impose significant costs on some firms. The subsequent literature has focused on the 
measurement of thickets (e.g. Graevenitz et al. 2011; Ziedonis, 2004) and has linked 
thickets to changes in firms’ intellectual property strategies in a number of dimensions. 
There is still a lack of evidence on the effect of patent thickets as well as their welfare 
implications at the aggregate level.  

The empirical analysis of the effects of patent thickets must contend with two 
challenges: first, patent thickets have to be measured and secondly, effects of thickets 
must be separated from effects of other factors that are correlated with the growth of 
thickets, in particular technological complexity.  

This paper confronts both challenges. We show that our empirical measure for the 
density of thickets captures effects of patent thickets predicted by theory. We separate 
the impact of patent thickets on entry from effects of technological opportunity and 
complexity and show that thickets reduce entry into patenting. Controlling for 
technological opportunity and complexity is important because both are correlated with 
entry into patenting and the presence of thickets. It is also worth emphasizing that our 
measure of thickets is purged of effects that are driven by patenting trends in particular 
technologies. That is, our results are not due to the level of invention and technological 
progress within a technology field.  

Our results demonstrate that patent thickets significantly reduce entry into those 
technology areas in which growing complexity and growing opportunity increase the 
underlying demand for patent protection. These are the technology areas, which are 
associated most with productivity growth in the knowledge economy. However, the 
welfare consequences of our finding are unclear. Reduced entry into new technology 
areas could be welfare-enhancing: As is well known from the industrial organization 
literature, entry into a market may be excessive if entry creates negative externalities 
for active firms, for instance due to business stealing. This is likely to be true of 
patenting too. Furthermore, Arora et al. (2008) show that the patent premium does not 
cover the costs of patenting for the average patent (except for pharmaceuticals). These 
and related facts might lead one to conclude that lower entry into patenting is likely to 
increase welfare and that thickets raise welfare by reducing entry.  

In contrast, reduced entry into patenting in new technology areas may also be welfare-
reducing, for at least two reasons. First, there is the obvious argument that the benefits 
from more innovation may exceed any business stealing costs (as has been shown 
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empirically in the past by others, e.g., Bloom et al. 2013), so that some desirable 
innovation may be deterred by high entry costs. Even if this were not true, there is no 
reason to believe that firms that do not enter into patenting due to thickets are those we 
wish to deter. Given the incumbency advantage, it is likely that the failure to enter into 
patenting in these areas reflects less innovation by those who bring the most original 
ideas, that is, by those who are inventing “outside the box.” 
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Technology categories GB pats EP pats Total GB pats EP pats
Elec machinery, energy 1,321 1,101 2,422 6.1% 4.4%
Audio‐visual tech 633 549 1,182 2.9% 2.2%
Telecommunications 1,181 1,206 2,386 5.5% 4.8%
Digital communication 590 732 1,323 2.7% 2.9%
Basic comm processes 302 146 447 1.4% 0.6%
Computer technology 1,481 1,302 2,783 6.8% 5.2%
IT methods for mgt 256 224 480 1.2% 0.9%
Semiconductors 269 248 518 1.2% 1.0%
Optics 392 481 873 1.8% 1.9%
Measurement 1,216 1,458 2,674 5.6% 5.8%
Analysis bio materials 132 426 557 0.6% 1.7%
Control 592 542 1,134 2.7% 2.2%
Medical technology 996 1,561 2,558 4.6% 6.3%
Organic fine chemistry 182 1,538 1,720 0.8% 6.2%
Biotechnology 193 950 1,143 0.9% 3.8%
Pharmaceuticals 277 1,876 2,153 1.3% 7.5%
Polymers 114 280 394 0.5% 1.1%
Food chemistry 88 458 547 0.4% 1.8%
Basic materials chemistry 314 1,050 1,363 1.5% 4.2%
Materials metallurgy 161 318 479 0.7% 1.3%
Surface tech coating 287 284 571 1.3% 1.1%
Chemical engineering 507 724 1,231 2.3% 2.9%
Environmental tech 296 344 640 1.4% 1.4%
Handling 996 813 1,809 4.6% 3.3%
Machine tools 428 356 784 2.0% 1.4%
Engines,pumps,turbine 887 942 1,829 4.1% 3.8%
Textile and paper mach 235 304 539 1.1% 1.2%
Other spec machines 742 623 1,365 3.4% 2.5%
Thermal process and app 410 261 671 1.9% 1.0%
Mechanical elements 1,149 854 2,002 5.3% 3.4%
Transport 1,063 930 1,993 4.9% 3.7%
Furniture, games 1,064 612 1,675 4.9% 2.5%
Other consumer goods 630 507 1,137 2.9% 2.0%
Civil engineering 2,237 960 3,196 10.3% 3.8%
Total 21,619 24,959 46,578

Electrical engineering 6,032 5,508 11,540 27.9% 22.1%
Instruments 3,328 4,468 7,796 15.4% 17.9%
Chemistry 2,418 7,822 10,240 11.2% 31.3%
Mechanical engineering 5,910 5,083 10,993 27.3% 20.4%
Other Fields 3,930 2,079 6,009 18.2% 8.3%
* Weighting by owners does not affect the numbers, since they all get added back into the same cell.
Weighting by classes means that a patent in multiple TF34 sectors is downweighted in each of the sectors.

Table 1
Patenting by Fame firms on Patstat (priority years 2002‐2009)

Weighted by #owners & #classes* Sector shares



Technology categories
Aggregate 

EPO patents
Number of 

EPO triples@
Triples per 

1000 patents

US Citation 
network 
density#

Average non‐
patent 

references
Elec machinery, energy 56,714 7751 136.7 39.4 0.420
Audio‐visual tech 34,131 13268 388.7 63.5 0.449
Telecommunications 62,288 27049 434.3 79.1 1.235
Digital communication 36,975 16529 447.0 178.5 1.397
Basic comm processes 10,035 2289 228.1 110.8 1.162
Computer technology 60,577 21956 362.4 54.3 1.529
IT methods for mgt 9,312 34 3.7 144.2 0.920
Semiconductors 24,544 9974 406.4 94.0 1.070
Optics 28,458 7767 272.9 58.0 0.806
Measurement 44,320 2503 56.5 45.6 1.000
Analysis bio materials 11,787 26 2.2 319.4 7.040
Control 17,612 308 17.5 112.1 0.445
Medical technology 66,062 4411 66.8 206.2 0.614
Organic fine chemistry 41,137 3993 97.1 32.9 5.253
Biotechnology 33,192 365 11.0 89.6 17.332
Pharmaceuticals 52,671 11222 213.1 76.6 6.391
Macromolecular chemistry 21,307 3722 174.7 92.7 1.236
Food chemistry 9,955 140 14.1 326.3 2.701
Basic materials chemistry 27,679 1929 69.7 84.8 1.498
Materials metallurgy 16,935 405 23.9 91.7 1.130
Surface tech coating 17,429 363 20.8 59.4 0.803
Chemical engineering 24,494 443 18.1 66.2 0.797
Environmental tech 12,708 858 67.5 206.9 0.487
Handling 30,343 252 8.3 66.9 0.137
Machine tools 24,040 508 21.1 64.0 0.191
Engines,pumps,turbine 32,602 6678 204.8 85.4 0.210
Textile and paper mach 23,145 2640 114.1 84.9 0.312
Other spec machines 29,826 319 10.7 65.7 0.422
Thermal process and app 15,290 335 21.9 146.3 0.189
Mechanical elements 32,716 1301 39.8 57.8 0.168
Transport 48,875 10929 223.6 68.3 0.203
Furniture, games 19,847 206 10.4 107.6 0.166
Other consumer goods 19,734 301 15.3 105.6 0.194
Civil engineering 28,817 171 5.9 117.1 0.150
Total 1,025,555 160,945 156.9 100.3 #REF!

Electrical engineering 294,575 98,850 335.6 60.4 1.042
Instruments 168,239 15,015 89.2 96.3 1.181
Chemistry 257,507 23,440 91.0 71.1 4.977
Mechanical engineering 236,836 22,962 97.0 70.1 0.227
Other Fields 68,398 678 9.9 110.8 0.167

@ Triples based on all EPO patenting, priority years 2002‐2009 (see text for definition and further explanation).

Table 2
UKIPO and EPO patents: numbers, triples and network density 2002‐2009

# Network density is 1,000,000 times the number of within technology citations between 1976 and the 
current year divided by the potential number of such citations.



Variable
Log (network density) 0.115*** 0.127*** 0.107*** 0.184***

(0.024) (0.023) (0.021) (0.052)
Log (triples density ‐0.138*** ‐0.139*** ‐0.101*** ‐0.100***
         in class) (0.011) (0.011) (0.010) (0.023)
Log (patents in class) 0.317*** 0.506*** 0.545*** 0.514*** 0.822***

(0.025) (0.031) (0.030) (0.027) (0.071)
5‐year growth of non‐ 0.060*** 0.084*** 0.072*** ‐0.009 0.103*
     patent refs in class) (0.022) (0.022) (0.022) (0.021) (0.056)
Log assets 0.270*** 0.270*** 0.270*** 0.142*** 0.513***

(0.011) (0.011) (0.011) (0.013) (0.083)
Log firm age in years 1.135*** 1.135*** 1.136*** 0.773*** 0.767***

(0.104) (0.104) (0.104) (0.130) (0.131)
Log (pats applied for 0.836*** 0.836***
  by firm previously) (0.021) (0.021)
Log (network density) ‐0.010*
      * Log assets (0.006)
Log (triples density) ‐0.001
      * Log assets (0.003)
Log (patents in class) ‐0.040***
      * Log assets (0.008)
Log (average NPL refs) ‐0.015**
      * Log assets (0.006)
Industry dummies stratified# stratified# stratified# stratified# stratified#
Year dummies yes yes yes yes yes
Log likelihood ‐65.96 ‐65.86 ‐65.84 ‐58.69 ‐58.67
Degrees of freedom 12 12 13 14 18
Chi‐squared 1270.6 1429.1 1517.2 3465.1 3458.6

The sample is matched on size class, sector, and age class. Estimates are weighted by sampling probability.
Coefficients for the hazard of entry into a patenting class are shown.
Standard errors are clustered on firm. *** (**) denote significance at the 1% (5%) level.

# Estimates are stratified by industry ‐ each industry has its own baseline hazard.

Table 3
Hazard of entry into patenting in a TF34 Class

538,452 firm‐TF34 observations with 10,665 entries (20,384 firms)

Cox Proportional Hazard Model

Time period is 2002‐2009 and minimum entry year is 1978. Sample is UK firms with nonmissing assets, all patenting firms 
and a matched sample of non‐patenting firms



Dependent variable

Coef. s.e.* Coef. s.e.*

Log (US network density) 0.018 0.029 0.055 0.032 *
Log (triples density)  ‐0.079 0.010 *** ‐0.251 0.042 ***
Log (patent apps in class) 0.247 0.030 *** 0.469 0.059 ***
Past 5 year growth in NPL refs ‐0.099 0.015 *** ‐0.101 0.016 ***
R‐squared
Standard error

*Standard errors are clustered on class and industrial sector (which allows free correlation over time).
# Instruments are lag 5 and 6 median exam duration for patents in the class.
Log of triples density is treated as endogenous in the IV and LIML estimates

Table 4

0.564 0.608

Aggregate regressions for entry into patenting classes 2001‐2009
9 years*33 tech classes*26 sectors = 7722 observations

Log number of first time entries by a firm into class by sector
OLS IV#

0.478 0.389
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Appendix

A Previous Results

To help the reader this appendix summarizes a number of results derived by Graevenitz et al. (2013) as
well as some additional results that are useful.

A.1 The Probability of Patenting a Facet

The probability pk that a firm obtains a patent on a facet is:

pk(f 6k, F,NO(O,o 6k, N)) =

NOX

j=0

1

j + 1

✓
NO

j

◆NO�jY
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◆ NOY
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. (A.1)

Then, the expected number of patents a firm owns when it applyies for fi facets is �k ⌘ pkfi.
For the comparative statics of entry stage it is useful to know that the elasticity of pk w.r.t. F is negative
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1
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Then the elasticity ✏pk,Fk
is:
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(A.3)

A.2 The Expected Number of Rival Investors

The expected number of rival firms NO that undertake R&D on the same technology opportunity as firm i

can be expressed as a sum of products:

NO =

NX
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j
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NY
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Graevenitz et al. (2013) show that NO is increasing in !n, where n 2 {l,m}.
In the second stage equilibrium NO can be rewritten as:

NO =

NX

j=0

j

✓
N

j

◆
(1� !̂k)

(N�j)!̂j
k. (A.5)

1



Incumbency Advantage

In the case in which there are incumbents and entrants the expected number of rival firms NO has to
rewritten slightly. To do this define:

!I
n ⌘ oIi

�
O !E

n ⌘ oEi
�
O (A.6)

We assume that in a previous period Np firms entered and of these a fraction � are still active. Then
the expected number of rival firms ˜NO that undertake R&D on the same technology opportunity as firm i

is:

˜NO =

�NPX
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A.3 The Expected Number of Facets Covered

In the second stage equilibrium the expected number of facets covered through the joint efforts of all firms
investing in a technological opportunity is:

˜Fk = F
h
1� (1� ˆ�k)

(NO+1)
i

(A.8)

The derivative of this expression with respect to F is positive:
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The elasticities of ˜Fk with respect to fk and F are:

⌘̂k =
ˆ�k(1� ˆ�k)

NO
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(A.10)
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which shows that 1 � ✏F̃kFk
� 0 as the denominator in the fraction is always greater than the numerator. It

is useful to observe that the upper bound of the elasticity ⌘̂k is decreasing in NO. To see this note that the
elasticity can be expressed as:

⌘̂k =
(1� ˆ�k)

NO

(No + 1)

⇣
1� ˆ�k

No

2! +
ˆ�2
k
No(NO�1)

3! ...
⌘ . (A.12)

This shows that the upper bound of the elasticity decreases in NO: lim�̂k!0 ⌘k = 1

�
(NO + 1)  1. Here

we use the binomial expansion of (1� ˆ�k)
No+1. The expression also shows that the lower bound of ⌘k |�̂k=1

is zero.
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B Results

This appendix contains derivations for the propositions set out in Section 2 of the paper.

B.1 Supermodularity of the Second Stage Game

This section sets out the main results needed to show that the second stage of game G⇤ is supermodular.
Consider the first order conditions that determine the equilibrium number of facets ( ˆf ) and technolog-

ical opportunities (ô):
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Now, consider the cross-partial derivatives which must be positive, if the second stage game is supermod-
ular. First, we derive the cross partial derivative with respect to firms’ own actions:
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This expression corresponds to the first order condition (B.14) for the optimal number of facets.
Now consider effects of rivals’ actions on firms’ own actions:
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The second stage game is supermodular, if the equations (B.16)-(B.19) are non-negative. The follow-
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ing results show that the conditions noted in Section 2 above must hold simultaneously if the game is
supermodular.

Using the first order condition (B.14), which will hold for any interior equilibrium, it can be shown
that:
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If
�
V �
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(µk�⇠ik)+

@L
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�
> 0, then the second term in the cross-partial derivatives (B.16) and (B.17) is the

product of two negative expressions, and then equation (B.17) is positive. Equation (B.16) is also positive
in a free entry equilibrium: the negative term at the end is less than the negative term in the derivative of
profits w.r.t. Nk in Section 2, which is otherwise the same as equation (B.16): @Co

@Noô
ô > @Co

@Noô
.

Turning to equations (B.18) and (B.19) we can show that:
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This result allows us to rewrite equations (B.18) and (B.19) as follows:
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Given assumptions (VF) and (LC) these two equations will be positive if
�
V �

sik
(µk � ⇠ik) +

@L
@sik

�
> 0 and⇣

1� 2⌘ik � �
1��

⌘
> 0. We analyze each condition in more detail next:

1. Given our assumptions on the legal cost function (LC, eq. 4) the condition
�
V 4(ŝk)

ŝk
(µk� ˆ⇠k+

@L
@ŝk

�
>

0 , V 4(ŝk)
ŝk

(µk � ˆ⇠k > � @L
@ŝk

implies that µk > ˆ⇠k. The elasticity of the value function w.r.t.
additional covered patents must exceed the elasticity of the portfolio benefits function w.r.t. the
share of patents held by the firm. This condition is less restrictive than the assumption in Graevenitz
et al. (2013) that µk > 1, since we are assuming that ˆ⇠k < 1.

2. (1 � 2⌘̂k) � �̂k

1��̂k
> 0 , (1 � 2

ˆ�) > (1 � ˆ�)(NO+1). This holds for any ˆ�k < 1
2 and No suffi-

ciently large. These restrictions imply a setting in which the ownership of patents belonging to each
opportunity is fragmented amongst many firms. It is more likely to arise if the technology is highly
complex, otherwise the condition that ˆ�k <

1
2 is less likely to hold.
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In Appendix B.4 we derive the conditions under which the equilibrium of game G⇤ is unique. If there is
a unique solution to the optimization problem of the firm at which profits are maximized, then this requires
that @2⇡k/@ ˆf 2 < 0. The restrictions that i) µk < 1 and ii) the share of overall profits which the firm obtains
is decreasing at the margin in the share of patents the firm holds (@2

�/@ŝ2k < 0) ensure that there is always
such a unique interior solution.

In this game G⇤ the comparative statics of patenting are the same as in the main model analyzed in
Graevenitz et al. (2013). Specifically we can show that the following effects hold in this game:

@2⇡

@oi@Fk

> 0,
@2⇡

@fi@Fk

> 0,
@2⇡

@oi@Ok

< 0,
@2⇡

@fi@Ok

< 0 (B.25)

This implies that complexity of the technology increases firms’ patent applications while increased tech-
nological opportunity reduces firms’ patenting applications.

B.2 Effect of Hold-up on Patenting

Here we show that Proposition 2 holds. Consider the following cross-partial derivatives for the effects of
higher legal costs L due to hold-up:

@2⇡k

@ô@hk

= �@L(�̂k, ŝk, hk)

@hk

< 0 , (B.26)
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The first of these conditions shows that the expected legal costs of hold-up reduce the number of opportu-
nities a firm invests in, in equilibrium. The second condition shows that firms with larger portfolios will be
more exposed to hold up and will benefit less from the share of patents they have patented per opportunity.
Both of these effects reduce the number of facets each firm applies for.

B.3 Free Entry Equilibirum
Proposition 3
There is a free entry equilibrium at which the marginal entrant can just break even, if R&D fixed costs per

opportunity (Co) increase in the number of entrants.

In a free entry equilibrium it must be the case that the following conditions hold:

⇡k(ôk, ˆfk, ˆNk) > 0 ^ ⇡k(ôk, ˆfk, ˆNk + 1) < 0 . (B.28)

The effect of entry on profits at the first stage of game G⇤ can be shown to be:
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This expression can be further simplified:
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Noô

ŝk
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The first two terms in brackets in this derivative are positive and so is the third term. We can show that
the limits of ✏F̃k,No

and ✏F̃k,f
in No are both zero. Therefore the above derivative is negative as long as the

R&D fixed costs per opportunity are increasing in No. This is the condition set out in Proposition 3.

B.4 Uniqueness of the second stage equilibrium

We show that stage 2 of game G⇤ is supermodular. This implies that there exists at least one equilibrium of
the stage game. An alternative way of deriving existence of the second stage equilibrium for game G⇤ is to
analyze the conditions under which the Hessian of second derivatives of the profit function (H⇡) is negative
semidefinite. This matrix consists of four derivatives of which only one leads to additional restrictions on
the model.

It is easy to see that @2⇡
@oi2

< 0 due to the coordination costs Cc(oi) and the restrictions we impose with
assumption (FVC). The two cross-partial derivatives are both zero in equilibrium - refer to equation B.15.

Therefore, the only expression that remains to analyze is @2⇡
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If we impose the restriction that the second derivative of the value function is negative and that the
elasticity of the value function, µk < 1, then the first and the last terms in the above expression are
negative. The sign of the second term in the expression depends on sign{ @2�

@sik2}, which we will assume is
negative. The third and fourth terms in the above expression are negative given the conditions imposed on
the legal cost function above.
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B.5 Entry and Incumbency

In this section we analyze a game in which incumbents have lower costs of entry and demonstrate that our
main predictions are robust.

We assume that a fraction � (0 < � < 1) of the previously active NP firms remain as incumbents. The
firms enter until the marginal profit from entry is reduced to zero.

Objective Functions

First, consider the objective functions of incumbents and entrants and the patenting game they are involved
in. We analyze this game and show when it is supermodular.

Given symmetry of technological opportunities (Assumption S) the expected value of patenting for
entrant and incumbent firm’s in a technology area k is:

⇡I
ik(o

I
i , f

I
i ) =oIi

0

@V (

˜Fk)�(sIik)� L(�I
ik, s

I
ik)�

0

@Co(

NP��1+NEX

j=1

oj)� 

1

A� f I
i pkCa

1

A� Cc(o
I
i ) .

(B.32)
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Define a game GE in which:

• There are NP� incumbent firms and the number of entrants, NE , is determined by free entry.

• Entrants and incumbents simultaneously choose the number of technological opportunities oIi , oEi 2
[0, On

] and the number of facets applied for per opportunity f I
i , f

E
i 2 [0, F n

]. Firms’ strategy sets
Sn are elements of R4.

• Firms’ payoff functions ⇡ik, defined at (B.32,B.33), are twice continuously differentiable and depend
only on rivals’ aggregate strategies.

• Assumptions (VF, eqn. 1) and (LC, eqn. 4) describe how the expected value and the expected cost
of patenting depend on the number of facets owned per opportunity.

Firms’ payoffs depend on their rivals’ aggregate strategies because the probability of obtaining a patent
on a given facet is a function of all rivals’ patent applications. Note that the game is symmetric within
the two groups of firms as it is exchangeable in permutations of the players. This implies that symmetric
equilibria exist, if the game can be shown to be supermodular (Vives, 2005).1

1Note also that only symmetric equilibria exist as the strategy spaces of players are completely ordered.
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First order conditions for game GE:
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Proposition 7
In game GE

the equilibrium number of facets chosen by incumbents and entrants is the same:

ˆf I
=

ˆfE
.

We show in Appendix A.2 that in the game with incumbents the number of rivals per opportunity ˜NO

becomes a function of both ôI , ôE . The first order conditions determining ˆf I , ˆfE both depend on the total
number of entrants per technological opportunity ˜NO and so both on ôI , ôE . This is the only way in which
rivals’ choices of the number of opportunities to pursue enter these first order conditions2. Therefore the
two conditions are identical and Proposition 7 holds.

Proposition 8
The second stage of game GE

is smooth supermodular under the same conditions as game G⇤
. Comparative

statics results for game G⇤
also apply to game GE

.

The first order conditions characterizing the game with incumbents and entrants are identical to those
for the game without incumbents as long as  = 0. As this variable is a constant it does not enter
into the second order conditions which we analyze to establish supermodularity and which underpin the
comparative statics predictions in Propositions 4-6.

Proposition 9
In the second stage of game GE

incumbents enter more technological opportunities, if they have a cost

advantage in undertaking R&D ( > 0).

The first order conditions determining the equilibrium number of opportunities chosen by incumbents and
entrants are identical if firms R&D fixed costs per opportunity are the same ( = 0). Therefore ôI| =0 = ôE .
As the cost advantage of incumbents in undertaking R&D grows this increases the number of opportunities
chosen by incumbents:

@2⇡I
ik

@oI@ 
= 1 > 0 . (B.38)

2Clearly the factors outside the brackets in equations (B.35), (B.37) also depend on these variables, but these do not affect
the equilibrium values of fE

i , f I
j .
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Proposition 10
In the second stage of game GE

the number of entrants decreases as the cost advantage of incumbents

increases.

Due to the supermodularity of the second stage game, increases in incumbents’ choices of the number
of opportunities to invest in will raise the number of opportunities entrants invest in as well as the numbers
of facets entrants and incumbents seek to patent in equilibrium. The increases in ôI and ôE will raise the
fixed costs of entry into new opportunities, Co, which then reduces entry.

C Data

Our analysis relies on an updated version of the Oxford-Firm-Level-Database, which combines information
on patents (UK and EPO) with firm-level information obtained from Bureau van Dijks Financial Analysis
Made Easy (FAME) database (for more details see Helmers et al. (2011) from which the data description
in this section draws).

The integrated database consists of two components: a firm-level data set and IP data. The firm-level
data is the FAME database that covers the entire population of registered UK firms. The original version
of the database, which formed the basis for the update carried out by the UKIPO, relied on two versions of
the FAME database: FAME October 2005 and March 2009. The main motivation for using two different
versions of FAME is that FAME keeps details of inactive firms (see below) for a period of four years.
If only the 2009 version of FAME were used, intellectual property could not be allocated to any firm
that has exited the market before 2005, which would bias the matching results. FAME is available since
2000, which defines the earliest year for which the integrated data set can be constructed consistently.
The update undertaken by the UKIPO used the April 2011 version of FAME. However, since there are
significant reporting delays by companies, even using the FAME 2011 version means that the latest year
for which firm-level data can be used reliably is 2009.

FAME contains basic information on all firms, such as name, registered address, firm type, industry
code, as well as entry and exit dates. Availability of financial information varies substantially across firms.
In the UK, the smallest firms are legally required to report only very basic balance sheet information
(shareholders’ funds and total assets). The largest firms provide a much broader range of profit and loss
information, as well as detailed balance sheet data including overseas turnover. Lack of these kinds of data
for small and medium-sized firms means that our study focuses on total assets as a measure of firm size
and growth.

The patent data come from the EPO Worldwide Patent Statistical Database (PATSTAT). Data on UK
and EPO patent publications by British entities were downloaded from PATSTAT version April 2011.
Due to the average 18 months delay between the filing and publication date of a patent, using the April
2011 version means that the patent data are presumably only complete up to the third quarter in 2009.
This effectively means that we can use the patent data only up to 2009 under the caveat that it might be
somewhat incomplete for 2009. Patent data are allocated to firms by the year in which a firm applied for
the patent.

Since patent records do not include any kind of registered number of a company, it is not possible to
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merge data sets using a unique firm identifier; instead, applicant names in the IP documents and firm names
in FAME have to be matched. Both a firm’s current and previous name(s) were used for matching in order
to account for changes in firm names. Matching on the basis of company names requires names in both data
sets to be ‘standardized’ prior to the matching process in order to ensure that small (but often systematic)
differences in the way names are recorded in the two data sets do not impede the correct matching. For
more details on the matching see Helmers et al. (2011).

Table C-1: Number of TF34 sectors entered between 2002 and 2009
Number of sectors Number of firms Number of entries

1 2,531 2,531
2 1,347 2,694
3 647 1,941
4 271 1,084
5 155 775
6 71 426
7 45 315
8 29 232
9 20 180
10 14 140
11 4 44
12 2 24
13 3 39
14 0 0

15 or more 13 240
Total 5,152 10,665
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Table C-2: Sample Population of Firms, by industry
2-digit SIC3 Number of Number of Share patenting Number of
Industry firms patenters 2001-2009 patents

1 Basic metals 2,836 52 1.83% 231
2 Chemicals 3,834 246 6.42% 126
3 Electrical machinery 2,948 281 9.53% 727
4 Electronics & instruments 9,298 561 6.03% 444
5 Fabricated metals 24,681 606 2.46% 70
6 Food, beverage, & tobacco 8331 102 1.22% 29
7 Machinery 9,365 608 6.49% 313
8 Mining, oil&gas 83,491 15 0.02% 96
9 Motor vehicles 2,337 117 5.01% 22
10 Other manufacturing 94,952 1362 1.43% 150
11 Pharmaceuticals 1,008 105 10.42% 551
12 Rubber & plastics 6,094 398 6.53% 590
13 Construction 295596 372 0.13% 59
14 Other transport 3,292 89 2.70% 6274
15 Repairs & retail trade 128,266 251 0.20% 2324
16 Telecommunications 14,348 133 0.93% 2096
17 Transportation 60,837 75 0.12% 621
18 Utilities 12,880 75 0.58% 428
19 Wholesale trade 138,398 728 0.53% 3608
20 Business services 689,942 1639 0.24% 6757
21 Computer services 177,319 716 0.40% 1132
22 Financial services 183,042 219 0.12% 4930
23 Medicalservices 38,424 103 0.27% 1419
24 Personal services 94,791 196 0.21% 1194
25 R&D services 7,915 713 9.01% 168
26 inactive 37,525 271 0.72% 5673

Total 2,131,750 10,033 0.47% 40,032
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Table C-3: Entry into techology area 2002-2009
Numbers Shares

Total patenting in First time Pat’d previously Total First time Pat’d previously
Technology sector by GB firms patenter in another tech. entry patenter in another tech
Elec machinery, energy 1763.7 214 250 26.3% 12.1% 14.2%
Audio-visual tech 788.3 148 192 43.1% 18.8% 24.4%
Telecommunications 1874.4 146 179 17.3% 7.8% 9.5%
Digital communication 1054.0 92 141 22.1% 8.7% 13.4%
Basic comm processes 256.5 21 93 44.4% 8.2% 36.3%
Computer technology 2167.2 291 251 25.0% 13.4% 11.6%
IT methods for mgt 283.2 117 157 96.7% 41.3% 55.4%
Semiconductors 347.2 38 118 44.9% 10.9% 34.0%
Optics 584.7 55 130 31.6% 9.4% 22.2%
Measurement 1765.3 226 269 28.0% 12.8% 15.2%
Analysis bio materials 339.0 39 111 44.3% 11.5% 32.7%
Control 712.1 165 241 57.0% 23.2% 33.8%
Medical technology 1668.4 184 209 23.6% 11.0% 12.5%
Organic fine chemistry 1569.4 36 83 7.6% 2.3% 5.3%
Biotechnology 701.6 41 99 20.0% 5.8% 14.1%
Pharmaceuticals 1700.7 54 80 7.9% 3.2% 4.7%
Polymers 224.4 27 112 61.9% 12.0% 49.9%
Food chemistry 492.7 36 87 25.0% 7.3% 17.7%
Basic materials chemistry 1020.2 85 144 22.4% 8.3% 14.1%
Materials metallurgy 360.8 54 109 45.2% 15.0% 30.2%
Surface tech coating 400.7 77 195 67.9% 19.2% 48.7%
Chemical engineering 842.7 142 213 42.1% 16.9% 25.3%
Environmental tech 446.6 106 166 60.9% 23.7% 37.2%
Handling 1326.3 274 290 42.5% 20.7% 21.9%
Machine tools 577.8 106 180 49.5% 18.3% 31.2%
Engines,pumps,turbine 1443.4 82 160 16.8% 5.7% 11.1%
Textile and paper mach 442.0 77 137 48.4% 17.4% 31.0%
Other spec machines 847.4 180 234 48.9% 21.2% 27.6%
Thermal process and app 455.7 105 159 57.9% 23.0% 34.9%
Mechanical elements 1445.9 223 317 37.3% 15.4% 21.9%
Transport 1288.2 213 236 34.9% 16.5% 18.3%
Furniture, games 1239.2 288 223 41.2% 23.2% 18.0%
Other consumer goods 788.1 194 246 55.8% 24.6% 31.2%
Civil engineering 2045.8 463 255 35.1% 22.6% 12.5%
Total 33263.6 4599 6066 32.1% 13.8% 18.2%
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D Robustness Tests on Network Density and Triples

This section examines how the addition of the network density measure to the analysis undertaken in
Graevenitz et al. (2013) changes the coefficient and sign of the triples measure reported there. They exam-
ine how complexity, technological opportunity and other variables affect the number of patents firms apply
for. Graevenitz et al. (2013) do not distinguish between hold-up and complexity in their model and use the
triples measure to capture complexity. The model presented in this paper separates the effects of hold-up
and complexity and predicts that hold-up will reduce firms’ patenting incentives, while complexity raises
these. In this paper, the network density measure is introduced as a measure of technological complexity,
while we argue that the triples measure captures hold-up.

The exercise undertaken in this appendix is a validation of these two measures in light of the updated
model we present in this paper. The evidence provided is based on two data sets: first we report regression
results obtained by adding the network density measure to the data used by (Graevenitz et al., 2013),
second we report results obtained from a new dataset. This dataset covers the same period as that used by
(Graevenitz et al., 2013), but it is based on the same more recent technology area classification as that used
in this paper. Furthermore, it is based on the same measure of triples as that used in this paper.

The models presented below are system GMM models which include a lagged dependent variable. We
demonstrate that regardless of how the data are constructed the triples measure reduces patenting while
the network density measure increases patenting efforts in our data. This supports our view that the triples
measure is a measure of hold-up.

In the results presented below we instrument potentially endogenous variables using lagged values. Ex-
ogeneity of the instruments is tested using difference in Hansen tests. We instrument the lagged dependent
variable and its interaction with fourth order lags. All other variables are instrumented with third order
lags or higher. We include only year and area dummies in the levels equations as it is likely that the fixed
effects are correlated with differences in the remaining explanatory variables.

Instrument sets are collapsed in order to reduce the number of instruments used. Throughout we rely
on the Hansen test to determine whether instruments are exogenous. Where the statistic indicated that this
was not the case we rejected the models. We report only those models that were not rejected by the test
for which the lagged dependent variable was within the range one would expect from estimation of OLS
models with the same specification.

D.1 Sample and Definition of Variables

The sample used for both tables below consists of all firms that have at least one hundred patent applications
at EPO across all teachnology areas between 1987 and 2002 and who have applied for patents in at least
three years in the sample period in a technology area.

The two tables below include a number of variables that we do not use in this paper other than here.
We briefly discuss these variables next:

Dependent variable In both tables below the dependent variable is the logarithm of the number of
patents each firm has applied for in a technology area and year. To deal with missing values arising

13



from firms not having patent applications in some years we add one to all patent counts before taking the
logarithm.

Triples count In Table D-1 below we use the triples count employed by Graevenitz et al. (2013). They
count how often firm triples arise, such that each firm in a triple holds patents that are cited as limiting
one or more patent applications submitted by each of the other two firms. Their measure of triples is
constructed using only the ten most frequently cited firms in each applicant’s patent portfolio in any area
and year. In Table D-2 we use the same triples count as in this paper, i.e. the restriction to the most
frequently cited firms is removed.

Fragmentation The fragmentation measure used here is based on Ziedonis (2004). The measure is based
only on critical references and captures the concentration of prior art cited in the patent portfolio of a firm
in a year and area.

Large / Relative Size In Table D-1 below we use a dummy variable that is one for all firms above the
median firm by size of patent portfolio in each area and year. In Table D-2 we capture relative size by
measuring the size of each firm’s patent portfolio by area up to a given year relative to the total number of
all firms’ patent applications in that area and year.

D.2 Data used by Graevenitz et al. (2013)

The results presented here are based on adding the network density measure of complexity constructed for
this paper from US patent data to the data used by Graevenitz et al. (2013). They study the determinants
of the level of patent applications at EPO.

Column E in Table D-1 below is reported by Graevenitz et al. (2013) and is presented here as a reference
point. Models K,L,M contain new results. Model K replicates model E closely, differences are likely due
to updates to the code used to estimate these models. Model L is like model K with the network density
measure added. In model M we adjust the set of instruments to obtain a model with a lagged dependent
variable that is significantly below 1 at the 5% level at the mean of the triples variable.

These results show that adding the network density measure to the data does not change the sign
or significance of the other variables reported in Table D-1. Network density itself has a positive and
significant effect on patenting in models L and M. We would expect to see this, if this measure captures
complexity.

Adding network density does have an important and not immediately obvious effect. The range of
values of non-patent references for which an increase in the hold-up measure (triples) reduces patenting
incentives is larger in model M than model E at the mean of the patent count: in model E non-patent
references must lie beyond 1.22 for an increase in triples to have a negative effect on patenting incentives,
while in model M non-patent references beyond 1.1 have the same effect. Similarly the range of values
of the patent count for which an increase in the hold-up measure (triples) reduces patenting incentives is
larger in model M than model E at the mean of non patent references. This shows that the triples measure
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contained in this data has a negative effect on patenting incentives in sufficiently complex technologies.
We would expect to see this, if triples is a measure of hold-up.

Table D-1: GMM Models for Patent Applications - Old Data
Variable SGMM E SGMM K SGMM L SGMM M
log Patentcountt�1 0.749⇤⇤⇤ 0.879⇤⇤⇤ 1.020⇤⇤⇤ 0.976⇤⇤⇤

(0.093) (0.099) (0.113) (0.106)

log Patentcountt�1⇥ Triples �0.017⇤⇤⇤ �0.017⇤⇤⇤ �0.013⇤⇤⇤ �0.012⇤⇤⇤
(0.003) (0.002) (0.002) (0.002)

Non Patent References (NPR) 1.553⇤⇤⇤ 1.863⇤⇤⇤ 1.648⇤⇤⇤ 1.389⇤⇤⇤
(0.254) (0.252) (0.240) (0.183)

NPR ⇥ Triples �0.036⇤⇤⇤ �0.038⇤⇤⇤ �0.033⇤⇤⇤ �0.028⇤⇤⇤
(0.006) (0.005) (0.005) (0.004)

NPR ⇥ Triples ⇥ Large 0.007⇤⇤⇤ 0.006⇤⇤⇤ 0.005⇤⇤⇤ 0.005⇤⇤⇤
(0.002) (0.001) (0.001) (0.001)

NPR ⇥ Large �0.366⇤⇤⇤ �0.386⇤⇤⇤ �0.339⇤⇤⇤ �0.340⇤⇤⇤
(0.081) (0.062) (0.051) (0.043)

Fragmentation �0.474⇤⇤ �0.521⇤⇤ �0.543⇤⇤ �0.490⇤⇤⇤
(0.170) (0.182) (0.174) (0.129)

Fragmentation ⇥ Triples 0.006 0.009⇤ 0.005 0.004

(0.006) (0.004) (0.004) (0.004)

Triples 0.055⇤⇤⇤ 0.052⇤⇤⇤ 0.046⇤⇤⇤ 0.039⇤⇤⇤
(0.010) (0.007) (0.007) (0.005)

Areas 0.096⇤⇤⇤ 0.084⇤⇤⇤ 0.049⇤⇤ 0.050⇤⇤
(0.012) (0.010) (0.017) (0.016)

Large 0.342⇤⇤ 0.476⇤⇤⇤ 0.427⇤⇤⇤ 0.424⇤⇤⇤
(0.117) (0.105) (0.091) (0.072)

Network Density 0.002⇤⇤ 0.002⇤⇤
(0.001) (0.001)

Year dummies YES YES YES YES
Primary area dummies YES YES YES YES
Constant �1.443⇤⇤⇤ �1.846⇤⇤⇤ �2.017⇤⇤⇤ �1.772⇤⇤⇤

(0.319) (0.267) (0.270) (0.237)

N 173448 173448 173448 173448

m1 �10.860 �10.470 �9.318 �9.634

m2 4.739 6.307 6.2 6.305

m3 .896 .509 �.071 �.302

Hansen 10.988 2.017 4.454 12.506

p-value .052 .569 .216 .052

Degrees of freedom 5 3 3 6

* p<0.05, ** p<0.01, *** p<0.001
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1. Asymptotic standard errors, asymptotically robust to heteroskedasticity are reported in parentheses
2. m1-m3 are tests for first- to third-order serial correlation in the first differenced residuals.
3. Hansen is a test of overidentifying restrictions. It is distributed as �2 under the null of instrument

validity, with degrees of freedom reported below.
4. In all cases GMM instrument sets were collapsed and lags were limited.

D.3 New Data at 34 Area Level

Here we present results based on an updated dataset of patenting in Europe that is based on PATSTAT,
October 2014, but covers the same range of years (1987-2002), for better comparability with the data
presented in the previous section.

Table D-2: GMM Models for Patent Applications - New Data
Variable SGMM E SGMM K SGMM L
log Patentcountt�1 0.454 ⇤ ⇤⇤ 0.799 ⇤ ⇤⇤ 0.808 ⇤ ⇤⇤

(0.111) (0.080) (0.082)

Non Patent References (NPR) �0.014 ⇤ ⇤⇤ �0.014 ⇤ ⇤⇤ �0.014 ⇤ ⇤⇤
(0.001) (0.001) (0.001)

Triples �0.091 ⇤ ⇤⇤ �0.100 ⇤ ⇤⇤ �0.117 ⇤ ⇤⇤
(0.016) (0.011) (0.012)

Network Density �0.216 0.195 0.217⇤
(0.129) (0.101) (0.107)

Fragmentation 0.899 ⇤ ⇤⇤ 0.658 ⇤ ⇤⇤ 0.804 ⇤ ⇤⇤
(0.155) (0.093) (0.085)

Areas 0.020⇤ 0.016 ⇤ ⇤ �0.001

(0.009) (0.006) (0.006)

Relative Size �0.010 ⇤ ⇤⇤ 0.000 �0.000

(0.003) (0.003) (0.002)

Constant �0.033 �0.208 ⇤ ⇤⇤ �0.149 ⇤ ⇤
(0.045) (0.052) (0.046)

N 168066 168066 168066

m1 �7.598 �12.948 �13.08

m2 3.871 9.964 9.896

m3 �1.450 .538 .055

Hansen 3.49 3.79 2.1

p-value .48 .29 .55

Degrees of freedom 4 3 3

* p<0.05, ** p<0.01, *** p<0.001
1. Asymptotic standard errors, asymptotically robust to heteroskedasticity are reported in parentheses
2. m1-m3 are tests for first- to third-order serial correlation in the first differenced residuals.
3. Hansen is a test of overidentifying restrictions. It is distributed as �2 under the null of instrument
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validity, with degrees of freedom reported below.
4. In all cases GMM instrument sets were collapsed and lags were limited.

The main difference between the data used here and the older data used by Graevenitz et al. (2013)
is that we now rely on a more recent, slightly finer specification of the number of technology areas: the
current classification contains 34 rather than 30 areas. In addition, the triples measure we use now captures
all triples and not just those affecting each firm and its ten closest technology rivals as in the earlier data.
Due to the larger number of areas we now exclude slightly more patentees when applying the criterion that
a firm must have at least one hundred patents in a technology area and must have at least three years of
patent activity in an area to be included in the analysis.

Table D-2 demonstrates that the predicted negative effects of triples and non-patent references are
present in all specifications we report. We also show that network density is either not significant or
positive and significant. The model in which the measure is positive and significant is our prefered model,
due to the low instrument count and the better test of overidentifying restrictions.

Overall, both sets of models demonstrate that an interpretation of the triples measure as a measure of
hold-up only, and of the network density as a measure of complexity, is consistent with the effects we
observe in the data on patent applications presented here.

E Estimating Survival Models

This appendix gives some further information about the various survival models we estimated and the
robustness checks that were performed. We estimated two general classes of failure or survival models: 1)
proportional hazard, where the hazard of failure over time has the same shape for all firms, but the overall
level is proportional to an index that depends on firm characteristics; and 2) accelerated failure time, where
the survival rate is accelerated or decelerated by the characteristics of the firm. We transform (2) to a
hazard rate model for comparison with (1), using the usual identity between the probability of survival to
time t and the probability of failure at t given survival to t� 1. The first model has the following form:

Pr (i first patents in j at t | i has no patents in j 8s < t,Xi)

h(Xi, t) = h(t) exp (Xi, �)

where i denotes a firm, j denotes a technology sector, and t denotes the time since entry into the sample.
h(t) is the baseline hazard, which is either a non-parametric or a parametric function of time since entry
into the sample. The impact of any characteristic x on the hazard can be computed as follows:

@h(Xi, t)

@xi

= h(t) exp (Xi, �)� or
@h(Xi, t)

@xi

1

Xi, t
= � (E.39)

Thus if x is measured in logs, � measures the elasticity of the hazard rate with respect to x. Note that
this quantity does not depend on the baseline hazard h(t), but is the same for any t. We use two choices for
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h(t): the semi-parametric Cox estimate and the Weibull distribution ptp�1. By allowing the Cox h(t) or
p to vary freely across the industrial sectors, we can allow the shape of the hazard function to be different
for different industries while retaining the proportionality assumption.

In order to allow even more flexibility across the different industrial sectors, we also use two accelerated
failure time models, the log-normal model and the log-logistic model. These have the following basic form:

Log-normal :S(t) = 1� �
⇢
ln (t)� µ

�

�
(E.40)

Log-logistic :S(t) =
1

1 + (�t)
1
�
)

(E.41)

where S(t) is the survival function and �i = exp (Xi�). We allow the parameters � (log-normal) or �
(log-logistic) to vary freely across industries (j). That is, for these models, both the mean and the variance
of the survival distribution are specific to the 2-digit industry. In the case of these two models, the elasticity
of the hazard with respect to a characteristic x depends on time and on the industry-specific parameter (�
or �), yielding a more flexible model. For example, the hazard rate for the log-logistic model is given by
the following expression:

h(t) =
�d logS(t)

dt
=

�
1
� t

1
�
�1

�
⇣
1 + (�t)

1
�
)

⌘ (E.42)

From this we can derive the elasticity of the hazard rate with respect to a regressor x:4

@ log hij(t)

@xi

=

��⇣
1 + (�t)

1
�

⌘ (E.43)

One implication of this model is therefore that both the hazard and the elasticity of the hazard with
respect to the regressors depend on t, the time since the firm was at risk of patenting. We sample the firms
during a single decade, the 2000s, but some of the firms have been in existence since the 19th century.
This fact creates a bit of a problem for estimation, because there is no reason to think that the patenting
environment has remained stable during that period. We explored variations in the assumed first date at
risk in Tables E-1(1978) and E-2 (1900), finding that the choice made little difference. Accordingly, we
have used a minimum at risk year of 1978 for estimation in the main table in the text.

4We assume that x is in logarithms, as is true for our key variables, so this can be interepreted as an elasticity.
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Table E-1
Hazard of entry into patenting in a TF34 Class - Comparing models

538,452 firm-TF34 observations with 10,665 entries (20,384 firms)
Proportional hazard AFT

Variable Cox PH Weibull Log logistic Log normal
Log (network density) 0.108 ⇤ ⇤⇤ 0.111 ⇤ ⇤⇤ 0.308 ⇤ ⇤⇤ 0.247 ⇤ ⇤⇤

(0.021) (0.021) (0.096) (0.040)

Log (triples density �0.100 ⇤ ⇤⇤ �0.098 ⇤ ⇤⇤ �0.511 ⇤ ⇤⇤ �0.258 ⇤ ⇤⇤
in class) (0.010) (0.010) (0.071) (0.024)

Log (patents in class) 0.513 ⇤ ⇤⇤ 0.513 ⇤ ⇤⇤ 2.177 ⇤ ⇤⇤ 1.095 ⇤ ⇤⇤
(0.027) (0.027) (0.304) (0.089)

5-year growth of non-patent (0.013) �0.001 �0.077 �0.039

refs in class (0.022) (0.021) (0.084) (0.038)

Log assets 0.149 ⇤ ⇤⇤ 0.130 ⇤ ⇤⇤ 0.529 ⇤ ⇤⇤ 0.198 ⇤ ⇤⇤
(0.013) (0.013) (0.082) (0.024)

Log (pats applied for 0.848 ⇤ ⇤⇤ 0.860 ⇤ ⇤⇤ 5.685 ⇤ ⇤⇤ 3.973 ⇤ ⇤⇤
by firm previously) (0.021) (0.019) (0.917) (0.368)

Industry dummies stratified stratified stratified stratified
Year dummies yes yes yes yes
Log likelihood �58.8 �96, 051.0 �114, 127.0 �111, 662.1

Degrees of freedom 13 38 38 38

Chi-squared 3183.2 4560.1 168.4 300.1

All estimates are weighted estimates, weighted by sampling probability. For the Cox and Weibull
models, coefficients shown are elasticities of the hazard w.r.t. the variable. For the log-logistic, -beta is shown.
*** (**) denote significance at the 1% (5%) level.
Time period is 2002-2009 and minimum entry year is 1978. Sample is all UK firms with nonmissing assets.
AFT - Accelerated Failure Time models
# Estimates are stratified by industry - each industry has its own baseline hazard.
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Table E-2
Hazard of entry into patenting in a TF34 Class - Robustness

Variable (1) (2) (3) (4) (5) Big firms
Log (network density) 0.107⇤⇤⇤ �0.008 0.114⇤⇤⇤ 0.107⇤⇤⇤ 0.108⇤⇤⇤ 0.390⇤⇤⇤

(0.021) (0.019) (0.024) (0.021) (0.021) (0.145)

Log (triples density �0.101⇤⇤⇤ �0.183⇤⇤⇤ �0.114⇤⇤⇤ �0.103⇤⇤⇤ �0.103⇤⇤⇤ �0.099⇤
in class) (0.010) (0.008) (0.011) (0.009) (0.009) (0.055)

Log (patents in class) 0.514⇤⇤⇤ 0.623⇤⇤⇤ 0.605⇤⇤⇤ 0.520⇤⇤⇤ 0.518⇤⇤⇤ 0.390⇤⇤
(0.027) (0.024) (0.031) (0.027) (0.027) (0.157)

5-year growth of non- �0.009 �0.196⇤⇤⇤ �0.002 �0.012 �0.012 �0.125

patent refs in class (0.021) (0.020) (0.025) (0.021) (0.021) (0.135)

Log assets 0.142⇤⇤⇤ 0.138⇤⇤⇤ 0.186⇤⇤⇤ 0.139⇤⇤⇤ 0.146⇤⇤⇤ 0.303

(0.013) (0.013) (0.018) (0.013) (0.013) (0.233)

Log firm age in years 0.773⇤⇤⇤ 0.588⇤⇤⇤ 0.739⇤⇤⇤ 0.778⇤⇤⇤ 0.021 0.710

(0.130) (0.145) (0.155) (0.131) (0.246) (0.672)

Log (lagged firm-level) 0.836⇤⇤⇤ 0.947⇤⇤⇤ 0.954⇤⇤⇤ 0.840⇤⇤⇤ 0.878⇤⇤⇤ 0.512⇤⇤⇤
patent stock (0.021) (0.019) (0.033) (0.021) (0.021) (0.132)

Industry dummies yes yes yes yes yes yes
Observations 538,452 692,038 452,313 523,547 538,452 5,655
Firms 20,384 20,384 17,993 20,384 20,384 255
Entries 10,665 10,665 8,149 10,340 10,665 219
Entry rate 1.98% 1.54% 1.96% 1.97% 1.98% 3.87%

Log likelihood �58.69 �54.60 �40.59 �56.94 �53.81 �0.21

Degrees of freedom 14 14 14 14 14 14

Chi-squared 3465.1 5065.8 1688.8 3459.1 3137.4 51.3

All estimates are weighted estimates, weighted by sampling probability. Coefficients shown are negative
of the estimates (larger coefficient increases entry probability).
*** (**) denote significance at the 1% (5%) level.
Time period is 2002-2009. Sample in (1) is all UK firms with nonmissing assets.
Log-logistic model stratified by industry.
(1) Estimates from Table 3, for comparison.
(2) Observations for tech sectors of firms whose industry has no such patenting (Lybbert and Zolas, 2014) and
where there is no entry by any UK firm in that industry are dropped.
(3) SMEs: firms with assets > 12.5 million GBP removed.
(4) The Telecom tech sector is removed.
(5) The minimum founding year is 1900 instead of 1978.
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