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Search theory is firmly established as a useful way to think about unemployment and labor

mobility. But it is well known that fitting search models to data on wages and labor flows is a

challenge. Wages have huge dispersion among workers with similar observed characteristics.

Traditional search theory hypothesized that job-seekers would keep considering wage offers

until they found one high in the upper tail of the distribution of available opportunities.

But the high rate of job-seekers’ acceptance of job offers suggests that searchers are leaving

money on the table by taking jobs long before it is likely that they have adequately sampled

the upper tail. The addition of on-the-job search to the model relieves some of this tension,

because job-seekers departing unemployment may do so by taking an interim job and continue

to search for the dream job in the upper tail while employed in the interim job. Even then,

models that calibrate the offer distribution to the distribution of wages across workers find

that the exit rate from unemployment to jobs makes sense only if workers find unemployment

virtually intolerable, else they would be more picky in their acceptance decisions. These

points reflect the suspicions that search economists have harbored for some time. They

recently came into sharp focus in an influential article, Hornstein, Krusell and Violante

(2011) (HKV).

In this paper, we investigate a new data source with the aim of estimating the interper-

sonal dispersion of wages and values derived from jobs more broadly. That source is a novel

survey of unemployed workers in 2009 and 2010 that Alan Krueger and Andreas Mueller

(KM) carried out—see Krueger and Mueller (2011) and Krueger and Mueller (2015). The

KM data permit a more refined measure of dispersion than do the data sources in earlier

work—they liberate search theory from inferring the distribution of opportunities from the

residuals of wage regressions. The data include prior wages collected from administrative

sources and survey responses about reservation wages each week during a spell of unemploy-

ment, and the wages of job offers and of newly accepted jobs. Although earlier surveys have

collected cross-section data on reservation wages, the KM survey is the first, as far as we

know, that collects panel data on reservation wages. It is also the first U.S. source to match

survey data and administrative data, we believe.

The KM data, together with a reasonable set of assumptions, permit a solution to a

problem that has significantly impeded research on labor search behavior. HKV, Section II,

discuss the challenges in detail with many references. The problem is the lack of information

on individual wages relative to personal productivity. Conditional on measures of personal
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characteristics available to the econometrician, wages have huge dispersion. As HKV observe,

research that uses econometric residuals to measure wages relative to personal productivity

has difficulty building a model that fits all the restrictions that seem reasonable.

Our identifying assumption is that the wage-related variables measured in the KM survey

are proportional to personal productivity. Under the proportionality assumption for the

reservation wage, both the offered wage and the wage in the prior job are proportional

to personal productivity. The covariance of their logs reveals the dispersion of personal

productivity. Then the difference between the log variances of the offered wage and the prior

wage is the log variance of the offers facing a job-seeker with a given level of productivity.

An important extension of the standard search model adds a non-wage dimension to jobs.

Our model is flexible in the sense that it allows the wage and non-wage components to be

positively or negatively correlated. In the KM data, a job-seeker frequently accepts a job

paying less than the previously stated reservation wage and, less frequently, rejects a job

paying more than the reservation wage. Moreover, as revealed by direct questions in the

survey, two thirds of rejections of job offers are motivated by non-wage related reasons. We

use the observed relation between the acceptance probability and the difference between the

offered and reservation wages to infer the correlation between the wage and non-wage value

of job offers as well as the overall dispersion of the non-wage value.

Our model matches the means and standard deviations of the empirical distribution of

the logs of offered wages and reservation wages, together with the observed frequency of

acceptance of offers as a function of the amount by which the offered wage exceeds the reser-

vation wage, and the fraction of rejections for non-wage reasons. We find robust estimates

of dispersion—measured as the log standard deviation—for three of the four underlying un-

observed variables. These are 0.24 for the offered wage, 0.09 for the non-work value (value

of alternative non-market activity), and 0.43 for personal productivity. The bootstrap stan-

dard errors of these estimates are 0.02, 0.05 and 0.02, respectively. We estimate the log

standard deviation of the component of the non-wage value of job offers that is independent

of the offered wage to be 0.37 with a standard error of 0.09. The parameter determining

the correlation between the wage and non-wage component of the wage tends to be close

to 0, but with significant sampling error. Overall, these results imply that, conditional on

personal productivity, the wage value of job offers has a moderate dispersion, accounting
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for 21 percent of the total variation in observed offered wages. The dispersion in non-wage

values is substantial and larger than the dispersion of the wage value of job offers.

HKV note that most empirical search models that appear to rationalize observed unemp-

loyment-to-employment flows imply an implausibly low flow value of unemployment. It is

frequently negative. These models generally infer the value of job search from estimates

of the dispersion of wage offers derived from cross-sectional data, where dispersion is high.

Sampling from that distribution is highly valuable activity, which implies that people must

truly hate unemployment to take the first job that comes along as frequently as they do in

practice.

By design, the KM survey gathered information on the search decisions of only the

unemployed. A re-employed worker can continue to search—job-to-job transitions account

for about half of all hires in the U.S. economy. A reasonable strategy for the unemployed is

to take an interim job and keep on searching for a more permanent job. Hall (1995) describes

a labor market operating in this model. The job-ladder model, as in Burdett (1978), Burdett

and Mortensen (1998), and Hagedorn and Manovskii (2013), formalizes the process. In that

model, provided that the offer rate for employed workers does not fall short of the rate

for unemployed job-seekers, the reservation wage for a job-seeker is just the flow value of

unemployment. The reservation wage for a worker currently receiving a wage of w is w

itself—a costless move to any job that beats the current wage is an improvement. If holding

a job results in a lower offer rate or if the job-seeker incurs a cost upon changing jobs, the

job-seeker will set a reservation wage above the flow value of unemployment to preserve the

option value of unemployment.

In this paper, we consider a simple job-ladder model where unemployed and employed

workers differ in the probability of sampling job offers and calibrate the model to the observed

rate of the job-to-job transition in the data. We find that, given the dispersion of job values

estimated in this paper, the implied flow value of unemployment is around 0.1, which is

above but close to zero. The reason is that, while the wage value of job offers has a relatively

modest dispersion, the dispersion of non-wage values is substantial and larger than the

dispersion of the wage value of job offers. Taken together, this implies that job seekers’

acceptance behavior can only be rationalized by a relatively low flow value of unemployment,

as otherwise job seekers would reject most offers and wait for a job offer with high pay but

mostly a high non-wage amenity to arrive.
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1 Related Literature

HKV has an extensive discussion of the extensive literature on wage dispersion, with many

cites, notably Mortensen (2003), Rogerson, Shimer and Wright (2005), Bontemps, Robin

and Berg (2000), Postel-Vinay and Robin (2002), Jolivet, Postel-Vinay and Robin (2006),

and Jolivet (2009). More recently, a few papers have estimated the extent of wage dispersion

arising through search frictions. Hagedorn and Manovskii (2010), Low, Meghir and Pistaferri

(2010), and Tjaden and Wellschmied (2014) infer the extent of wage dispersion arising from

differences in match quality from the excess volatility of wage growth of those who switch jobs

compared to those who stay on their jobs. With this approach, estimates of wage dispersion

depend critically on how the process of on-the-job search is modeled. If the efficiency of

on-the-job search is high, workers move up the job ladder relatively fast, and most job-

to-job transitions are associated with small wage gains as workers continue to search for

new jobs even when they are far up on the ladder. This process implies that, for a given

observed variance of wage changes, the inferred dispersion in offered wages is increasing in the

search efficiency of on-the-job search—see Tjaden and Wellschmied (2014). We estimate the

dispersion in wages arising from search frictions with a different identification strategy from

these papers. Our estimates of the dispersion in wage offers are closest to Low et al. (2010),

who find a standard deviation of match-specific wage shocks of 0.23, but are substantially

larger than the estimates in Tjaden and Wellschmied (2014) and Hagedorn and Manovskii

(2010).

Our paper is also related to the literature on compensating differentials. In the presence

of search frictions, a compensating differential does not necessarily arise, because firms do

not need to pay the worker the marginal product—see Hwang, Mortensen and Reed (1998),

Lang and Majumdar (2004), and Bonhomme and Jolivet (2009). In fact, wage and non-wage

values may even be positively correlated if more productive firms compensate workers more

highly with both a higher wage and a higher non-wage amenity. A recent paper by Sullivan

and To (2014) infers the dispersion of non-wage amenities from the fraction of job-to-job

transitions that result in a wage decrease, but they assume that wage and non-wage values

are independent of each other. Their estimate of the dispersion of the non-wage value is

similar to ours. Relative to their approach, ours is more flexible and allows for both positive

or negative correlation of wage and non-wage values in job offers. Another recent paper
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by Sorkin (2015) finds that non-wage characteristics are important for explaining inter-firm

wage differentials, but he does not estimate the overall dispersion of non-wage values.

An important challenge for the papers discussed in this section is to distinguish job-to-

job transitions that are value increasing—movements up the job ladder—from transitions

that arise from layoffs or other involuntary separations. The conclusions emerging from this

literature depend on whether one interprets wage decreases as compensated for by higher

non-wage characteristics or as falling off the job ladder. This paper uses direct information

on job acceptance decisions of unemployed workers, so the main parameters in our approach

do not rest on assumptions about the process of on-the-job search.

2 The KM Survey

The KM survey enrolled roughly 6,000 job-seekers in New Jersey who were unemployed in

September 2009 and collected weekly data from them for several months. The survey also

incorporates data from administrative records for the respondents, notably their wages on

the jobs they held just prior to becoming unemployed. We follow Krueger and Mueller (2011)

and restrict the sample to survey participants of ages 20 to 65. For details on the KM survey,

see Krueger and Mueller (2011) and Krueger and Mueller (2015).

2.1 Job offers

The KM survey asked respondents each week: “In the last 7 days, did you receive any job

offers? If yes, how many?” The respondents in our sample received a total of 2,174 job offers

in 37,609 reported weeks of job search. The ratio of the two, 0.058, is a reasonable estimate

of the overall weekly rate of receipt of job offers.

For respondents who indicated that they received at least one job offer, the KM survey

asked respondents: “What was the wage or salary offered (before deductions)? Is that per

year, per month, bi-weekly, weekly or per hour?” In cases where respondents reported that

they received more than one offer in a given week, the survey asked the offered wage only for

the best wage offer. Among the individuals who reported at least one job offer, 86.3 percent

reported that they received one offer in the last 7 days, 8.6 percent reported receiving two

offers in the last 7 days, 2.4 percent received 3 offers and the remaining 2.7 percent received

between 4 and 10 offers in the last 7 days.
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Figure 1: Kernel Density of the Log Hourly Offered Wage, y

Figure 1 reports the kernel density of the hourly offered wage for our sample of 1,153 job

offers. The sample is restricted to cases where details of the offer (including the wage) and

a reservation wage from a previous interview were available. We use the same sample below

when we compute the acceptance frequency conditional on the difference between the log of

the offered wage and the log of the reservation wage from a previous interview.

The model interprets this distribution as the mixture of the distribution of wage offers

for a worker with standardized personal productivity and the distribution of productivity

across workers—by mixture, we mean the weighted average of the offer distribution for given

productivity, with the weights taken as the distribution of productivity.

2.2 Reservation wage

Each week, the respondents in the KM survey answered a question about their reservation

wages: “Suppose someone offered you a job today. What is the lowest wage or salary you

would accept (before deductions) for the type of work you are looking for?” We only use the

first reservation wage observation available for each person in the survey so that the sample

is representative of the cross-section of unemployed workers. We apply the same sample

restrictions as Krueger and Mueller (2011)—we exclude survey participants who reported
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Figure 2: Kernel Density of the Log Hourly Reservation Wage, r

working in the last seven days or already accepted a job offer at the time of the interview.

Figure 2 shows the kernel density of the hourly reservation wage for our sample of 4,138

unemployed workers.

The model interprets the reservation wage of an unemployed job-seeker as the value of

the non-work option. The survey reveals the distribution of the non-work value among all

respondents. The model interprets this distribution as the mixture of the distribution of

non-work value for a worker with standardized personal productivity and the distribution of

productivity across workers.

To avoid possible bias from cognitive dissonance among the respondents, we exploit the

longitudinal structure of the survey and use the reservation wage value reported in the week

prior to the receipt of a job offer, in our study of the probability of acceptance of an offer.

2.3 Acceptance

Many respondents accept job offers that pay less than the respondent’s previously reported

reservation wage. Some do the reverse, rejecting an offer that pays more than the reservation

wage. Our model posits that jobs have non-wage values, to explain why the offered wage does

not control the acceptance decision—job-seekers accept jobs paying less than the reservation
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wage because these jobs have positive non-wage values that offset the low wage. The model

accounts for the bias toward acceptance by treating the reported reservation wage as referring

to a job with below-normal non-wage value.

We study the acceptance probability as a function of the difference between the log of

the offered wage and the log of the reservation wage. Krueger and Mueller (2015) gives a

detailed analysis of the acceptance frequency in the survey. The job acceptance frequency

rises with d = y− r. The average frequency of job acceptance in our sample is 71.9 percent.

In 20.9 percent of the cases, respondents indicated that they had not yet decided whether

to accept the job offer or not.

To deal with the problem of missing data for acceptance of some job offers, we make

use of administrative data on exit from unemployment insurance. UI exit is a potentially

useful but imperfect indicator of acceptance, for four reasons: (1) A delay occurs between job

acceptance and UI exit. (2) An exit from the UI system may relate to a different offer from

the one reported in the survey. (3) UI exit data are censored at the point of UI exhaustion,

as the data do not track recipients after they exhaust benefits. (4) An unemployed worker

may perform limited part-time work while receiving benefits and thus acceptances of such

offers will not be reflected in an exit from the UI system. Krueger and Mueller (2015) show

that the rate of UI exit for those who were undecided was almost exactly half way between

the rate of UI exit for those who accepted the offer and the rate of UI exit for those who

rejected the offer. We believe that this estimate is the best available. Notwithstanding the

imperfect relation between exits and acceptances of offers, we believe it is the best way to

handle the problem of missing data, so we create an indicator variable A that takes on the

value zero for a rejected offer, 0.5 for an offer for which the respondent was undecided, and

1 for an accepted offer.

Figure 3 shows the acceptance frequency smoothed in two ways: (1) as the fitted values

from a regression of A on a 6th-order polynomial in y − r and (2) as the fitted values from

a locally weighted regression (LOWESS) with bandwidth 0.3. The figure runs from first-

percentile value of d to the 99th percentile value. Values outside that range are inherently

unreliable for any smoothing method.

The survey also asked a question about reasons for rejecting a job offer: 32.3 percent

indicated that they rejected because of “inadequate pay/benefits” and the remaining 67.7

percent indicated another reason for rejecting such as unsuitable working conditions, in-
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sufficient hours/too many hours, transportation issues, insufficient use of skills/experience.

Because our approach to estimation does not allow for simultaneous job offers, we exclude

from the sample the 5.0 percent of offers that respondents rejected because they accepted

another job offer. Unfortunately, the survey did not distinguish between inadequate pay

and inadequate benefits, but in response to a similar question in the National Longitudinal

Survey of Youth (NLSY) in 1986-87, 36.8 percent of respondents mentioned “inadequate

pay” as the reason for rejecting a job offer, indicating that the inadequate pay is the most

common reason for rejecting the job offer, not inadequate benefits. Moreover, as reported in

Krueger and Mueller (2015), 40 percent of offers below the reservation wage were rejected

for inadequate pay or benefits, whereas only 1 percent of offers above the reservation wage

was rejected for the same reason. This evidence suggests that either benefits are not an

important factor in the acceptance-rejection decision or that benefits are quite positively

correlated with the offered wage, as otherwise we would expect at least some rejections for

the reason of inadequate benefits for job offers with wages above the reservation wage. As

explained further below later in the paper, our model allows for correlation between wage

offers and non-wage amenities.
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In our approach to estimation, the shape of the acceptance function and the fraction of

rejections for non-wage reasons together identify the dispersion of the non-wage value and

the correlation of wages and non-wage values. The fact that many jobs are accepted that

pay well below the reported reservation shows that fairly large positive non-wage values are

common. We characterize the function by the acceptance rate at two values of d. Together

with the fraction of offers rejected for non-wage reasons, these moments are sufficient to

identify the mean and standard deviation of the log of the non-wage job value, as well as the

correlation of wages and non-wage values in job offers.

2.4 Prior wage

Our model views the prior wage as based on the job-ladder model. A respondent searched

during an earlier spell of unemployment and accepted the first job offered that exceeded the

reservation job value (combining wage and non-wage components). While employed, the

worker received offers, and accepted the ones that exceeded the job value of the prior job.

The distribution of the observed wage on the job the respondent held just before the current

spell of unemployment is the stationary distribution of the process of starting up the job

ladder, making successive improvements, and occasionally suffering job loss and dropping

back to the bottom of the ladder.

Figure 4 shows the kernel density of the hourly wage on the prior job. The wage is

computed from administrative data on weekly earnings during the base year, which typically

consist of the first four of the five quarters before the date of the UI claim, and survey data

on weekly hours for the previous employment. Hours on the previous job might not perfectly

overlap with the period of the base year. Moreover, roughly 15 percent of the respondents

answered that hours varied on their previous jobs and we imputed their hours based on

demographic characteristics as in Krueger and Mueller (2011). For these reasons, the hourly

previous wage includes some measurement error despite the fact that weekly earnings are

taken from administrative data.

In the model, the distribution of the prior wage depends on all four unobserved distribu-

tions. We carry out a rather complicated calculation of the distribution and match it to the

observed one. We update the wage by 3.1 percent to adjust for the time elapsed between

the measurement of the respondents’ earnings in March 2008 to the median survey month,
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Figure 4: Kernel Density of the Log Hourly Wage on the prior Job, w

November 2009, based on the Bureau of Labor Statistics Employment Cost Index, which is

adjusted for changes in the composition of employment.

2.5 Moments

Table 1 shows the moments of the data that are the targets for matching with the model. The

moments for the acceptance frequency are taken from the predicted values of the polynomial

of degree 6 evaluated at two values of d.

3 Model

We formulate the model in terms of the logs of the variables. We let x be the log of the

personal productivity of a worker and assume it is known to employers and to the worker.

When we refer to standardization for productivity, we mean the population with x = 0. Much

of our discussion involves standardized variables. Where necessary to avoid confusion, we

use a hat (̂ ) when we are referring to variables or their distributions in the entire population,

not standardized for productivity. For the standardized variables, we denote the log of the

offered wage as y, the log of the reported reservation wage as r, the log of the prior wage as w,
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Moment Symbol Value

Mean offered wage m ŷ 2.75

Mean reservation wage m ȓ 2.82

Mean previous wage m ŵ 2.87

Standard deviation of offered wage s ŷ 0.525

Standard deviation of reservation wage s ȓ 0.474

Standard deviation of previous wage s ŵ 0.583

Covariance of offered wage and reservation wage c ŷ,ȓ 0.183

Covariance of offered wage and previous wage c ŷ,ŵ 0.183

Covariance of reservation wage and previous wage c ȓ,ŵ 0.199

Acceptance frequency at d1 = -1 Â 1 0.262

Acceptance frequency at d2 = 0.5 Â 2 0.856
Fraction of rejections for non-wage reasons Ĵ 0.677

Table 1: Target Moments
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and the log of the non-wage value as n. We proceed under the proportionality-to-productivity

hypothesis :

The distributions of ŷ − x, r̂ − x, and ŵ − x in the population with personal

productivity x are the same as the distributions of y, r, and w in the sub-

population with x = 0.

The most controversial aspect of this hypothesis is that non-market productivity is higher

by the entire amount of market productivity in the population with higher values of x.

Low-x populations are not systematically more choosy about taking jobs than are high-x

populations. While this assumption obviously fails if applied across the entire population

including those out of the labor force, it appears reasonable in a sample of workers eligible

for unemployment compensation. Moreover, we find that the average acceptance rates do

not differ systematically across different levels of educational attainment, and toward the

end of the paper, we report robustness checks that suggest that the non-proportionality in

our sample is not important.

3.1 Job acceptance

We use the term “offer” to describe a job-seeker’s encounter with a definite opportunity to

take a job. Nothing in this paper requires that employers make firm job offers and that job-

seekers then make up-or-down decisions. The job-seeker’s decision problem, upon finding

a job opportunity, is the same whether the employer is making a single firm offer, or they

engage in alternating-offer bargaining. That said, the survey included a question about the

nature of the job offer and in the majority of cases, the employer did make a firm offer.

3.1.1 Relation between the reservation job value and the reservation wage

An unemployed job-seeker decides about accepting a job offer by comparing the job value

v = y + n to a reservation value, rv. The KM survey asks about a reservation wage, not a

reservation job value. We make the reference non-wage value hypothesis :

The reported reservation wage r is the reservation wage applicable to an offer

with a reference value, n̄, of the non-wage value, n.

We take the reference non-wage value to be n̄ = 0. This choice is only a normalization,

because we estimate the mean of the distribution of n, µn. Because acceptance choices
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conditional on reservation wages are the only evidence we have about non-wage values,

we cannot distinguish between the mean of non-wage values and the reference level that

respondents use in answering the question about the reservation wage. The fact that it is

more common for an unemployed job-seeker to accept an offer below the reservation wage

than reject one above the reservation wage is equally well explained by two views: (1) the

distribution of non-wage values has a positive mean, or (2) the respondents use a high

reservation wage on account of answering the question with respect to a hypothetical offer

with a job value well below average.

With the normalization n̄ = 0, the reservation job value is the same as the reservation

wage:

rv = r. (1)

3.1.2 Correlation between the offered wage and the non-wage value

The principle of compensating wage differentials suggests that the correlation between wage

offers y and non-wage values n should be negative—employers offer lower wages for jobs

with favorable non-wage values. The correlation is not perfect, however, because there is a

personal dimension to the non-wage value that the firm may ignore, under a posted-wage

policy, or respond to only partially, in a bargained-wage policy. For example, commuting

cost varies across individual workers. For this reason, we assume that the non-wage value

n comprises (1) a component η that is uncorrelated with the other fundamentals and (2) a

component that is the negative of a fraction κ of the offered wage minus its mean:

n = η − κ(y − µy). (2)

3.1.3 Relation between the reservation wage and acceptance probability

Many job-seekers accept wage offers below the reservation wage and a smaller fraction reject

offers above the reservation wage. The main way we account for the first group is that

the distribution of non-wage values has a positive mean but respondents use zero job value

for the hypothetical job that lies behind the survey’s question about the reservation wage.

Our acceptance model accounts for the acceptances and rejections that appear contrary to

the reservation wage in two ways. First, we invoke a non-wage value that is imperfectly

correlated with the offered wage. Second, we attribute measurement errors to the reported
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values of the offered wage and the reservation wage. We assume that ŷ and r̂ are:

ŷ = y + x+ εy (3)

r̂ = r + x+ εr (4)

where the measurement errors εy ∼ N(0, σεy) and εr ∼ N(0, σεr), and are independent.

Let d = ŷ − r̂ be the difference between the offered wage and the reservation wage. Also

let m = v − r (recall that v = w+ n, the job value). We write the acceptance probability A

as a function of d:

A(d) = Prob[m ≥ 0|d]

= 1− Prob[0 ≥ m|d]

= 1− Fm(0|d). (5)

In the case where κ = 0 and there is no measurement error, the probability of acceptance

of a job offer is

A(d) = Prob[y + n ≥ r] = Prob[y − r ≥ −n] = Prob[n ≥ −d] (6)

Then we can write

A(d) = 1− Fn(−d) (7)

Thus we can calculate Fn directly from the acceptance function:

Fn(n) = 1− A(−n). (8)

In this case, Fn, a theoretical distribution referring to individuals with productivity x = 0,

turns out to be equal to the observed function A(y − r) relating the acceptance probability

to the gap between the offered wage y and the reservation wage r, both observed. This

identification rests on the proportionality-to-productivity hypothesis and our assumption

about what respondents mean by their reservation wages. Notice that A(y − r) is the same

for all values of x, because subtracting x from both y and r leaves the difference unchanged.

3.1.4 Wage and non-wage reasons for rejection

The shape of the acceptance function does not separately identify the dispersion of the

idiosyncratic part of non-wage values, ση, and the compensating differential parameter κ, as

higher values of either parameter imply a flatter acceptance function. For this reason, we use
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information on the fraction of rejections for non-wage reasons to identify these parameters.

We adopt the preponderant reason for rejection hypothesis :

Respondents report that they rejected a job offer for a non-wage reason if the

deviation from the mean is more negative for the non-wage value than for the

wage value: n− µn < y − µy.

Let p = (η − µη)− (y − µy)(1 + κ). The fraction of rejections for non-wage reasons for a

person with reservation wage r, denoted Jr, is:

Jr = P (non-wage preponderates | offer rejected)

= P (n− µn < y − µy|v < r)

=
P (p < 0 and v < r)

P (v < r)

=

∫ v=r

−∞ P (p < 0|v)dFv(v)

P (v < r)

=

∫ v=r

−∞

Fp(0|v)

Fv(r)
dFv(v),

and integrating over the distribution of r, we get:

J =

∫ ∞
−∞

∫ v=r

−∞

Fp(0|v)

Fv(r)
dFv(v)dFr(r). (9)

4 Estimation

We estimate the parameters of the distributions of the four variables y, r, η, and x, and the

compensating-difference parameter κ. Later, we extend the analysis to include a calibrated

job-ladder model to compute the distribution of the value of non-market activities and to

examine how well the job-ladder model matches the observed moments of the distribution

of the prior wage.

We take the distributions of the four variables, y, r, η, and x to be log-normal and

independent. We normalize the mean of x to zero. The other three means, µy, µr and µη;

the standard deviations, σy, σr, ση, and σx; and κ (the relation of the non-wage value n to

the offered wage y,), are parameters to estimate, for a total of 8. We match the following

8 data moments: the means mŷ and mr̂, standard deviations sŷ and sr̂ of the two directly

observed variables, the covariance cŷ,r̂, the two values Â1 and Â2 of the acceptance frequency,

and the fraction of rejections for non-wage reasons, Ĵ . We infer κ and the moments of η by
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picking two values d1 and d2 and solving equation (5) and equation (9) to match the fraction

of rejections for non-wage reasons in the data.

We allow for measurement error in the reservation wage and the offered wage, by assum-

ing that 13 percent of the total variation in offered wages and reservation wages is due to

measurement error, which corresponds to the estimate in measurement error in Bound and

Krueger (1991) who compared survey data to administrative data.

To sum up, the model has 8 parameters to estimate: µy, µr, σy, σr, σx, µη, ση, and κ.

The observed moments and their counterparts in the model are:

mŷ = µy (10)

mr̂ = µr (11)

sŷ =
√
σ2
y + σ2

x + σ2
εŷ

(12)

sr̂ =
√
σ2
r + σ2

x + σ2
εr̂

(13)

cŷ,r̂ = σ2
x (14)

A(di) = 1− Φ(0, µm|di , σm|di), i = 1, 2 (15)

J =

∫ ∞
−∞

∫ r

−∞

Φ(0, µp|v, σp|v)

Φ(r, µv, σv)
φ(v, µv, σv)dvφ(r, µr, σr)dr. (16)

Here Φ(x, µ, σ) is the normal cdf and φ(x, µ, σ) is the normal pdf. Note that the functions

µm|d, σm|d, µp|v, and σp|v; and the values µv, and σv are functions of the 8 parameters to be

estimated—see Appendix A for details.

To measure sampling variation, we calculate the bootstrap distribution of the estimates.

In our actual estimation procedure, we compute our moments from two different samples:

We take the moments mr̂ and sr̂ from the first interview for all unemployed workers in the

survey who were not working or had not yet accepted a job offer, whereas we take mŷ, sŷ,

cŷ,r̂, Â1 and Â2 from the sample of 1,153 job offers with information on the offered wage and

on the lagged reservation wage. The standard bootstrap strategy applies to single samples.

Accordingly, we use only the smaller sample. This smaller sample appears not to be biased,

as mr̂ = 2.83 and sr̂ = 0.47, which are almost identical to the estimates in the bigger

sample. In the smaller sample, mŵ = 2.86, which is also very close to the estimate in the

bigger sample, and sŵ = 0.61, which is a little higher than in the bigger sample. For the

bootstrap, we thus sample with replacement from the 1,153 job offers, and compute the

moments in the data and in the model for 100 draws. The resulting bootstrap distribution

provides an upper bound on the dispersion of our actual sampling distribution.
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Estimate (s.e.) Estimate (s.e.)

μ y Mean of wage offers 2.75 (0.03) 2.75 (0.03)

μ r Mean of reservation wages 2.83 (0.03) 2.83 (0.03)

μ η
Mean of the independent component of non-
wage value of wage offer 0.25 (0.07) 0.24 (0.06)

 Compensating differential 0.10 (0.34) -0.32 (0.38)

σ y Standard deviation of the offered wage 0.24 (0.02) 0.20 (0.02)

σ r Standard deviation of the reservation wage 0.09 (0.05) 0.00 (0.04)

σ η
Standard deviation of the independent 
component of non-wage value of wage offer 0.37 (0.09) 0.31 (0.08)

σ x Standard deviation of personal productivity 0.43 (0.02) 0.43 (0.02)

σ v
Standard deviation of offered job values
(v = y + n ) 0.43 (0.11) 0.41 (0.08)

The extent of measurement error:
Parameter Explanation Baseline Large

Table 2: Parameter Estimates

4.1 Estimation Results

Table 2 shows the estimation results. Our main findings are:

1. The dispersion in the offered wage among people with the same personal productivity

is moderate but not small: σy = 0.24.

2. The dispersion in the reservation wage among people with the same personal produc-

tivity is small: σr = 0.09.

3. The dispersion of the independent component of the non-wage job value is substantial:

ση = 0.37.

4. The dispersion of personal productivity is substantial: σx = 0.43.

5. There is a moderate amount of compensating wage differentials: κ = 0.10.
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6. The mean value of the non-wage value of a job offer is 0.25 log points: µn = µη = 0.25.

The variance of observed offered wages decomposes as

s2
ŷ = 0.28 = σ2

y + σ2
x + 0.13s2

ŷ = 0.06 + 0.18 + 0.04. (17)

Thus 0.18/0.28 = 66 percent of the cross-sectional variance in offered wages is explained

by dispersion in personal productivity x, and only 0.06/0.28 = 21 percent is explained by

differences in wage offers among workers with the same productivity, y. The remaining 13

percent is explained by measurement error. Our results, however, also show that there is

substantial dispersion in the non-wage job values, with the dispersion of non-wage job values

being larger than the dispersion in offered wages. Our estimates imply that the standard

deviation of job values v = y + n is 0.43, which is much larger than the standard deviation

for offered wages y alone.

Our data do not identify the amount of measurement error—we rely on extrinsic evidence

from Bound and Krueger (1991) about measurement errors in actual wages. Measurement

error in reservation wages is potentially higher than measurement error in actual wages,

if unemployed workers do not understand the intended meaning of the reservation-wage

question or have different reference levels in mind when they express the reservation wage.

Our identification strategy results in an estimate of the variance of personal productivity x

of σ2
x = 0.432 = 0.18, which corresponds to 82 percent of the total variance of reservation

wages (s2
r̂ = 0.4742 = 0.22). The remaining 18 percent is thus a natural upper bound for

measurement error in the reservation wage, so we report alternative estimation results in the

second column of Table 2 under the assumption of measurement error equaling 18 percent

of the total variation of wages. The table shows that our main results are not sensitive

to the assumptions regarding measurement error. As expected, the standard deviation of

offered wages y and reservation wages r are now somewhat smaller—a direct result of the

assumption of the larger amount of measurement error. The estimated dispersion in non-

wage values of job offers η is also somewhat smaller compared to the baseline case, but the

estimate of κ becomes negative, indicating that the wage and non-wage values are positively

correlated in job offers. The standard deviation of job values v, however, is almost the same

as in the baseline case, as the changes in the estimated parameters κ and ση have offsetting

effects on the estimate of σv. This finding suggests that one should be careful in interpreting

the estimate of the parameter κ as evidence of compensating differentials, as it appears to
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be a substitute for measurement error in explaining the shape of the acceptance function.

However, our main parameters of interest, which are the dispersion of offered wages y and

offered job values v, are little affected by the different assumptions about the extent of

measurement error.

4.2 Robustness

In this section, we test the sensitivity of our results to a number of alternative identification

assumptions and estimation procedures. In particular, an important identification assump-

tion is that y, r and x are independently distributed and thus it is important to assess

whether these assumptions are plausible and to test the robustness of the main results to

deviations from these assumptions.

4.2.1 Independence of y and r

One important assumption in our estimation strategy is that—conditional on personal pro-

ductivity x—offered wages and reservation wages are uncorrelated, that is, cov(ŷ, r̂|x) = 0,

as it implies that cov(ŷ, r̂) = σ2
x. One possible concern with this assumption is that it may

not hold if the employer knows the outside option of the job-seeker and thus tailors the

job offer accordingly. Evidence against this is that 76 percent of the survey respondents

indicated that the offer was a take-it-or leave-it offer as opposed to 24 percent who said that

some bargaining was involved over pay. In any case, our estimate of σy changed little when

we restricted the sample to take-it-or leave-it offers only— σy = 0.21 as opposed to 0.24 in

the baseline case.

A model where the employer knows the reservation wage of the job applicant also implies

that cov(ŷ, r̂) > cov(ŷ, ŵ), as the correlation between wages and the values of non-market ac-

tivities will be dissipated through the process of on-the-job search and job-to-job transitions.

The reason is that, while for an unemployed job seeker the value of non-market activities

may, through bargaining, directly influence the final wage offered, for an employed job seeker

the value of non-market activities is less relevant for the bargaining outcome as the employed

worker’s outside option is the value of the current job (it still matters to the extent that the

value of non-market activities affected the current wage, but less so). However, as Table 1

shows, cov(ŷ, r̂) and cov(ŷ, ŵ) are the same in the data.
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Finally, in Appendix C.1, we study a model with Nash bargaining and find that our main

results do not change in this case. The main reason for this result is that the variance of r

is small, so it would require a high correlation of y and r to have a meaningful impact on

the overall covariance of ŷ and r̂. In other words, as long as the worker’s bargaining share

α is not too close to 1, the estimate of σr will be small and thus the estimate of σx large, as

in our baseline model.

A related concern with our estimation strategy may be that measurement error in y

and r are correlated, which would also violate our assumption that cov(ŷ, r̂|x) = 0. Recall

that we exploit the longitudinal structure of the survey and use the reservation wage value

reported in a week prior to the receipt of the job offer. In addition, in the presence of

correlated measurement error, we would expect this correlation to be much larger for the

pair (y, r) than for the pair (y, w). The reason is that the prior hourly wage is computed

from administrative data on weekly wages and hours on last job reported in the first week

of the survey. Thus, we gain confidence from the finding that cov(ŷ, r̂) = cov(ŷ, ŵ) = 0.183.

4.2.2 Proportionality-to-productivity

As explained earlier, we make the assumption that the distributions of ŷ − x and r̂ − x in

the population with personal productivity x are the same as the distributions of y and r.

The most controversial aspect of this hypothesis is that non-market productivity is higher

by the entire amount of market productivity in the population with higher values of x.

One can test for the presence of non-proportionality in reservation wages by looking at the

acceptance rates of job offers across different education levels. Under the proportionality-to-

productivity assumption, the average acceptance rate should be the same across workers with

characteristics associated with different market productivity x, as these workers should all

be equally picky about accepting a job offer. We find, however, that the average acceptance

rates do not differ systematically across different levels of educational attainment: The

acceptance rate for those with a high-school degree or less is 72.6 percent, for those with

some college education is 67.4 percent and for those with a college degree is 74.9 percent,

and the differences are not statistically significant. These results are not consistent with a

major deviation from the proportionality-to-productivity assumption.

In addition, we estimated the model with a set of moments based on deviations from

a model relating wages to their determinants instead of the moments reported in Table 1

based on the wages themselves. More precisely, we ran a Mincer-type regression of the log
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reservation and offered wage on years of schooling, potential experience, potential experience

squared, and dummies for gender, marital status, race and ethnicity, and used the residuals

of these regressions to compute the same moments as in Table 1 (except of course for the

means, which we left unchanged from Table 1). One would expect the estimation results to

change if the proportionality-to-productivity assumption does not hold in the data. To see

this, consider the extreme case where the observable characteristics capture all the variance in

productivity x. In this case, the proportionality-to-productivity assumption is not necessary

for identification as the residualized moments of ŷ and r̂ are independent of x and thus

directly capture the moments of interest (plus some measurement error). The results in

Appendix Table 5, however, show that all estimated parameters are similar to the results

in Table 2 except for the variance of x, which, as expected, is estimated to be substantially

smaller, and the compensating differential parameter κ. Appendix Table 5 also shows sub-

sample results for those with some college education and less as well as those with a college

degree. The mean of the job offer distribution is 38 log points higher for those with a college

degree compared to those with some college education or less, whereas the mean of the

reservation wage is 41 log points higher (the difference of 38 log points is within sampling

variation). The standard deviation of offered wages y is also similar across the two groups,

though there is a big difference in terms of the compensating differential parameters κ. The

reason is that the sample used to estimate the shape of the acceptance function is quite

small and thus, the estimated parameters κ, µη and ση, which are identified of the shape of

the acceptance function, have to be taken with caution in the sub-sample analysis. Overall,

these results suggest that proportionality-to-productivity is a reasonable assumption.

Finally, we extend the model by allowing for non-proportionality in the reservation wage

variable. This enables us to analyse whether deviations from the assumption of proportion-

ality have an impact on the estimation results. We assume that r̂ = (1 + κr)x + r + εr̂ and

use the same moment conditions to re-estimate the model (see Appendix C.3 for details) for

different values of κr. The sub-sample analysis by education group gives some indication

of the potential magnitude of the non-proportionality parameter κr. The point estimates

of µy and µr for the two education groups imply that κr = 0.087, because the difference in

µr is 0.413, which is slightly larger than the difference in µy of 0.38. The results shown in

the Appendix show that the non-proportionality tends to raise the dispersions of y and η

slightly, but the differences from the estimates of the baseline model where κr = 0 are small.
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4.2.3 Identification of ση and κ

As discussed earlier, the shape of the acceptance function, A(ŷ − r̂), does not separately

identify ση and κ. The reason is that both parameters increase the likelihood that a high-

wage offer is associated with a low non-wage value and thus both parameters increase the

probability that a high-wage offer is rejected. ση raises the probability of rejection of a high-

wage offer because it increases the variance of the non-wage values n, whereas κ raises the

probability of rejection of a high-wage offer mainly because positive values lead to a negative

correlation between the wage value y and the non-wage value n. For these reasons, we use

the fraction of rejections for non-wage reasons, Ĵ , as an additional moment to estimate the

model in our base specification. To make sure that the model is identified, for a given ση, we

estimated the 7 parameters µy, µr, σx, σy, σr, µη and κ by using the first 7 moment conditions

above but not the moment condition for J . In Appendix Figure 7, we plot the fraction of

rejections for non-wage reasons, J , for various values of the parameter ση. The figure shows

that the value of J is strongly increasing in ση, demonstrating that the 8 parameters of the

model are fully identified with this additional moment. The main reason that the fraction

of rejections for non-wage reasons adds valuable information for separately identifying ση

and κ is that, while higher values of both ση and κ make the acceptance functions flatter,

the fraction of rejections for non-wage reasons depends mainly on ση, because it depends

strongly on the relative importance of the idiosyncratic variance of y and n, but is not much

affected by the correlation between y and n (and thus κ).

4.2.4 The acceptance function

We have investigated the sensitivity of the estimation results to the targeted moments for

the acceptance frequency. For the baseline estimation of the model, we target the acceptance

frequency at d = −1 and d = 0.5, where d = ŷ−r̂. In additional results reported in Appendix

Table 5, we target the acceptance frequency at four points (d = −1, d = −0.5, d = 0.0 and

d = 0.5) instead of the two and minimize the sum of squared differences of the acceptance

frequency at these points. We find that the estimated parameters are very similar to the

ones in the baseline estimation.
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4.2.5 Non-stationarity

In our baseline model, we assume a stationary environment for the unemployed job-seeker

and thus abstract from forces that lead to changes in the reservation wages over the spell

of unemployment. The limited duration of unemployment benefits, declining savings, or

changes in the wage offer distribution throughout the spell of unemployment all could lead

to declining reservation wages over the spell of unemployment. However, as documented

in detail in Krueger and Mueller (2015), reservation wages for a given unemployed worker

tend to decline little over the spell of unemployment, with point estimates ranging from 1.4

to 3.4 percent over a 25 week period. Moreover, a tendency for the flow value of non-work

to change over the spell of unemployment should be reflected in the dispersion of non-work

values, but our estimates show little dispersion in non-work values and thus are consistent

with close to constant reservation wages over unemployment spells.

4.2.6 Flow versus stock sampling

Our sample is representative of the stock of unemployed workers in New Jersey in 2009,

but it may be preferable to estimate the model on a sample representative of the inflow of

unemployed individuals, as those with low reservation wages or characteristics associated

with higher job-offer rates find jobs and thus leave the sample more quickly than those with

high reservation wages and low job offer rates. To assess this issue, we divided our sample into

short- and long-term unemployed individuals, using a cutoff duration of unemployment of

26 weeks at the start of the survey. While the short-term unemployed tend to be individuals

with higher personal productivity, we find that the point estimates of our main parameters

of interest are similar across the two groups and the differences are statistically ambiguous.

We find that κ = 0.27 for both groups, σy is 0.23 for the short-term unemployed and 0.25

for the long-term unemployed, σr is 0.07 for the short-term unemployed and 0.12 for the

long-term unemployed, and ση is 0.32 for the short-term unemployed and 0.41 for the long-

term unemployed. Appendix Table 5 provides the details. An alternative way to investigate

this issue would be to reweight the sample based on observable demographic characteristics,

to make it representative of the inflow, but this would not account for the role of selection

based on unobservable characteristics and, in any event, the sub-sample results provided

here suggest that reweighting would make little difference.
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5 The Job-Ladder Model

In this section, we extend the analysis to include the distribution of values in non-market

activities and the distribution of the prior wage. To this purpose, we develop a job-ladder

model where employed workers continue to search for better jobs, but search on the job is

less effective than while unemployed. With this factor, the decision to take a job offer while

unemployed involves a real-option element.

We denote the value of non-market activities as h. We keep this in dollars per hour

rather than taking logs, because the log-normal distribution would not make sense—there is

no reason to exclude negative values. We extend the proportionality-to-personal-productivity

hypothesis to include ĥ
ex

.

Under the assumption of proportionality, the value functions of employed workers are

proportional to personal productivity. Our next step is to derive the Bellman equations for

an individual with x = 0. As before, those for individuals with other values of x scale in

proportion. The Bellman equation for an unemployed person with non-work value h and

offer rate λu adjusts the reservation job value rv to include the lost option value associated

with accepting a job offer while unemployed:

ρUh = h+ max
rv

λu

∫
rv

(Wh(ṽ)− Uh)dFv(ṽ). (18)

On the left is the value of being unemployed, stated as the continuous-time discount rate

ρ multiplied by the asset value Uh associated with being unemployed. On the right, the

individual receives the non-work flow value h and finds the best reservation job value to

maximize the flow value arising from the capital gain that occurs upon accepting a job. A

higher rv raises the capital gain but lowers the probability of receiving it.

The Bellman equation for a worker with non-work value h and offer rate λe is

ρWh(v) = ev + λe

∫
v

(Wh(ṽ)−Wh(v))dFv(ṽ)− s(Wh(v)− Uh). (19)

The worker automatically accepts any job with a value greater than the current job value,

v, because there is no loss of option value. There is a flow value from the probability of

finding a better job with capital gain Wh(ṽ)−Wh(v). There is also a flow probability s, the

separation rate, of suffering the capital loss Wh(v)− Uh.
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5.1 The distribution of values in non-market activities

The reservation value condition Uh = Wh(r), defines a function h = H(r) that relates the

value of non-market activities h to the reported reservation wage r—see Appendix D for

details. The cdf of the distribution of values in non-market activities, Fh(h), satisfies

Fr(r) = Fh(H(r)), (20)

so, from the estimated parameters of the distribution of reported reservation wage values,

F (r), and the function H(r), we can compute the implied distribution of values in non-

market activities, Fh(h). Note that in the case where search on the job is equally effective

as when unemployed, λe = λu, the model simplifies to H(r) = er and thus Fr(r) = Fh(e
r).

5.2 The stationary distribution of wages

We let Fw(w) be the cdf of wages among workers with x = 0. An individual draws a non-work

value h at the outset, associated with a reservation wage r through h = H(r). A personal

state variable records whether the individual is unemployed or employed. The flow value of

the current job, v = w + n, is a second personal state variable for the employed. Jobs end

because of the arrival of a better offer or through exogenous separation and a drop to the

bottom of the ladder. The latter occurs with fixed probability s and sends the worker into

unemployment at the bottom of the ladder.

Define

Fv(v) =

∫
fy,η

(
v − η − κȳ

1− κ
, η

)
dη, (21)

the cdf of a job offer with value v. Here fy,η(y, η) is the joint density of y and η. The

probability in one period that an unemployed worker with a reservation value r will remain

unemployed in the next period is

Tuu(r) = 1− λu(1− Fv(r)). (22)

The probability that an unemployed individual will be at work in the succeeding period with

a job value not greater than v′ is

Tue(v
′|r) = λu(Fv(v

′)− Fv(r)). (23)

The probability that an employed worker will be unemployed in the next period is

Teu = s. (24)
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The probability that an employed individual will remain employed at the same job value

with value v is

Tee(v|v) = (1− s)[1− λe(1− Fv(v))]. (25)

The probability that an employed individual will move to a better job with value v′ > v is

Tee(v
′|v) = (1− s)λe(Fv(v′)− Fv(v)). (26)

Let q be the compound state variable combining a binary indicator for unemployment/

employment and the job value v and let T (q′|q, r) be its transition cdf derived above. The

stationary distribution of q, Fq(q|r) satisfies the invariance condition,

Fq(q
′|r) =

∫
T (q′|q, r)dFq(q|r). (27)

Throughout, an integral without limits of integration is over the support of the integrand.

The ergodic distribution of the job value for employed workers, Fv(v|r), is the conditional

distribution of v for values of q for employed workers.

The cdf of the wage, w, conditional on the job value v, is

Fw(w|v) =

∫ w
fy,η(y, v − y(1− κ)− κȳ)dy∫
fy,η(y, v − y(1− κ)− κȳ)dy

. (28)

The implied ergodic distribution for the wage is

Fw(w|r) =

∫
Fw(w|v)dFv(v|r). (29)

Finally, the distribution in the population with x = 0 is the mixture,

Fw(w) =

∫
Fw(w|r)dFr(r) (30)

and the distribution in the overall population is the mixture,

Fŵ(ŵ) =

∫
Fw(ŵ − x)dFx(x). (31)

5.3 Calibration

We take the weekly offer arrival rate to be λu = 0.058 from the survey. We calculate the

entry rate to unemployment, s, as

s =
u

1− u
λua = 0.0041 per week, (32)
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the weekly rate consistent in stationary stochastic equilibrium with an unemployment rate

of u = 0.09 and the observed job-finding rate. This calculation omits job-finding from out-

of-the-labor force and exits from unemployment and employment to out-of-the-labor force.

We posit that λe = 0.5λu. While we do not have a direct estimate of the job offer rate

while employed, this calibration matches the rate of job-to-job transitions in the data. To

compute the monthly job-to-job transition rate in the data, we use the CPS monthly files

for the years 2009 and 2010, and estimated the fraction of those who reported to work at

a different employer than in the previous month, as in Fallick and Fleischman (2004). We

adjusted the moments from the model for time aggregation. To make the weekly job-to-job

transition rates in the model comparable to the monthly job-to-job transition rates in the

CPS data, we aggregated the weekly job-to-job transition rates to monthly rates, taking into

account that short unemployment spells of duration less than a month may be misleadingly

counted as job-to-job transitions. We set the weekly discount rate ρ = 0.001, equivalent to

an annual discount factor of 0.949.

5.4 Results

The job-ladder model has no new estimated parameters. We solve it with the estimated

parameters reported in Table 2 and the calibrated values of λu, λe, s and ρ. We ask, what

are the estimates of the distribution of the value of non-market activities h, and how well

does the calibrated model match the additional moments in Table 1 including the prior wage?

Table 3 answers this question:

1. The model exactly matches the mean of the wage on the previous job, mŵ, in the case

of the moderate amount of measurement error.

2. The model is not capable of matching the standard deviation of the prior wage, sŵ.

The fitted value is about 0.06 log points below the actual value of the moment for

both values of measurement error. The job-ladder model implies that the dispersion of

offered wages is larger than the dispersion of wages on the prior job, which is violated

in the data. We abstract here from any other sources of wage dispersion that may arise

during an employment spell, such as heterogeneous job tenure effects or variation in

wages due to changes in job- and firm-specific productivity, which may account for the

shortfall.
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Estimate (s.e.) Estimate (s.e.)

μ h Mean of non-work values $2.80 ($4.97) $3.71 ($3.72)

σ h
Standard deviation of non-work 
values

$2.62 ($1.48) $0.00 ($1.16)

m ŵ
Mean previous wage, adjusted for 
intervening wage growth

2.90 2.90 (0.06) 2.92 (0.05)

σ ŵ
Standard deviation of previous 
wage

0.58 0.52 (0.02) 0.52 (0.02)

σ ŷ,ŵ
Covariance of offered wage and 
prior wage

0.183 0.183 (0.014) 0.183 (0.014)

σ ȓ,ŵ
Covariance of reservation wage 
and prior wage

0.199 0.183 (0.014) 0.183 (0.014)

T ee
Monthly job-to-job transition rate
(adjusted for time aggregation)

0.019 0.020 (0.002) 0.020 (0.001)

The extent of measurement error:

Baseline LargeParameter Explanation Actual 
values

Table 3: Actual and Fitted Values of the Job-Ladder Model

3. The fitted value of the covariance of the offered and prior wages, cŷ,ŵ fits the observed

value perfectly.

4. The fitted value of the covariance of the reservation and prior wages, cr̂,ŵ fits the

observed value reasonably closely.

5. The bootstrap dispersion of the fitted values is quite small in all cases.

The model does also well in matching the job-to-job transition rates in the CPS data in

2009 and 2010. The mean of non-work values is positive but relatively small. Recall that

it is stated in dollars per hour, not log points. Figure 5 shows the pdf of h implied by

our calibrated job ladder model for our baseline calibration with a moderate amount of

measurement error. While the dispersion in h is rather small, there is a substantial fraction

of h’s with negative values, supporting our choice to express the non-work values in dollars

rather than logs.
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Figure 5: The Density of h

6 The Flow Value of Non-Work

Hornstein et al. (2011) take earlier authors to task for failing to observe that search models

imply an extremely low, even negative, value of non-work. The essential point is that the

dispersion of offered wages is high enough to justify sampling a large number of offers before

picking the best, so that the observed time to acceptance only makes sense if waiting to go

to work is painful. They note that the problem remains, though less acute, with on-the-job

search.

In the search-and-matching literature, whose canon is Mortensen and Pissarides (1994),

a variable often called z describes the relation between the flow value of remaining out of

the labor market and the flow value of participating in the market. z is often taken as a

parameter in these models. It is the ratio of the flow value of non-work to the mean of the

marginal product of labor.

6.1 The implied value of z

In a model that recognizes that jobs have non-wage values, there is a potentially large

divergence between the marginal product and the flow value of work depending on the

specification of the employment bargain. On the one hand, if n is not included in the

bargaining—for example, if n represents commuting distance or preferences over other given

31



job characteristics—then for a typical calibration of an MP-type model, as in Hall and

Milgrom (2008), the ratio of the wage to the marginal product is 0.985. On the other hand,

the flow value of work is potentially larger than the marginal product given our finding that

µn is positive. If all relevant aspects of the job are included in the bargain, the ratio of the

flow value of work—including non-wage amenities—to the marginal product is 0.985 for a

typical calibration.

Table 4 shows the calculation of z for both versions of the model. Line 1 shows the value

of non-work as estimated in that table, expressed in dollars per hour at the median of the

distribution of h. Line 2a shows the median wage, whereas line 2b shows the median flow

value of work. Note that there is a substantial difference between the two, suggesting that

unemployed and employed workers select into jobs with higher non-wage values. This is not

surprising given that the estimated variance of the idiosyncratic part of non-wage values is

more than twice as large as the variance of offered wages. Line 3 gives an estimate of the

marginal product, which is computed by dividing the estimates in lines 2a and 2b by 0.985.

Line 4 reports the resulting value of z, the ratio of the value of non-work to the marginal

product. The values are robustly positive, but considerable smaller than in the Hall-Milgrom

calibration. Note that the results relying on earnings in Columns 1 and 3 depend on our

normalization that n̄ = 0, whereas the results in Columns 2 and 4 don’t, as higher assumed

values of n̄ translate into higher estimated values of µη.

Outside information about the value of z is scant. Chodorow-Reich and Karabarbounis

(2015), a deep investigation of the time-series properties of z, is agnostic about its level. Hall

and Milgrom (2008) finds a value of 0.71 based on an assumed functional form that satisfies

certain elasticity conditions, but the resulting formula for z depends on differences in utility

between non-workers and workers, which are not pinned down by the slopes they consider.

If the Frisch constant-marginal-utility-of-consumption labor supply function is not a smooth

curve in the hours-wage space, but has zero hours until the wage nears a reservation level

and then shoots up, the value of z is much lower than Hall and Milgrom calculated.

Another important consideration is that the formula for z in Hall-Milgrom and Chodorow-

Reich-Karabarbounis includes the replacement rate for unemployment insurance with a coef-

ficient of one. Our sample is drawn from workers who receive benefits, so the replacement rate

is likely to be higher than the 25 percent that Hall and Milgrom assume. The corresponding

value of z is much higher— about equal to the median wage—with the 50-percent replace-
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1 Value of non-work at median for x=0, μh 2.80 2.80 3.71 3.71

2a Earnings while employed, median for x=0, exp(mw) 18.52 18.52

2b Job value while employed, median for x=0, exp(mv) 34.90 34.90

3 Implied marginal product 18.80 35.43 18.80 35.43

4 Ratio of value of non-work to marginal product 0.15 0.08 0.20 0.10

Step Explanation
The extent of measurement error:

Baseline Large

Table 4: Ratio of the Flow Value of Non-Work to the Marginal Product of Labor

ment rate we believe is more realistic. We do not believe that z could possibly be that high,

because it would imply, in the context of our model, that almost half the employed workers

were earning less than their non-work values. Rather, it shows that the calibration does

not give reasonable results with a higher replacement rate. This observation supports the

proposition that Hall-Milgrom probably overstated z by choosing an unrealistic functional

form for the Frisch supply function.

To the extent that our estimate that z in the range of 0.1 to 0.2 coincides or falls short

of values derived from preferences, our assumption of the simple job-ladder model, with no

option value to remaining unemployed, receives support.

As discussed in detail in HKV, the crucial parameter for the estimate of z is the offer

rate while employed, λe, as it determines the option value of remaining unemployed in the

event of receiving a job offer. For example, if we calibrated λe = 0.7λu, our estimate of z lies

in the range of 0.28 to 0.53 instead of 0.08 to 0.15, while yielding a job-to-job transition rate

of 2.4 percent, which is somewhat larger than in the CPS data at the time of the survey.

See the Figure 6, which shows the job-to-job transition rates and values of z for values of λe
λu

ranging from 0.1 to 1.

33



0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

λe/λu

Jo
b−

T
o−

Jo
b 

T
ra

ns
iti

on
 R

at
e

0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

λe/λu

z

 

 

z (bargaining over y only)
z (bargaining over v=y+n)

Figure 6: The Efficiency of Search On-the-Job and the Flow Value of Non-Market Time

6.2 Re-employment wages

Job-ladder models focus on employment spells—chains of jobs linked by job-to-job transi-

tions. One feature that is common to most job-ladder models is that the combination of

high wage dispersion and high offer rates while employed leads to substantial wage growth

during an employment spell, as employed workers transition from low to high paying jobs.

This feature leads to the prediction of a substantial drop in the wage when a worker falls off

the job ladder and resumes employment at the bottom of the ladder after an unemployment

spell. Our data do not support this property, as the mean accepted log wage is just 2.81

compared to the mean log wage on the prior job of 2.90, adjusted for real wage growth as in

Table 3. Our model, on the other hand, perfectly matches the mean wage on the prior job as

wages do not grow much during a spell of employment despite the job-to-job transitions. The

reason is that the dispersion in the idiosyncratic part of non-wage values is larger than the

dispersion in offered wages alone, and thus non-wage values tend to dominate wages in the

acceptance decision. In other words, employed workers in our model transition frequently

from one job to the next, but mostly because new jobs offer higher non-wage values rather

than higher wages, and while there is little growth in wages over the course of an employ-

ment spell, non-wage values grow substantially, as can be seen from comparing lines 2a and

2b in Table 4. As emphasized earlier in the paper, we think of non-wage values not only
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as comprising employee benefits such as health insurance, but also preferences over other

characteristics of the job, such as commuting distance, relationships with co-workers, and

the flexibility of the work schedule. What we label as non-wage values may also capture

differences in the chances of promotion and pay raises at a future date within the same firm,

as in the model of Cahuc, Postel-Vinay and Robin (2006).

7 Concluding Remarks

The KM data provide a novel view of unemployed workers’ search behavior and the dispersion

in potential wage offers they face when looking for a job. The data are unique—they contain

direct information on reservation wages, job offers, and job acceptance decisions. The data on

reservation wages permit identification of the variation in job offers that is due to differences

in personal productivity. We use the job seeker’s acceptance decisions to infer the dispersion

in non-wage values and to account for the asymmetry in acceptance frequencies of offers

above and below the previously reported reservation wage.

We find that the dispersion of the wage offer distribution is moderate, but larger than

what HKV associate with the search model without on-the-job search. We find that the dis-

persion of the non-wage value in job offers is at least as large as the dispersion of wages. The

implied overall dispersion in job values for a job seeker relative to the job-seeker’s produc-

tivity is substantial. A related finding is that the implied value of non-market time, though

not negative, is quite low—around 10 percent of a worker’s productivity. We believe that

this finding does not contradict other evidence about labor supply. We study an alterna-

tive specification of the job ladder model with lower job-finding efficiency among employed

searchers, but find that the specification implies even lower values of non-work. We think

these findings point in the direction of equal job-finding efficiency for on-the-job search. The

pronounced tendency for job seekers to accept the first job offer they receive is inconsistent

with the sacrifice of option value that occurs when a worker takes a job that interferes with

subsequent on-the-job search. Evidence from audit studies that find higher call-back rates

for employed job-seekers is consistent with our findings.

HKV noted that job-ladder models with sequential auctions, such as in Cahuc et al.

(2006) weaken the link between the offer rate while employed and the estimate of z, as in

these models firms may make counter-offers if a worker receives an outside offer. Outside

offers lead to job-to-job transitions only if the outside offer comes from a more productive
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firm, which can outbid the employee’s current firm. See also Papp (2013) who provides

a detailed analysis of this issue. Similarly, Christensen, Lentz, Mortensen, Neumann and

Werwatz’s (2005) model with endogenous search effort implies that workers further up the

wage ladder search less and thus transition less frequently to other jobs. Therefore, these

models can accommodate larger dispersion in wage offers with more reasonable values of z,

as the data on job-to-job transitions do not imply a large option value of unemployment in

these models.

We believe that our assumption that the distributions of key observed and latent variables

are log-normal or normal is reasonable as a starting point for research on the multiple

dimensions of wage dispersion, but the methods of this paper could be extended to other

more flexible parametric distributions, such as mixtures of log-normal distributions. We also

believe that our finding of high dispersion in non-wage job values shows the potential value

of new surveys that collect data on the non-wage characteristics of job offers such as benefits,

commuting time, hours, flexibility, job security, firm size, and promotion prospects.
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Appendixes

A Details on the Moment Conditions

The observed moments and their counterparts in the model are:

mŷ = µy (33)

mr̂ = µr (34)

sŷ =
√
σ2
y + σ2

x + σ2
εŷ

(35)

sr̂ =
√
σ2
r + σ2

x + σ2
εr̂

(36)

cŷ,r̂ = σ2
x (37)

A(di) = 1− Φ(0, µm|di , σm|di), i = 1, 2 (38)

J =

∫ ∫ r [
Φ(0, µp|v, σp|v)

φ(v, µv, σv)

Φ(r, µv, σv)
dv

]
φ(r, µr, σr)dr. (39)

where m = v− r, d = ŷ− r̂ and p = (η−µη)− (y−µy)(1 +κ). The functions µm|d, σm|d, µp|v

and σp|v are determined by the parameters µy, µr, σy, σr, µη, ση, κ, σ2
εŷ

and σ2
εr̂

, as follows:

µm|d = µm +
σm,d
σ2
d

(d− µd) (40)

σ2
m|d = σ2

m −
σ2
m,d

σ2
d

(41)

µp|v =
σ2
η − (1− κ)(1 + κ)σ2

y

σ2
v

(v − µv) (42)

σ2
p|v = σ2

y(1 + κ)2 + σ2
η −

(σ2
η − (1− κ)(1 + κ)σ2

y)
2

σ2
v

. (43)
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where

µd = µy − µr (44)

µm = µy + µη − µr (45)

σ2
d = σ2

y + σ2
εŷ

+ σ2
r + σ2

εr̂
(46)

σ2
m = (1− κ)2σ2

y + σ2
η + σ2

r (47)

σm,d = (1− κ)σ2
y + σ2

r (48)

µv = µy + µη (49)

σ2
v = (1− κ)2σ2

y + σ2
η. (50)

B Additional Results

Table 5 and Figure 7 below show additional results:

1. Column 2 shows the estimation results using residualized data instead of the raw data

for the moment conditions. To be precise, we ran Mincer-type wage regressions of

the log hourly offered wage ŷ and the log hourly reservation wage r̂ on observable

characteristics (years of schooling, potential experience, potential experience squared,

and dummies for gender, marital status, race and ethinicity) and used the residuals of

these regressions to compute the same moments as in Table 1 (except of course for the

means, which we left unchanged from Table 1). One would expect the estimation results

to change if the proportionality-to-productivity assumption does not hold in the data.

To see this, consider the extreme case where the observable characteristics capture

all the variance in productivity x. In this case, the proportionality-to-productivity

assumption is not necessary for identification as the residualized moments of ŷ and

r̂ are independent of x and thus directly capture the moments of interest (plus some

measurement error). The results in Appendix Table 5, however, show that all estimated

parameters are similar to the results in Table 2 except for the variance of x, which

as expected is estimated to be substantially lower, and the compensating differential

parameter κ, which is estimated with a lot of sampling error. Overall, these results

suggest that proportionality-to-productivity is a reasonable assumption.

2. The results in columns 3 and 4 show the sub-sample results for those with some college

education or less and for those with a college degree or more. The standard deviation
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of offered wages is similar across the two samples, whereas the mean is about 38 log

points higher (or 46 percent higher). The standard deviation of the reservation wage

is small in both sub-samples, and the differences in the means of the reservation wage

is 41.3 log points (or 51 percent). The remaining parameters differ more substantially

across the two samples. In particular, the parameter κ differs between the two sub-

samples, but sampling error was big even in the full sample and thus the sub-sample

results with respect to this parameter are noisy.

3. The results in columns 5 and 6 show the sub-sample results for short-term and long-

term unemployed workers, where short-term unemployed was defined as any individual

who was unemployed for less than 26 weeks at the start of the survey. The results show

that the results are very similar across the two samples.

4. The results in column 7 show the results where we target the acceptance frequency at

4 points (d = −1, d = −0.5, d = 0.0 and d = 0.5) instead of two. We then minimize

the squared differences of the moments related to the job-acceptance decision. The

results are similar to the baseline estimation results where we targeted the acceptance

frequency at d = −1 and d = 0.5 only.

5. As explained in the main text, the shape of the acceptance function does not separately

identify ση and κ, and thus we use the fraction of rejections for non-wage reasons, Ĵ ,

as an additional moment. To make sure that the model is identified, for a given ση, we

estimate the 7 parameters µy, µr, σx, σy, σr, µη and κ by targeting the first 7 moments

in the data (the moment conditions 33-38 above). In Figure 7 we plot the fraction

of rejections for non-wage reasons, J , for various values of the parameter ση. The

figure shows that the value of J is strongly increasing in ση, demonstrating that the 8

parameters of the model are fully identified with this additional moment. The main

reason that the fraction of rejections for non-wage reasons adds valuable information

for identifying ση and κ separately is the following: On the one hand, higher values of

both ση and κ make the acceptance functions flatter, because they both increase the

likelihood that a high-wage offer is associated with a low non-wage value. On the other

hand, the fraction of rejections for non-wage reasons mainly depends on ση, because it

strongly depends on the relative importance of the idiosyncratic variance of y and n,

but is not much affected by the correlation between y and n (and thus κ).
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Figure 7: The Fraction of Rejections for Non-Wage Reasons for a given ση
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Parameter Explanation Baseline Residualized 
data

Some college 
education or 

less

College 
degree or 

more

Short-term 
unemployed

Long-term 
unemployed

A(d i ) 
evaluated at 
4 different 

points

μ y Mean of wage offers 2.75 2.75 2.60 2.98 2.85 2.62 2.75

μ r Mean of reservation wages 2.83 2.83 2.67 3.09 2.94 2.72 2.83

μ η
Mean of the independent component of non-
wage value of wage offer 0.25 0.23 0.26 0.29 0.25 0.24 0.33

 Compensating differential 0.10 0.42 1.03 -0.09 0.27 0.27 0.00

σ y Standard deviation of the offered wage 0.24 0.22 0.25 0.26 0.23 0.25 0.24

σ r Standard deviation of the reservation wage 0.09 0.12 0.13 0.00 0.07 0.12 0.09

σ η
Standard deviation of the independent 
component of non-wage value of wage offer 0.37 0.32 0.35 0.25 0.32 0.41 0.35

σ x Standard deviation of personal productivity 0.43 0.32 0.33 0.46 0.44 0.38 0.43

σ v Standard deviation of offered job values 0.43 0.35 0.35 0.38 0.36 0.45 0.42

Table 5: Additional Estimation Results
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C Extensions

C.1 Nash bargaining with observable values of non-market activ-
ities

Our main model assumes that the value of non-market activities h is not known to the firm

when making the wage offer and thus wage offers are independent of the reservation wage r.

This assumption does not hold in the standard search-and-matching framework with Nash

bargaining if the value of non-market activities h is known to the employer. In that case,

the Nash bargaining solution implies that:

ey = αepf + (1− α)er, (51)

where all variables are expressed in natural logarithms, pf is the firm- or match-specific

productivity, and α is the worker’s bargaining share, assumed to be equal to 0.5. It is difficult

to model rejections of offers in this environment, but we assume here that firms make wage

offers even if pf < r and thus the offer is going to be rejected by the worker. Note also

that we start here with a model where we assume that there are no non-wage amenities and

thus only match the first five moments in equations 33-37 (see the next section for Nash

bargaining with non-wage amenities). We also assume that there is no on-the-job search. In

this model, the moment conditions are:

mŷ = E(y(pf , r)) (52)

mr̂ = µr (53)

sŷ =
√
V ar(y(pf , r)) + σ2

x + σ2
εŷ

(54)

sr̂ =
√
σ2
r + σ2

x + σ2
εr̂

(55)

cŷ,r̂ = σ2
x + cov(y(pf , r), r). (56)

There are two new parameters to be estimated in this model (µpf and σpf , instead of µy

and σy in the baseline model). The most important change relative to the estimation of

the baseline model is that now the covariance of ŷ and r̂ not only depends on the variance

of x but also on the covariance of the bargained wage y and the reservation wage r. The

estimation of the model yields a value of σx = 0.42, which is only slightly below the baseline

estimate, and thus the remaining parameter estimates of the model are affected only to a

minor degree. The main reason for this result is that the variance of r is small, thus it would
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require a high correlation of y and r to have a meaningful impact on the overall covariance

of ŷ and r̂. More precisely, one can reformulate the moment conditions such that

s2
r̂ − cŷ,r̂ − σ2

εr̂
= σ2

r − cov(y(pf , r), r) (57)

= σ2
r(1− ρy,r

σy
σr

). (58)

Given that the right hand side is relatively small and as long as the correlation coefficient

ρy,r (which is determined mainly by the worker’s bargaining share α) is not too close to 1,

the estimate of σr will be small and thus the estimate of σx large, as in our baseline model.

C.2 Nash bargaining with non-wage amenities

This sub-section extends the Nash-bargaining to a model with non-wage amenities in the total

compensation package v. The Nash-bargained compensation package satisfies the following

equation:

ev = αepf + (1− α)er, (59)

where we imposed the normalization that n̄ = 0. Note that the Nash-bargain outcome v does

not provide any guidance into whether y and n are positively or negative correlated. On the

one hand, predetermined aspects of n would lead y and n to be negatively correlated (as the

offered wage should compensate for non-wage values), whereas more productive employers

may offer more of both and thus y and n may be positively correlated. We let χ be the

predetermined part of the non-wage value and ψ be the part of the non-wage value that

is determined in the Nash bargain (note that the notation here deviates from the main

text; the variance of χ and ψ is captured in our baseline model by the parameters κ and

ση). We further assume that employers use the following simple rule y = γy(v − ψ) and

χ = (1− γy)(v − ψ) such that v = y + χ+ ψ. In this case:

y = γy(ln(αepf + (1− α)er)− ψ). (60)

As mentioned, the model’s parameters γy and ψ do not directly map into the parameters of

the baseline model and thus we would have to derive slightly different moment conditions for

the moments involving acceptance and rejection. As a short cut, we calibrate the dispersion

of non-wage values and investigate how the remaining parameters of the model are affected

by the presence of non-wage amenities. To do this, we estimate the five parameters of the
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model µpf , σpf , µr, σr and σx, for a given γy and a given σψ, matching the moment conditions

52-56 above. Our main estimation results are:

1. For γy = 1 and σψ = 0 (i.e., the baseline from Section C.1 above), we obtain the values

µpf = 2.56, σpf = 0.58, µr = 2.83, σr = 0.13 and σx = 0.42.

2. For γy = 0.5 and σψ = 0, we obtain the values µpf = 6.15, σpf = 0.53, µr = 2.83,

σr = 0.09 and σx = 0.43.

3. For γy = 1 and σψ = 0.2, we obtain the values µpf = 2.61, σpf = 0.37, µr = 2.83,

σr = 0.13 and σx = 0.42.

4. For γy = 0.5 and σψ = 0.2, we obtain the values µpf = 6.15, σpf = 0.48, µr = 2.83,

σr = 0.09 and σx = 0.43.

These results indicate that adding non-wage amenities to the model in Section C.1 leaves

our conclusion unchanged that Nash bargaining has little effect on the estimated level of σx.

The reason is that a higher variance of non-wage amenities will lead to a lower estimated

variance of pf but the total variance of the offered wage y(pf , r, ψ) as well as the covariance

of y(pf , r, ψ) and r is hardly affected.

C.3 Non-proportionality

In this Appendix, we drop the assumption that reservation wages are fully proportional to

personal productivity x. Instead, we assume that

r̂ = x+ r(x) + εr̂ (61)

r(x) = κrx+ r. (62)

The moment conditions are:
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mŷ = µy (63)

mr̂ = µr (64)

sŷ =
√
σ2
y + σ2

x + σ2
εŷ

(65)

sr̂ =
√
σ2
r + (1 + κr)2σ2

x + σ2
εr̂

(66)

cŷ,r̂ = (1 + κr)σ
2
x (67)

A(di) = 1− Φ(0, µm|di , σm|di), i = 1, 2 (68)

J =

∫ ∫ r [
Φ(0, µp|v, σp|v)

φ(v, µv, σv)

Φ(r, µv, σv)
dv

]
φ(r, µr,

√
σ2
r + κ2

rσ
2
x)dr, (69)

where Φ(x, µ, σ) and φ(x, µ, σ) stand for the cdf resp. the pdf of the normal distribution

with mean µ and standard deviation σ, evaluated at x, and where m = v− r(x), d = ŷ− r̂ =

y − r(x) + εŷ − εr̂ and p = (η − µη)− (y − µy)(1 + κ). The parameters µm|d, σm|d, µp|v and

σp|v are determined by the parameters µy, µr, σy, σr, µη, ση, κ, κr, σ
2
εŷ

and σ2
εr̂

, as follows:

µm|d = µm +
σm,d
σ2
d

(d− µd) (70)

σ2
m|d = σ2

m −
σ2
m,d

σ2
d

(71)

µp|v =
σ2
η − (1− κ)(1 + κ)σ2

y

σ2
v

(v − µv) (72)

σ2
p|v = σ2

y(1 + κ)2 + σ2
η −

(σ2
η − (1− κ)(1 + κ)σ2

y)
2

σ2
v

, (73)

where

µd = µy − µr (74)

µm = µy + µη − µr (75)

σ2
d = σ2

y + σ2
εŷ

+ σ2
r + σ2

εr̂
+ κ2

rσ
2
x (76)

σ2
m = (1− κ)2σ2

y + σ2
η + σ2

r + κ2
rσ

2
x (77)

σm,d = (1− κ)σ2
y + σ2

r + κ2
rσ

2
x (78)

µv = µy + µη (79)

σ2
v = (1− κ)2σ2

y + σ2
η. (80)
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We estimate the model for different values of κr. The sub-sample analysis by education

group gives some indication of the potential magnitude of the non-proportionality parameter.

The point estimates in Appendix Table 5 of µy and µr for the two education groups imply

that κr = 0.087, since the difference in µr between the two education groups is 0.413, which

is slightly larger than the difference in µy of 0.38. The results for the model with κr = 0.087

in Table 6 show that the standard deviation of y and η are somewhat larger than in the

baseline model with κr = 0 but the differences in estimates are relatively small.

It is important to note that there is a natural upper bound on κr as the moment conditions

imply that

κr =
s2
r̂ − σ2

r − σ2
εr̂

cŷ,r̂
− 1.

The upper bound occurs at σr = 0 and, for σ2
εr̂

= 0.13s2
r̂, we get an upper bound of

κr =
0.87s2

r̂

cŷ,r̂
− 1 = 0.07.

For the calibrations in Table 6 where we assumed that κr > 0.07, we assumed that the

measurement error was slightly smaller so as to meet the moment condition for s2
r̂.
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Parameter Explanation  r  = -0.05  r  = 0  r  = 0.05  r  = 0.087  r  = 0.10

μ y Mean of wage offers 2.75 2.75 2.75 2.75 2.75

μ r Mean of reservation wages 2.83 2.83 2.83 2.83 2.83

μ η
Mean of the independent component of non-
wage value of wage offer 0.23 0.25 0.26 0.26 0.26

 Compensating differential 0.23 0.10 0.04 0.12 0.14

σ y Standard deviation of the offered wage 0.22 0.24 0.26 0.27 0.27

σ r Standard deviation of the reservation wage 0.13 0.09 0.00 0.00 0.00

σ η
Standard deviation of the independent 
component of non-wage value of wage offer 0.33 0.37 0.40 0.41 0.42

σ x Standard deviation of personal productivity 0.44 0.43 0.42 0.41 0.41

σ v Standard deviation of offered job values 0.37 0.43 0.47 0.48 0.48

Value of non-proportionality parameter

Table 6: Estimation results of the model with non-proportionality
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D The Distribution of Values in Non-Market Activi-

ties

This section presents the details of the job-ladder model where search on the job is less effec-

tive than while unemployed, and derives in the context of this model the implied distribution

of values in non-market activities h for a given distribution of reported reservation wages r.

We start by defining the value functions of the unemployed and employed worker of type

(h, x), where h stands for the flow value of non-work and x for personal productivity. The

value functions in continuous time become:

ρUh,x = ĥ(h, x) + max
rv

λu

∫
rv

(Wh,x(k)− Uh,x)dFv(k|x) (81)

ρWh,x(v) = ev̂(v,x) + λe

∫
v

(Wh,x(k)−Wh,x(v))dFv(k|x)− σ[Wh,x(v)− Uh,x], (82)

where ρ is the discount rate, λu the offer rate while unemployed, λe the offer rate while

employed, Uh,x the value of being unemployed for type (h, x), Wh,x(v) the value of being

employed with flow value ev̂(v,x) for type (h, x). Note that v̂(v, x) is the log of the flow

value during employment, whereas ĥ(h, x) is the flow value during unemployment, which is

expressed in absolute values in order to allow for negative values. Under the assumption of

proportionality, ĥ(h, x) = hex, v̂(v, x) = v + x and dFv(v|x) = dFv(v), and thus:

ρUh,x = hex + max
rv

λu

∫
rv

(Wh,x(k)− Uh,x)dFv(k) (83)

ρWh,x(v) = ev+x + λe

∫
v

(Wh,x(k)−Wh,x(v))dFv(k)− σ[Wh,x(v)− Uh,x]. (84)

The reservation value rv satisfies Uh,x = Wh,x(rv(h, x)) and thus:

ρUh,x = hex + λu

∫
rv(h,x)

(Wh,x(k)−Wh,x(rv(h, x)))dFv(k) (85)

= erv(h,x)+x + λe

∫
rv(h,x)

(Wh,x(k)−Wh,x(rv(h, x)))dFv(k). (86)

and solving for h, we get

h = erv(h,x) − e−x(λu − λe)
∫
rv(h,x)

(Wh,x(k)−Wh,x(rv(h, x)))dFv(k). (87)

We follow HKV and assume that there is a finite upper bound v̄ to the offer distribution.

Integrating by parts, as in the online Appendix of HKV, we get
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h = erv(h,x) − e−x(λu − λe)
∫ v̄

rv(h,x)

(Wh,x(k)−Wh,x(rv(h, x))))dFv(k) (88)

= erv(h,x) − e−x(λu − λe)[[(Wh,x(k)−Wh,x(rv(h, x)))Fv(k)]v̄rv(h,x) −
∫ v̄

rv(h,x)

W ′
h,x(k)dFv(k)](89)

= erv(h,x) − e−x(λu − λe)
∫ v̄

rv(h,x)

W ′
h,x(k)(1− Fv(k))dk, (90)

and differentiating Wh,x(k), we get

W ′
h,x(k) =

ek+x

ρ+ σ + λe(1− Fv(k))
,

and, therefore,

h = erv(h,x) − (λu − λe)
∫ v̄

rv(h,x)

[
1− Fv(k)

ρ+ σ + λe(1− Fv(k))

]
ekdk. (91)

and thus rv(h, x) = rv(h), which implies that one can define value functions Uh and Wh(v)

such that:

Uh,x = Uhe
x (92)

Wh,x(v) = Wh(v)ex. (93)

As explained in the main text, we treat the reported reservation wage as the lowest wage

a job-seeker will accept for a job with a reference level of its non-wage value of n̄, and thus

we can define a function r(h), such that

rv(h) = r(h) + n̄. (94)

The inverse function H(r) = r−1(h), will give the value of non-market activities implied by

the job-ladder model for a given observed reservation wage r, and is defined by:

H(r) = er+n̄ − (λu − λe)
∫ v̄

r+n̄

[
1− Fv(k)

ρ+ σ + λe(1− Fv(k))

]
ekdk, (95)

where

H ′(r) = er+n̄
(

1 + (λu − λe)
1− Fv(r + n̄)

ρ+ σ + λe(1− Fv(r + n̄))

)
. (96)

Therefore, given the distribution of reported reservation wages r, one can find the distri-

bution of values of non-market activities h, by solving:

Fr(r) = Fh(H(r)), (97)

fr(r) = fh(H(r))H ′(r). (98)

52



E The Distribution of Wages in the Job-Ladder Model

Let u be the fraction of the labor force unemployed and let Fe(v|h) be the fraction of the

labor force employed at a job value not higher than v. Note that Fe(v|h) is not a cdf;

rather, Fe(∞|h) = 1−u(h), the fraction employed among those with non-work value h. The

transition equation for the unemployment rate is

u(h)′ = s(1− u(h)) + [1− λu(1− Fv(rv(h)))]u(h), (99)

so the ergodic unemployment rate is

u∗(h) =
s

s+ λu(1− Fv(rv(h)))
. (100)

The transition equation for the value distribution is

Fe(v
′|h) = λu(Fv(v

′)− Fv(rv(h)))u+ (1− s)
∫ v′

rv(h)

(1− λe + λeFv(v
′))dFe(v|h), (101)

The first term says that a fraction λu(Fv(v
′)− Fv(rv(h))) of the unemployed find jobs with

values not greater than v′. The second term says that a fraction 1 − s of those currently

employed at value no greater than v do not suffer an exogenous shock sending them into

unemployment. Among the survivors, a fraction 1− λe receive no offer and remain at value

v′ = v. A fraction λeFv(v) receive an offer no better than the current job and a fraction

λe(Fv(v
′)− Fv(v)) take a better job with value no greater than v′. Then

Fe(v
′|h) = λu(Fv(v

′)− Fv(h))u(h) + (1− s)(1− λe + λeFv(v
′))Fe(v

′|h), (102)

because Fe(rv(h)|h) = 0.

The ergodic distribution Fe satisfies

Fe(v|h) = λu(Fv(v)− Fv(rv(h)))u∗(h) + (1− s)(1− λe + λeFv(v))Fe(v|h). (103)

Integrating over h, we have

Fe(v) =

∫ v

λu(Fv(v)− Fv(rv(h)))u∗(h)dFh(h) + (1− s)(1− λe + λeFv(v))Fe(v). (104)

where

Fe(v) =

∫ v

Fe(v|h)dFh(h). (105)

Finally,

Fe(v) =

∫ v
λu(Fv(v)− Fv(rv(h)))u∗(h)dFh(h)

1− (1− s)(1− λe + λeFv(v))
. (106)

53



E.1 Fv and dFv

The distribution of job values among job offers is

Fv(v) =

∫
Fy(v − n)dFn(n). (107)

and its differential is

dFv(v) =

∫
dFy(v − n)dFn(n). (108)

E.2 Fe

The distribution of job values among the employed is

Fe(v) =
N(v)

D(v)
, (109)

where

N(v) =

∫ v

λu(Fv(v)− Fv(rv(h)))u∗(h)dFh(h), (110)

D(v) = 1− (1− s)(1− λe + λeFv(v)), (111)

and

u∗(h) =
s

s+ λu(1− Fv(rv(h)))
. (112)

Then

dN(v) = λudFv(v)

∫ v

u∗(h)dFh(h) (113)

and

dD(v) = −(1− s)λedFv(v). (114)

Finally,

dFe(v) =
dN(v)

D(v)
− N(v)dD(v)

D(v)2
. (115)

E.3 Fw(w)

Fw(w) =
1

1− u∗

∫ ∫ w
−∞ fn(v − y)dFy(y)∫∞
−∞ fn(v − y)dFy(y)

dFe(v), (116)

where u∗ =
∫
u∗(h)dFh(h). Note that

Fw(w) =
1

1− u∗

∫
Fy(w|v)dFe(v), (117)
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and thus with log-normal distributed variables, Fy(y|v) is the cdf of a normal distribution

with the following mean and variance:

µy|v = µy +
(1− κ)σ2

y

(1− κ)2σ2
y + σ2

η

(v − µy − µη) (118)

σ2
y|v =

σ2
yσ

2
η

(1− κ)2σ2
y + σ2

η

. (119)

E.4 Fr̂(r̂), Fŷ(ŷ), Fw(ŵ)

Fr̂(r̂) =

∫
Fh(H(r̂ − x))dFx(x), (120)

Fŷ(ŷ) =

∫
Fy(ŷ − x)dFx(x), (121)

and

Fŵ(ŵ) =

∫
Fw(ŵ − x)dFx(x). (122)
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