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There is great uncertainty about both future economic and future climate conditions; uncertainty 

that substantially affect the choice of policies for managing interactions between the 

climate and the economy. A critical index of this interaction is the social cost of carbon 

(SCC)—that is, the present value of the marginal damage to economic output caused by carbon 

emissions. We show that SCC is substantially affected by both economic risks, such as shocks to 
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growth rates, and climate risks, such as irreversible changes in sea levels. Moreover, SCC is 

itself a stochastic process with significant variation, a factor of substantial importance in 

evaluating any decision with a real option dimension. Furthermore, we have only imprecise 

information about what parameter values best approximate reality. Our response is to examine a 

plausible but wide range of values for critical parameters and find results that are robust. More 

generally, this work shows that large-scale computing makes it possible to analyze policies in 

models substantially more complex and realistic than usually used in the integrated assessment 

models literature. 

 

 

 

 

 

 

 

The Social Cost of Carbon with Economic and Climate Risk 

Yongyang Cai, Kenneth L. Judd, and Thomas S. Lontzek 

Economics Working Paper 18113 

December 1, 2017 

 

JEL Code: C63, Q54, H21 

Keywords: Climate policy, social cost of carbon, climate tipping process, Epstein–Zin 

preferences, stochastic growth, long-run risk 

 

 

 

Yongyang Cai 

Department of Agricultural, 

Environmental and 

Development Economics,  

The Ohio State University 

Columbus, OH 43210, USA 

cai.619@osu.edu 

 Kenneth L. Judd 

Hoover Institution, Stanford 

University & NBER 

Stanford, CA 94305, USA 

kennethjudd@mac.com 

 

 Thomas S. Lontzek 

RWTH Aachen University, 

School of Business and 

Economics 

52056 Aachen, Germany 

lontzek@econ.rwth-aachen.de 

 

 

      
 

 

 

 

 

 

 

 

The Hoover Institution Economics Working Paper Series allows authors to distribute research for 

discussion and comment among other researchers. Working papers reflect the views of the 

authors and not the views of the Hoover Institution. 

 



1 Introduction

Global warming has been recognized as a growing potential threat to economic well-being.

Determining which policies should be implemented requires analyses that incorporate models of both

the climate and the economy, and how they interact; this is the purpose of integrated assessment

models (IAMs). This paper expands the scope of IAMs by adding uncertainties and risks to a

canonical model of the economic and climate systems. and shows that such risks and uncertainties

significantly affect optimal climate policy. Almost all IAMs assume that both the climate and

economic systems are deterministic, and that economic agents are myopic. Studies of those IAMs

focus on uncertainty about the key parameters. This study, instead, incorporates economic and

climate risks into models where economic agents have rational expectations concerning the future of

the economy and of the climate. This allows us to use ideas from economic growth, investment, and

consumption CAPM theories to evaluate alternative climate change policies. As expected, explicit

treatment of economic and climate risks significantly changes the results.

The impact of carbon emissions on society is measured by the social cost of carbon (SCC),

defined as the marginal economic loss caused by an extra metric ton of atmospheric carbon.1 The

importance of SCC for policy decisions has led to a large effort to estimate its value. One prominent

study was produced by the Interagency Working Group on Social Cost of Carbon (IWG)—a joint

effort involving several United States federal agencies. The IWG report (IWG 2010) was based on

three well-known economic integrated assessment models: FUND (Anthoff and Tol 2014), PAGE

(Hope 2011), and DICE (Nordhaus 2008). The IWG report gives a wide range of plausible values

for SCC with a median of $51/tC.2 The Stern report (Stern 2007) presents an alternative analysis,

focusing on parameter uncertainty. Using the probabilistic integrated assessment model PAGE

(Hope, 2011), the report addresses parametric uncertainty regarding the causes and impacts of

climate change and argues for substantially higher SCC values.

The models behind the IWG and Stern reports use simplified descriptions of the climate. Many

other analyses are based on far more complex climate models and much more detailed economic
1We express SCC in US dollars ($) per ton of carbon and denoted $/tC. SCC per ton of CO2 equals12/44 times

the SCC per ton of carbon.
2The IWG report is based on solving FUND, PAGE, and DICE for thousands of values of the critical parameters,

where those parameter choices are based on empirical data and expert opinion. The models express SCC in terms of
US dollars per ton of CO2. After converting to $/tC, they report that the 5th, 25th, 50th, 75th, and 95th percentile
values are -$33, $15, $51, $102, and $238, respectively.
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models, and are included in the summary produced by the Intergovernmental Panel on Climate

Change (IPCC). IPCC (2007) reports that estimates of SCC vary across peer-reviewed studies with

an average estimate of $43 per ton of carbon but with a large range.

All of these studies are based on IAMs with deterministic models of economy and climate, with

all economic agents knowing current and future output and climate conditions. Recent reviews,

such as Pindyck (2013) and IPCC (2014), criticize the fact that SCC estimates are based on IAMs

that ignore the considerable risk and uncertainty in both the economic and the climate system, and

their interactions.

This study presents Dynamic Stochastic Integration of Climate and the Economy (DSICE), a

computational, dynamic, stochastic general equilibrium framework for studying global models of

both the economy and the climate. We apply it to the specific issue of how SCC depends on

stochastic features of both the climate and the economy, and use specifications of tastes consistent

with the observed willingness to pay to reduce economic risk. This study focuses on the SCC as an

example of the flexibility of the DSICE framework and its ability to examine a wide range of issues.

DSICE builds on the canonical “Dynamic Integrated Climate–Economy” (DICE) model (Nordhaus,

1992, 2008) by adding both economic and climate risks to the DICE framework. We choose to

extend DICE because it is one of the few prominent IAM models that are based on dynamic models

of agent decision-making.3

We first examine how economic risks affect SCC. Specifically, we assume that factor productivity

growth implies consumption growth rates that display long-run risk as modeled by Bansal and Yaron

(2004) and Beeler and Campbell (2011). We combine this with Epstein–Zin utility specifications

of dynamic preferences (Epstein and Zin, 1989). Current empirical analyses do not give us precise

estimates of critical parameters, particularly risk-aversion and the inter-temporal elasticity of sub-

stitution (IES). We solve DSICE for parameter values covering the range of empirical estimates in

the macroeconomic literature. We find that the 2005 SCC ranges from $59 to $99 per ton of carbon
3Manne and Richels (2005) and Nordhaus and Yang (1996) are also based on dynamic models of agent decision-

making. Many IAMs say that they have “recursive” dynamic models of the economy. This use of the term “recursive”
was common in dynamic CGE modeling in the 1970s. However, those models were recursive only in the sense that
economic decisions today create the state of the economy tomorrow. Today we call those models “myopic”, because
dynamic decisions, such as investment, were simple functions of contemporaneous prices and states. Today, the
description “recursive models” refers to models where agents have rational expectations; see, for example, Stokey and
Lucas (1989) and Ljungqvist and Sargent (2004). The antiquated use of the term “recursive” in the IAM literature
(such as Babiker et al. 2005) is misleading to economists familiar with modern dynamic economic analysis.
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over a plausible range of parameter values. These results demonstrate that we should be skeptical of

studies that give one number relying on a single parameterization. In this case, sensitivity analysis

does support the case for a significant carbon tax.

Of equal interest and greater novelty are our results on the dynamics of the future SCC. Factor

productivity shocks create riskiness in future output and carbon emissions, which in turn makes

SCC a random process. A common interpretation of results in deterministic models is that they

represent the expected path in stochastic models. In many cases, we find that the mean path for

the SCC is close to that implied by deterministic models. DSICE, however, can also determine

the stochastic features of the SCC process. SCC is the shadow price of a state variable and, as

we expect, is approximately a random walk. When we quantify the SCC process we find that it

displays substantial variance. For example, in our benchmark case the median SCC is $286 in 2100

but with a 10 percent chance of exceeding $700 and a 1 percent chance of exceeding $1,200. In

general, the standard deviation of SCC grows faster than its mean.

Some studies (e.g., Weitzman (2009), Pindyck (2011), and Scheffer et al. (2001)) use the possi-

bility of very high damage caused by a very low probability catastrophic event to advocate aggressive

mitigation policies. Estimating the probability of tail events is very difficult, a fact that reduces the

force of these arguments. However, it is recognized that temperature increases4 may cause substan-

tial irreversible damage to the climate. The IAM literature has recently studied the importance of

climate tipping points, which refer to “a critical threshold at which a tiny perturbation can qualita-

tively alter the state or development of the climate system”, and tipping elements, which are defined

as “large-scale components of the Earth system that may pass a tipping point” (both definitions

Lenton et al. 2008). A key feature of a tipping element is that current temperature affects the

likelihood of a tipping element experiencing a tipping event––that is, a transition to an irreversible

climate process, called a tipping process. Examples of tipping processes include the irreversible

melting of the Greenland ice sheet, the collapse of the west Antarctic ice sheet, and the weakening

of the Atlantic thermohaline circulation. The incorporation of tipping elements in DSICE allows it

to model a range of potentially irreversible climate processes, including but not limited to global
4When quantifying temperature increases throughout this paper, we are referring to the year 1900 temperature

level as the baseline level. Thus, our term “temperature change” is analogous to the term “temperature anomaly”,
which is often used in the climate literature and typically denotes the difference from some baseline temperature
level.

5



catastrophes. These processes are uncertain, and give DSICE a second source of risky damage to

economic productivity.5

There is a consensus that SCC specifically and optimal policy in general are sensitive to the

choice of discount rate used by the social planner. Standard IAMs are deterministic, treat mitigation

expenditures as a way of increasing consumption in the future, and use the same discount rate for

all issues. Some have argued that mitigation has an insurance component. Schneider (1989), in his

testimony to the Committee on Energy and Commerce in 1989, argued that investing in climate

change mitigation is like “buying insurance against the real possibility of large and potentially

catastrophic climate change.” More recently, former Secretary of State George Shultz (Shultz,

2013) , who convinced President Reagan to support the Montreal Protocol, argued

“We all know there are those who have doubts about the problems presented by climate

change. But if these doubters are wrong, the evidence is clear that the consequences,

while varied, will be mostly bad, some catastrophic. So why don’t we follow Reagan’s

example and take out an insurance policy?”

R&D is an example of insurance spending. The new technologies arising from today’s R&D spending

will arrive only with significant lags, and, if we are lucky, we may not need to use them, just as we do

not file a claim to our insurer if we experience no bad events. Insurance has a negative expected rate

of return, but we buy it because of its option value. Similarly, simple discounting rules motivated

by a deterministic model are not valid in a dynamic stochastic context because they would ignore

the real option aspect of R&D investments.

The results in this study demonstrate the importance of adding both economic and climate risk

to IAMs. First, economic risks imply that there is great uncertainty about future SCC and the value

of future climate change policies. In particular, the possibility of climate change causing substantial

damage is much higher in DSICE than in models that ignore economic risks. Second, while SCC

today is sensitive to parameter choices regarding preferences, we do arrive at a robust finding that
5Catastrophic climate change—in our case a climate tipping process, is just one of many possible types of critical

events that might ultimately affect economic productivity. A more general concept of ecological thresholds of the
Earth is the concept of planetary boundaries (Rockström et al. 2009, Steffen et al. 2015). Ocean acidification,
loss of biodiversity and ozone depletion are examples of Earth system processes that are believed to exhibit specific
boundaries—that is to say, thresholds that lead to irreversible and abrupt environmental change. Furthermore,
possible catastrophic events that affect the global economy are, of course, not limited ecological ones. Most recently,
Martin and Pindyck (2015, 2017) consider a broad variety of potential catastrophes such as a mega-virus, a nuclear
or bioterrorism attack or a climate catastrophe. They study the willingness to pay to avoid these extreme events
which, interdependently, do not only affect consumption dynamics but also might be fatal to the population.
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SCC is nontrivial, with $40–$100 being the range implied by the various opinions regarding dynamic

preferences. Third, there is no simple discounting rule to apply to climate change policy decisions.

The IAM literature argues over what is the right discount rate for valuing future damages from

climate change (see, e.g., Stern and Taylor 2007, Nordhaus 2007). DSICE shows that there is no

one discount rate. As standard finance theory teaches, the appropriate discount rate depends on

covariance with consumption. In this study, we show that the damages arising from tipping events

should be discounted at a much lower rate than damages from temperature increases. This may

seem surprising, because we follow Nordhaus’s approach and use the market equilibrium stochastic

discount factor instead of some planner discount rate unrelated to the market pricing of risks. The

intuition is clear: the damages from a permanent shock to productivity have little covariance with

short-run fluctuations in consumption. Therefore, damages from tipping events should be discounted

less than damages from temperature (which are proportional to output). Fourth, DSICE examines

cases where both economic and climate risks are present and shows that the results differ significantly

from a separate examination of these two sources of risk. More generally, this study shows that it

is important to examine these issues in a model that incorporates multiple kinds of uncertainty.

Many studies express great skepticism about what is computationally feasible, and use this as

a reason to look at simple models. Traeger’s (2014) claim that the curse of dimensionality limits

what can be done is typical:

“The quantitative analysis of optimal mitigation policy under uncertainty requires a

recursive dynamic programming implementation of integrated assessment models. Such

implementations are subject to the curse of dimensionality. Every increase in the dimen-

sion of the state space is paid for by a combination of (exponentially) increasing processor

time, lower quality of the value or policy function approximations, and reductions of the

uncertainty domain.”

The computational mathematics literature has developed many methods that avoid the curse of di-

mensionality,6 and DSICE uses them to solve problems generally considered intractable. This study

solves nine-dimensional stochastic dynamic programming problems over multiple centuries. The

non-stationary character of the problems makes value function iteration the only possible approach.
6See Judd (1998) for an elementary introduction to some of those methods.
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The specifications of risks make these problems among the most computationally demanding ever

solved in economics. However, DSICE is not limited by any curse of dimensionality because it uses

efficient multivariate methods to approximate value functions. Even though DSICE solves millions

(billions in some examples) of optimization problems, this is possible because it uses reliable opti-

mization methods and parallelization to solve the Bellman equations (Cai and Judd 2010; Cai et

al. 2015). The “curse of dimensionality” is not a valid excuse for oversimplified modeling.

Any numerical computation has numerical errors, and the fact that DSICE must solve billions of

small numerical problems means that we need to subject any results to stringent accuracy checks.

In recent years, the scientific computing community has addressed this issue in its literature on

Verification, Validation, and Uncertainty Quantification (VVUQ); see Oberkampf and Roy (2010)

for a comprehensive discussion of this literature. The “Verification” part of the VVUQ literature

develops methods for verifying the accuracy of the numerical results. We develop such a test

for each value function iteration and find that every value function computed by DSICE passes

demanding verification tests. This gives us confidence that numerical errors do not affect our

economic conclusions. Some of the cases we present below required tens of thousands of core hours,

and sensitivity analysis demanded that we examine hundreds of cases to determine the robustness

of results across empirically plausible parameter values. This study required the use of a few million

core hours on Blue Waters, a modern supercomputer. DSICE is based on general-purpose numerical

methods, implying that many economics problems with similar computational requirements can now

be solved.

We present the climate model in Section 2 and the economic model in Section 3. In Section 4, we

formulate the dynamic programming problem and outline our solution method. Sections 5, 6, and

7 present and discuss the implications for SCC from stochastic specifications of factor productivity

growth and a Markov chain process; first each in isolation and then combined. Section 8 concludes.

This paper uses a large number of variables, reflecting the complexity of DSICE. For the convenience

of the reader, all variables and their definitions appear in tables.
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2 The Climate Model

Our climate model contains three modules. First is the carbon system, describing how carbon

diffuses across the atmosphere, the upper ocean, and the deep ocean. Second is the temperature

system, which describes how heat energy diffuses between the atmosphere, ocean, and space. The

carbon and temperature systems are not closed, because economic and biological activity injects

carbon into the atmosphere, carbon interacts with solar radiation to cause heating, and some heat is

lost through radiation to space. We follow the specification for the carbon and temperature modules

used in DICE-2007 (Nordhaus, 2008).

We add a third system that models climate conditions other than carbon and temperature.

A simple example of such a climate state is sea level. Prolonged periods of warm atmospheric

temperatures will (likely) melt ice in glaciers (on land), which will then lead to higher sea levels.

This makes sea levels and the condition of glaciers dependent on past temperatures. We will focus on

what are called tipping elements, which model irreversible changes. For example, if warming causes

the melting of glaciers, even if temperatures fall back to pre-industrial levels, glaciers reappear, if

at all, only after millions of years (IPCC, 2014).

Climate change affects economic productivity in different ways. Higher temperatures will likely

reduce agricultural output, raise expenditures on cooling, and facilitate the spread of disease. There

is evidence that higher temperatures will increase the likelihood of severe droughts and floods

(Wuebbles, 2016). Higher sea levels will worsen coastal flooding, and may even cause some land

to disappear. We provide details on the productivity effects below when we describe the economic

model in DSICE.

2.1 Carbon System

We assume two sources for carbon emissions at each time t, an industrial source, EInd,t, related

to economic activity, and an exogenous source, ELand,t, arising from biological processes on the

ground7. Total emissions are denoted by

Et ≡ EInd,t + ELand,t. (1)
7These emissions depend e.g. on many biological processes and are also subject to uncertainty. However, here we

adopt the DICE specification of land emissions which are assumed to be exogenous and deterministic.
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The details of EInd,t will be presented when we discuss the economic model. We follow DICE-2007

and aggregate the distribution of carbon in the world into three “boxes”– atmosphere, upper ocean,

and lower ocean. The three-dimensional vector Mt = (MAT,t,MUO,t,MLO,t)
> represents the mass

of carbon in the atmosphere, upper levels of the ocean, and lower levels of the ocean, respectively

(in gigatons of carbon (GtC)). The carbon concentrations evolve over time according to the physics

of diffusion, and are represented by the linear dynamical system

Mt+1 = ΦMMt + (Et, 0, 0)> , (2)

where

ΦM =


1− φ12 φ21 0

φ12 1− φ21 − φ23 φ32

0 φ23 1− φ32

 . (3)

The coefficient φij in ΦM is the rate at which carbon diffuses from level i to level j, where i, j = 1, 2, 3

represent the atmosphere, upper ocean, and lower ocean, respectively. If Et = 0, then this would

be a closed system, implying that the column sums of ΦM must be unity. Also note that there is

no diffusion between the atmosphere and the lower ocean. Table A.4 lists the parameter values for

the carbon system. The exogenous processes and calibration of the module appear in Appendices

A.1 and A.3.

2.2 Temperature System

The DICE family of models is based on the continuous-time differential equation system in Schneider

and Thompson (1981). DSICE will also use one-year time periods in all examples in this paper.

The temperature system tracks the temperatures of the atmosphere (TAT ) and the ocean (TOC),

measured in °C above the pre-industrial level. That system is governed by the diffusion of heat, is

represented by the vector Tt = (TAT,t, TOC,t)
>, and evolves according to

Tt+1 = ΦTTt + (ξ1Ft (MAT,t) , 0)> , (4)
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where

ΦT =

 1− ϕ21 − ξ2 ϕ21

ϕ12 1− ϕ12

 . (5)

The coefficient ϕij is the heat diffusion rate from level i to level j, where i, j = 1, 2 represent the

atmosphere and ocean, respectively. The coefficient ξ2 is the rate of cooling arising from infrared

radiation to space (Schneider and Thompson 1981), and ξ1 represents heating due to radiative

forcing. Atmospheric temperature rises through two sources of radiative forcing: an exogenous

level, FEX,t, and endogenous forcing due to carbon in the atmosphere. Total radiative forcing at t

is

Ft (MAT,t) = η log2 (MAT,t/M
∗
AT) + FEX,t, (6)

whereM∗AT is the pre-industrial atmospheric carbon concentration, and η is the radiative forcing pa-

rameter. Table A.5 lists the parameter values for the temperature system. The exogenous processes

and calibration of the module appear in Appendices A.1 and A.3.

2.3 Tipping Element System

The temperature and carbon systems in DSICE are deterministic and evolve smoothly over time.

Recent work in the IAM literature has drawn attention to tipping points, which we defined earlier in

our introduction. Tipping points are not necessarily irreversible, but they are essentially irreversible

for the planning horizons related to the examples considered in this paper.

Let J represent some feature of the climate other than temperature or carbon. It will have a

finite set of possible values, and will represent the state of a tipping element; we will refer to J as

the tipping state. Changes in J will be modeled by a Markov chain where transition probabilities

depend on the vector of all climate states, (T,M,J). The Markov transition process is denoted as

Jt+1 = gJ(Tt,Mt, ωJ,t),

where ωJ,t is one serially independent stochastic process.

The key properties of any tipping element include the likelihood of tipping events, the expected

duration of the tipping process, the mean and variance of the long-run impacts on economic produc-
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tivity, and how all of these depend on (T,M,J). There is substantial uncertainty about all of these

properties. Our examples will be based on expert opinion expressed in the climate science literature

on various tipping elements. We use Lenton’s (2010) summary of the findings from Kriegler et

al. (2008) and other expert elicitation studies to calibrate the likelihood of transitions in tipping

elements. We will also rely on damage estimates used in the IAM literature (e.g., IPCC 2014; Smith

et al. 2009; Stern 2007; Nordhaus 2008; and Hope 2011). The impact on economic productivity is

included in our description of the economic system, below. Section 6 examines some specific cases

and will precisely describe the Markov process for J . Our calibration of the tipping element system

appears in Appendices A.1 and A.4.

2.4 Comparisons with Other IAM Climate Systems

DSICE, as in DICE-2007, uses a five-dimensional system (two dimensions for temperature and three

for the carbon cycle) to compute paths of world average carbon concentrations and temperature

levels that are close to the results from much more complex models. DSICE uses a modified version

of the temperature module in DICE-2007. Cai et al. (2012a) point out that the computer code in

Nordhaus (2008) has temperature increases in each period depend on carbon emissions ten years

in the future. Cai et al. (2012a) use differential equation methods to solve the continuous-time

physical model in Schneider and Thompson (1981), and find that applying the Euler method to the

differential equations in Schneider and Thompson with one-year time steps produces the discrete-

time system defined above in Equations (2) and (4), which successfully matches the MAGICC

scenarios (Meinshausen et al., 2011) that DICE-2007 aimed to match. The differential equation

approach produced results significantly different from those in DICE-2007. To avoid confusion

about the different solution methods, DICE-2007 will refer to the model and results in Nordhaus

(2008), and DICE-CJL will refer to the model specified in Cai et al. (2012a). The mathematical

details of this calibration method are presented in Appendix A.3.

DICE is regarded as the canonical climate system in much of the IAM literature, but few studies

use it, often citing tractability issues. Golosov et al. (2014) track only carbon concentration in the

atmosphere to represent the whole climate system, implying that temperature is proportional to

carbon concentrations. Jensen and Traeger (2014) also use a one-box climate model with only

12



atmospheric carbon concentration. The models in Golosov et al. (2014) and Jensen and Traeger

(2014) ignore the lag between CO2 emissions and their impact on temperature lag climate scientists

tell us is in the order of decades. Lemoine and Traeger (2014) use a two-box climate model,

tracking only atmospheric carbon concentration and temperature, ignoring the impact of oceans on

atmospheric temperature and CO2 concentrations.

Others have studied tipping elements but make simplifying assumptions that do not conform

with physical evidence. A common approach is to assume that there is a threshold (perhaps unknown

to the planner) such that a tipping event will occur immediately when temperature crosses that

threshold (see, e.g., Keller et al. 2004). With economic uncertainty, temperatures can fall or rise.

If temperature were to cross a threshold, the tipping event would immediately happen even if the

temperature quickly fell below that threshold.

More recent studies assume that the full impact of a tipping event is immediate and that its level

is known (see, e.g., Lemoine and Traeger 2014). In our framework, that is equivalent to assuming

there are only two climate states related to tipping: pre-tipping and post-tipping. Our tipping

element specification is also the first, and so far only one, to address the recent critique by Kopits

et al. (2014) of these assumptions. In DSICE, the timing of a tipping event is unknown, even

conditional on knowing the full state of the climate system, and the timing of the transitions after

the tipping event is unknown, and—furthermore—the impact of the Markov chain is unknown prior

to the tipping event (Lenton et al. 2008; National Research Council 2013). DSICE is so far the only

model that can handle these characteristics of Markov chain points. Other applications of DSICE

have considered various transition times of Markov chain points (Cai et al. 2015, 2016; Lontzek et

al. 2015).

Earlier studies ignore expert opinion and climate science when they calibrate the process pro-

ducing tipping events. Lemoine and Traeger (2014), for example, keep track of the historically

maximum temperature level, and assume that a tipping event cannot be triggered as long as tem-

perature is below that maximum level. This assumption ignores the inertia in the climate system,

implying that long-lasting heating dynamics that might be present in the climate system could trig-

ger climate tipping events. It also rules out the possibility that tipping might be triggered during

periods of decreasing temperature trends. DSICE, instead, relies on expert opinion (Kriegler et al.

2009 and Lenton et al. 2008) to calibrate its tipping elements, and assumes that a tipping event

13



is a random event with probability depending on the state of the climate system, assuming that

the hazard rate of the tipping point event is increasing with global warming. Lontzek et al. (2015)

present a detailed discussion of studies on climate tipping in stochastic IAMs.

Several recent studies look at analytically tractable, climate–economy formulations. Subsequent

to our work, Anderson et al. (2014), for example, conduct a robustness analysis of model uncer-

tainty in a simple integrated assessment model. Van der Ploeg and de Zeeuw (2016) decompose

analytically SCC in the face of catastrophic climate events. Gerlagh and Liski (2016) present an

analytically tractable model of learning about impacts from climate change. Other numerical in-

tegrated assessment models (e.g., Kelly and Kolstad (1999), Kelly and Tan (2015) and Hwang et

al. (2017)) deal with uncertainty by incorporating Bayesian learning about the parameter describ-

ing climate sensitivity—that is to say, the equilibrium temperature change in response to changes

of the radiative forcing (by carbon dioxide).8 More generally, Bayesian methods could be applied

to integrate model uncertainty into IAMs.9 While this approach can generate insightful results

regarding the evaluation of different policies, it is not the focus of our study. Instead, we apply

an uncertainty quantification analysis to determine the robustness of our results across empirically

plausible parameter values.

3 The Economic Model

DSICE merges a basic dynamic stochastic general equilibrium model with the commonly used box

model for climate in DICE-2007. This allows us to explore how economic risks and climate risks

interact and affect the evaluation of climate change policies.

3.1 Pre-Damage Output

The economic side of DSICE is a simple stochastic growth model where production produces green-

house gas emissions and output is affected by the state of the climate. We assume time is discrete,

with each period equal to one year. Let Kt be the world capital stock in trillions of dollars at time

t, and Lt be the world population in millions at time t.
8See, e.g., Roe and Baker (2007).
9See, e.g., Brock et al. (2007) and Cogley et al. (2011) for an analysis in macroeconomics.
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The deterministic parts of our economic model are taken directly from the calibrated DICE-2007

model in Nordhaus (2008). This includes the production function, population growth, productivity

growth, the carbon intensity of output, and the damage due to temperature levels.10 In the absence

of any climate damage, the gross world product is the Cobb–Douglas production function

f(K,L, Ãt) = ÃtK
αL1−α,

where α = 0.3 (as in Nordhaus, 2008) and Ãt is productivity at time t. Productivity is decomposed

into two pieces: a deterministic trend At, and a stochastic productivity state ζt; that is to say,

Ãt ≡ ζtAt. The deterministic trend At is taken from Nordhaus (2008) and denoted as

At = A0 exp
(
α1(1− e−α2t)/α2

)
, (7)

where α1 is the 2005 growth rate and α2 is the decline rate of the growth rate.

We add a stochastic component, ζt, to the productivity process so that we can examine how

uncertainty about productivity affects climate change policies. Our specification of ζt uses ideas

from the long-run-risk literature (e.g., Bansal and Yaron 2004, Hansen et al. 2008). We let χt

represent the persistence of ζt, and use the formulation introduced in Bansal and Yaron (2004):

log (ζt+1) = log (ζt) + χt + %ωζ,t (8)

χt+1 = rχt + ςωχ,t, (9)

where ωζ,t, ωχ,t ∼ i.i.d.N (0, 1) and %, r, and ς are parameters.

For theoretical and computational reasons, we need to change some details of the Bansal and

Yaron (2004) specifications. Bansal and Yaron (2004) assume that ωζ,t, ωχ,t ∼ i.i.d. N (0, 1). As

Gaussian disturbances are unbounded and would imply the possibility of arbitrarily large growth

rates and output. The unbounded character of the state space makes it difficult to even prove

that expected utility exists. This creates computational challenges. Even if we could overcome
10The DSICE framework is flexible enough to allow for various functional forms of its components. However, to

maximize comparability with the DICE model that is currently used in research for the design of US regulatory
policy, we retain the assumptions of the DICE model.
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these theoretical and computational challenges, our results for SCC could be driven by highly

unlikely tail events. Others have examined the impact of very bad outcomes that have very small

probabilities. An example of this is the ’dismal’ theorem of Weitzman (2009), which states that

the risk premium could be infinite for unboundedly distributed uncertainties. We want to avoid

existence issues and avoid repeating insights regarding extreme tail events. We also want to use

numerically stable computational methods that allow us to verify our results. We achieve these

goals by constructing a time-dependent, finite-state Markov chain for (ζt, χt) with parameter values

implying conditional and unconditional moments of consumption processes observed in market data.

The Markov transition processes are denoted

ζt+1 = gζ(ζt, χt, ωζ,t)

χt+1 = gχ(χt, ωχ,t),

where ωζ,t, and ωχ,t are two serially independent stochastic processes. This approach also makes it

possible to directly apply reliable numerical methods for solving dynamic programming problems.

The approximation of the stochastic growth process requires a careful formulation of the Markov

chains for the productivity shock ζt and the rate of its growth persistence χt. Markov chains with

only a few states cannot represent the kind of persistence properties observed in Bansal and Yaron

(2004). After examining various possibilities, we choose nζ = 91 values of ζt and nχ = 19 values of

χt at each time t; the time dependence is required due to the fact that the variance of consumption

levels grows over time. Appendix A.2 describes the discretization procedure in greater detail.

We calibrate the stochastic factor productivity growth so that the resulting consumption process

is statistically close to empirical data. Calibrating the productivity process presents some compu-

tational challenges because we need to solve the economic model in DSICE for various values of %,

r, and ς, and choose those values, which imply a consumption process that matches US data on per

capita consumption growth.11 For our calibration, we solve versions of DSICE without stochastic

climate impact because the consumption data we use comes from the twentieth century when cli-

mate damage to productivity was negligible. Appendix A.2 describes the calibration procedure in
11We are grateful to Ravi Bansal for providing us with the annual per capita data on real consumption used in

Bansal et al. (2012) and obtained from the Bureau of Economic Analysis website.
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greater detail, and shows that the statistics of simulation paths of our consumption growth from

our calibrated parameters are close to those of the empirical data. The results of the calibration

gave us the following values:

% = 0.035, r = 0.775, ς = 0.008.

3.2 Damage Function and Emissions

DSICE models two potential ways in which output is affected by the climate: global average tem-

perature TAT, and the Markov chain state denoted by J . The function Ω (TAT,t, Jt), referred to as

the damage function, represents the impact of climate on output in that gross world product equals

Yt ≡ Ω (TAT,t, Jt) f (Kt, Lt, ζtAt) ,

where

Ω (TAT,t, Jt) = ΩT (TAT,t) ΩJ (Jt) =
1

1 + π1TAT,t + π2(TAT,t)2
(1−D(Jt))

decomposes the damage function as the product of ΩT (damage due to temperature rise), and ΩJ

(damage related to the climate conditions implied by the Markov process, J . When D(Jt) = 0, our

damage function reduces to ΩT (TAT,t) for which we use the damage function in Nordhaus (2008).12

D(J) equals the impact of state J on productivity. This study generalizes the damage function to

include effects of the tipping state and associated past cumulative effects along with the impact of

temperature on productivity.

We assume that industrial emissions are proportional to output, with the proportionality factor

σt, which is referred to as the carbon intensity of output. The social planner can mitigate (i.e.,

reduce) emissions by a factor µt, 0 ≤ µt ≤ 1. Annual industrial carbon emissions (billions of metric

tons of carbon) equal

EInd,t = σt(1− µt)f (Kt, Lt, ζtAt) . (10)
12The damage function in DSICE is, of course, highly aggregated, and only to be considered as an approximation of

smooth damages from global warming. Recently, several studies have attempted to quantify climate-related damages
on a disaggregated scale: e.g., Deschenes and Greenstone (2011) and Dell et al. (2014) make use of weather data to
assess the impact of temperature on a local scale. While this approach certainly generates important insight, more
research is needed, e.g., to quantify longer-term impacts of temperature increase. Here, we make these choices to
keep the model simple, and to facilitate comparisons with Nordhaus’s canonical model. The only general requirement
is that Ω (TAT,t, Jt) > 0.
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We follow Nordhaus (2008) and assume that the cost of mitigation level µt is

Ψt = θ1,tµ
θ2
t Yt. (11)

World output, net of damage, is allocated across total consumption Ct, mitigation expenditures Ψt,

and gross capital investment It;that is to say,

Yt = Ct + Ψt + It, (12)

and the capital stock evolves according to

Kt+1 = (1− δ)Kt + It, (13)

where δ = 0.1 is the annual depreciation rate for capital. In all of our computations, K0 = 137

trillion dollars.

3.3 Epstein–Zin Preferences

The additively separable utility functions commonly used in climate–economy models do not do

well in explaining the willingness of people to pay to avoid risk. Epstein–Zin preferences (Epstein

and Zin 1989) are used because they better explain observed equity premia. The equity premium

tells us about society’s willingness to pay to reduce consumption risk, which will in turn affect how

much society is willing to pay to reduce the risk of economic damage from climate change.

We assume that agents care only about consumption.13 Let Ct be the stochastic consumption

process. Epstein–Zin preferences recursively define social welfare as

Ut =

{
(1− β)u(Ct, Lt) + β

[
Et
{
U1−γ
t+1

}] 1−1/ψ
1−γ

} 1
1−1/ψ

, (14)

where Et{·} is the expectation conditional on the states at time t, and β is the discount factor.
13There may be other aspects of climate change that affect social welfare, but they are not included in DSICE, or

in the standard Nordhaus (2008) family of models. See, for example, the Cai et al. (2015) version of DSICE including
uncertain, non-market impacts such as ecosystem tipping points.
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Here,

u(Ct, Lt) =
(Ct/Lt)

1−1/ψ

1− 1/ψ
Lt

is the annual world utility function (assuming that each individual has the same power utility

function), ψ is the inter-temporal elasticity of substitution,14 and γ is the risk-aversion param-

eter. Epstein–Zin preferences are flexible specifications of decision-makers’ preferences regarding

uncertainty, and allow us to distinguish between risk preference and the desire for consumption

smoothing. Even though we refer to γ as the risk-aversion parameter, equilibrium risk premia will

depend on interactions between ψ and γ.

We will be comparing the results of DSICE with results of deterministic models such as DICE.

Those models assume inter-temporally separable preferences. It is important to note that in the ab-

sence of uncertainty, the risk-aversion parameter, γ, disappears and Epstein–Zin preferences become

inter-temporally separable. In deterministic models with time-separable utility, it is common to re-

fer to 1/ψ as the “risk-aversion” parameter, but that is misleading and implicitly assumes γ = 1/ψ.

A better way to think about deterministic models is that they use Epstein–Zin preferences with ψ

representing the IES, but the risk-aversion parameter, γ, can take any value. This observation will

be important when we discuss the impact of adding risks to DICE.

Empirical analyses of macroeconomic data have not given us definitive values for the parameters

γ and ψ . We examine a range of parameter values, relying on the literature on long-run risk and

asset pricing, in particular Bansal and Yaron (2004), Barro (2009), Bansal and Ochoa (2011),

Pindyck and Wang (2013), Epstein et al. (2014) and Schorfheide et al. (2014). Most studies

estimate or assume γ to be between 2 and 10, and argue for ψ > 1. Table 1 summarizes the range

of values for ψ and γ in the literature. Our benchmark parameter specification will be ψ = 1.5 and

γ = 10, choices consistent with the majority of opinion. We will also solve DSICE for a broad range

of values covering 2 ≤ γ ≤ 15 and 0.5 ≤ ψ ≤ 2.0.
14Here we assume ψ > 1. When 0 < ψ < 1, the utility function u(Ct, Lt) is negative, and the formula becomes

Ut = −
{
− (1− β)u(Ct, Lt) + β

[
Et
{

(−Ut+1)1−γ | Ct, Lt
}] 1−1/ψ

1−γ

} 1
1−1/ψ

.

While the standard formulation of Epstein–Zin preferences does not have a denominator of 1 − 1/ψ in the annual
world utility function u(C,L), here we use this formulation to ensure that it is consistent with our later reformulation
of the Bellman equation (15).
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IES RA
Bansal & Yaron (2004) 1.5 10
Bansal and Ochoa (2011) 1.5 10

Vissing-Jørgensen and Attanasio (2003) >1 [5, 10]
Barro (2009) 2 4

Pindyck and Wang (2013) 1.5 3.066
Ackerman et al. (2013) 1.5 10

Constantinides and Ghosh (2011) 1.41 9.43
Schorfheide et al. (2014) 1.7 10.8
Epstein et al. (2014) 1.5 7.5

Jensen and Traeger (2014) 1.5 10

Table 1: Default or estimated values of IES and the risk-aversion parameter in the literature.

3.4 Relation to the Literature

Some have used Epstein–Zin preferences to examine SCC, but use much simpler models. Bansal

and Ochoa (2011) assume an endowment model, implying that their SCC only tells one how to

price the exogenous shocks exerted by the climate on the endowment. DSICE, instead, builds

on a Ramsey-type, representative agent, stochastic growth model where the agent at each time

must choose how to allocate output across consumption and savings. Savings are split between

capital investment and mitigation expenditures, both of which are forms of spending that aim to

improve future productivity. Our SCC represents the social tradeoff between spending resources on

investment and on mitigation.

IAMs have only recently used long-run risk and Epstein–Zin preferences. Jensen and Traeger

(2014) assume much lower levels of volatility than those implied by empirical data. See Appendix

A.2 for a detailed comparison. The higher volatility in DSICE (which is calibrated to fit empirical

data) presents computational challenges because the state variables cover a much larger region

in the (K,M,T, ζ, χ) space. DSICE is successful because it uses a flexible set of functions for

approximations.

4 The Dynamic Programming Problem

We formulate the nine-dimensional, social planner’s dynamic optimization problem as a dynamic

programming problem. The nine states include six continuous state variables (the capital stock K,

the three-dimensional carbon system M, and the two-dimensional temperature vector T) and three
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discrete state variables (the climate shock J , the stochastic productivity state ζ, and the persistence

of its growth rate χ). Let S ≡ (K,M,T, ζ, χ, J) denote the nine-dimensional state variable vector

and let S+ denote its next period’s state vector.

The Epstein–Zin utility definition (14) expressed utility in terms of consumption. We make

a nonlinear change of variables15 in terms of utils, (Ut)
1− 1

ψ , and then get the following Bellman

equation

Vt (S) = max
C,µ

u(Ct, Lt) + β
[
Et
{

(Vt+1 (S+))
1−γ

1−1/ψ

}] 1−1/ψ
1−γ

,

s.t. K+ = (1− δ)K + Yt − Ct −Ψt,

M+ = ΦMM + (Et, 0, 0)> ,

T+ = ΦTT + (ξ1Ft (MAT) , 0)> ,

ζ+ = gζ(ζ, χ, ωζ),

χ+ = gχ(χ, ωχ),

J+ = gJ(T,M, J, ωJ), (15)

for t = 0, 1, . . . , 599, and any ψ > 1.16 The terminal value function V600 is given in Appendix A.5.17

In the model, consumption C and emission control rate µ are the two control variables.

4.1 Numerical Solution Method

We solve the nine-dimensional problem specified in (15) using value function iteration. Three

state variables, (ζ, χ, J), are discretized and their movements are modeled as transitions of finite-

state Markov chains. The productivity process states, (ζ, χ), use Markov chains that have enough

states to ensure that the resulting consumption processes matches the conditional variance and

autocorrelation observed in consumption data. Furthermore, J is calibrated to represent processes

discussed in the climate literature on tipping points. At each discrete point in the (ζ, χ, J) space, the

15That is, Vt (S) = [Ut (S)]
1− 1

ψ /(1− β).
16When 0 < ψ < 1, the objective function of the optimization problem is

u(Ct, Lt)− β
[
Et
{

(−Vt+1 (S+))
1−γ

1−1/ψ

}] 1−1/ψ
1−γ

.

17As in Nordhaus (2008) we assume a model time horizon of 600 periods. The terminal value function should be
regarded as an approximation of the value function at the terminal period.
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value function has six continuous states, (K,M,T), and is approximated by multivariate orthogonal

polynomials after appropriate nonlinear changes of variables. The range of each continuous state

variable is chosen so that all simulation paths stay in that range. This is a large problem, but the

use of parallel programming methods and hardware makes it tractable. For example, the largest

case has 366 billion optimization problems, but we solved it in less than eight hours using 110,688

cores in parallel on the Blue Waters supercomputer. See Appendices A.2 and A.5 of this paper and

Cai et al. (2015) for an extended discussion of the mathematical and computational details.

4.2 A Verification Test

One theme of the Validation, Verification, and Uncertainty Quantification (VVUQ) literature (e.g.,

Oberkampf and Roy 2010) is the implementation of tests that check the correctness of the computer

code; this is called verification. One common test is to apply the code to special cases where the

solution is known. If all uncertainty is removed, then DSICE reduces to a deterministic optimal

control problem that can be solved using nonlinear programming methods. We compare these

optimal control solutions to our value function iteration results to see if the value functions imply

an optimal path in line with the results using nonlinear programming. Our tests show that paths

implied by the value functions have at least three-digit accuracy, often significantly more. See

Appendix A.7 for more details.

4.3 The Social Cost of Carbon

The climate literature interprets the social cost of carbon as a marginal concept—that is to say, the

monetized economic loss caused by a one metric ton increase in atmospheric carbon. We follow that

notation: in DSICE, the social cost of carbon is the marginal cost of atmospheric carbon expressed in

terms of the numeraire good, which can be either consumption or capital as there are no adjustment

costs. We define the social cost of carbon (SCC) to be the marginal rate of substitution between

atmospheric carbon concentration and capital, as in

SCCt = −1000 (∂Vt/∂MAT,t) / (∂Vt/∂Kt) . (16)
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It will be important to remember that SCC is a relative shadow price—that is to say, a ratio of

two marginal values—and does not express the total social cost of climate damage.18 For example,

as we change economic and/or climate risks, SCC may go up or down because that change in risks

will affect the marginal value of carbon, and the marginal value of consumption, and the marginal

value of investment. DSICE is a general equilibrium model where the results arise from assumptions

about tastes and technology, as well as their equilibrium interactions.

SCC will often be the optimal carbon tax. The optimal carbon tax is the tax on carbon that

would equate the private and social costs of carbon. In DSICE we also examine the optimal carbon

tax, which is the Pigovian tax policy because the externality from carbon emissions can be directly

dealt with by a carbon tax and because there are no other market imperfections. The social planner

in DSICE chooses mitigation µt, which is equivalent to choosing a carbon tax equal to

1000θ1,tθ2µ
θ2−1
t /σt (17)

in units of dollars per ton of carbon. If µt < 1, the carbon tax equals SCC. However, if µt = 1, its

maximum value, then the carbon tax only equals that level that will drive emissions to zero, and

may be far less than SCC. In such cases, mitigation policies have reached their limit of effectiveness.

Alternative policies may reduce carbon concentrations directly, as would carbon removal and storage

technologies, or reduce temperature directly, as would certain solar geoengineering technologies. We

do not explicitly include those technologies in DSICE, but our SCC numbers will identify equilibrium

paths along which SCC is so high that these more direct technologies may be competitive. 19We

leave a quantitative analysis of these issues to future studies.

The Business-As-Usual (BAU) case is the solution to the dynamic programming problem (15)

but with the restriction that µ = 0, i.e., no mitigation. It is used in the IAM literature as an

approximation of the competitive equilibrium in the absence of any carbon tax. We will generally

not report any BAU results because they differ little from the optimal mitigation results.
18Because K is measured in trillions of dollars and MAT is measured in billions of tons of carbon, the 1,000 factor

is needed to express SCC in units of dollars per ton of carbon.
19Robock et al. (2009) critically assess geoengineering options in the context of decision-making on climate change

and point out severe side effects of geoengineering, as well as the lack of knowledge associated with this technology.
Recently, Heutel et al (2016) presents one of the first studies to address geoengineering in a stochastic IAM. That
study focuses on the effectiveness of geoengineering to deal with different types of damage from a tipping point.
Further research is needed to improve understanding of how different sources of uncertainty affect the effectiveness
of geoengineering as an option to combat climate change.
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4.4 Simulation Procedures

In Sections 6, 7, and 8, respectively, we analyze the implications for climate policy of only stochastic

growth, only stochastic climate, and stochastic growth and stochastic climate combined. In each

of these sections we define a benchmark parameter specification and show its implications for SCC

and other economic variables. We then perform a sensitivity analysis on some parameters, using

tables to report how today’s optimal level of SCC is affected by different parameter choices.

All three sections follow the same procedure. First, we solve the dynamic programming problem,

computing the value function and policy decision rules at each time t. We then use the decision

rules to simulate some paths of the key economic variables. We use 2005 as the first year in order

to be comparable with Nordhaus (2008) and similar studies. These paths are affected by shocks

to productivity; we simulate 10,000 paths that differ only in the realized shocks. This set of paths

allows us to not only compute the expected value of SCC and economic variables, but also compute

their distribution at any time t. The large number of simulations allows us to compute even the

0.99 percentile, and gives us a good measure of the important tail events. Each simulation begins

with the stochastic growth states equal to χ0 = 0 and ζ0 = 1. Other initial values were given in

Tables A.4 and A.5. In cases with a tipping element, we assume that a tipping point has not yet

been triggered in the year 2005.

5 The Social Cost of Carbon with Stochastic Growth

This section analyzes the impact of stochastic growth and risk preferences on SCC and on the

combined climate and economic system. This section excludes tipping elements so that it can focus

on the impact of productivity risk. We first present a detailed analysis of a benchmark example

based on parameter specifications; we call this our stochastic growth benchmark case. The stochastic

growth benchmark case assumes Epstein–Zin parameter values ψ = 1.5 and γ = 10. This stochastic

growth benchmark case allows us to exposit key features of the resulting dynamic processes, such as

consumption, output, productivity, climate states, and SCC. We then perform a sensitivity analysis

for empirically plausible alternative preference parameters, focusing on how preference assumptions

affect SCC in 2005.
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5.1 The Stochastic Growth Benchmark

Figures 1 and 2 display features of the solution to the Bellman equation (15) for the stochastic

growth benchmark case. Each panel summarizes the results of our 10,000 simulations. We also

display results from two deterministic cases of DICE-CJL. DICE-CJL with ψ = 0.5 (the solid red

line) represents the DICE-2007 choice of ψ, and DICE-CJL with ψ = 1.5 (dashed red line) represents

the choice in our stochastic growth benchmark. The gray area represents the 0.01 to 0.99 percentiles

of the SCC paths, and the other lines represent various quantiles.

Figure 1 displays the SCC process for 2005–2050. First note that moving from the DICE-2007

choice of ψ = 0.5 to our benchmark choice of ψ = 1.5 substantially increases SCC. However, when

we add uncertainty with γ = 10, we see a decline in SCC to $61/tC, which is still higher than that

implied by DICE-2007 preferences. During 2005–2050, we see that the no-risk line (the dashed red

line) exceeds the average SCC with long-run risk (the black line) by about $50/tC. Therefore, in the

next half century, uncertainty reduces SCC. We shall discuss the intuition for this below when we

carry out sensitivity analysis. The productivity risk does substantially increase the range of SCC.

By 2050, there is a 25 percent chance of SCC being almost $200/tC or greater, and a 10 percent

chance of it exceeding $250/tC. The large range is easily explained. If there is a sustained sequence

of positive shocks to productivity, then output will rise, which will have two effects: the damage

due to temperature will increase proportionately, and emissions will also rise and increase the risk

of even greater damage from high temperatures in the future. Recall that the SCC results in Figure

1 represent the solution to the optimal tax and mitigation policy.

Figure 2 describes several variables over the twenty-first century. Panel A describes the SCC

process. After 2050, average SCC in DSICE moves closer to SCC in DICE-CJL with ψ = 1.5. By

2100, the impact of uncertainty is small. Therefore, while uncertainty substantially lowers SCC

prior to 2050, that effect nearly disappears over the following 50 years. After 2050, the variation in

SCC in DSICE continues to grow rapidly. The 1–99 percentile range is $67/tC to $1,282/tC, and

even the 10 percent and 90 percent quantiles in 2100 show a range of $127/tC to $667/tC.

Panel B displays the optimal carbon tax and Panel C displays the optimal rate of mitigation.

If mitigation is less than 100 percent, then a Pigovian tax policy would be to impose a tax equal

to SCC, thereby equating the private and the social costs of carbon. Panels A, B, and C show that
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Figure 1: SCC ($/tC): 2005–2050

this is always the case before 2085. After 2085, the emission control rate may hit its limit of µ = 1,

and optimal policy requires only that the carbon tax is large enough to eliminate all emissions. In

that case, the optimal tax can be much less than SCC, which is true at 2100 in about 3.5 percent

of simulation runs. When the optimal tax is less than SCC, the benefits of other carbon policies,

such as carbon removal and storage or solar geoengineering technologies, would be valued using the

SCC.

Table 2 lists the mean and standard deviation of SCCt and their statistics on a log10 scale.20

Table 2 tells us that both the mean and the standard deviation of log10(SCCt) are increasing over

time. In fact, the standard deviation of log10(SCCt) is increasing much faster than its mean.

mean of SCCt s.d. of SCCt mean of log10(SCCt) s.d. of log10(SCCt)

2020 87 18 1.924 0.087
2050 158 71 2.153 0.184
2100 357 247 2.457 0.279

Table 2: SCC statistics from 10,000 simulation paths

Both panels D and E indicate that long-run risk will on average lead to more accumulation of

carbon in the atmosphere and higher temperature, a natural consequence of the reduced mitigation
20We include the log10 scale because the SCC distribution is more like a log-normal distribution.
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efforts. However, the economic risk implies uncertainty in atmospheric temperature in 2100, with

the 10–90 percentile range being 0.6°C.

Figure 2: Simulation results of the stochastic growth benchmark—climate system and policies
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Our findings point to one very important fact: there is great uncertainty about all aspects of the

combined economic and climate system. For many variables, the mean value at each point in time is

close to the solution of the purely deterministic model. Tracking the mean is all one can ask of any

deterministic model, and in that sense deterministic models can be successful. However, there is

great uncertainty about the future value of each key variable. This fact is of particular importance

for understanding SCC. SCC is the marginal cost of extra carbon in terms of wealth, making it

the marginal rate of substitution between mitigation expenditures and investment expenditures in

physical capital. At the margin, these two uses of savings have different impacts on future economic

variables, making allocation decisions between mitigation and investment essentially a portfolio

choice problem; a large SCC represents the amount of investment in new capital that one is willing

to sacrifice to reduce carbon emissions by a gigaton.

In comparison to a model with purely deterministic growth, DSICE implies a lower ratio of

consumption to gross world output and higher ratios of investment in capital accumulation and

abatement. Figure 3 presents the details, displaying the optimal dynamic distribution of the four

ratios for the first 100 years with various quantiles of 10,000 simulations of the solution to the

dynamic programming problem (15).

For example, the black dotted lines represent the 10 percent quantiles for each ratio. Similarly,

the cyan dashed lines, the red dotted lines, the blue solid lines, and the green solid lines represent

the 25%, 50%, 75%, and 90% quantiles at each time respectively. The black solid lines represent

the sample mean path. As explained earlier, two cases of DICE-CJL (ψ = 0.5 or 1.5) makes it

comparable with DICE-2007. We denote these two special deterministic cases by the red solid lines

and the red dashed lines, respectively. The lower (upper) edge of the gray areas represent the 1%

(99%) quantile; the gray areas represent the 98% probability range of each ratio.21

From Figure 3 we see that with more than 90 percent probability It/Yt will be greater than

in the case of a purely deterministic model (the red solid line is below the black dotted line).

Furthermore, we find that in 2005 It/Yt is at 32 percent, about 8 percent higher than under the

deterministic growth assumption and that the expected difference is about 5% toward the end of

this century. Overall, the assumption of stochastic factor productivity growth with persistence

leads to a significant expected increase in capital investments and thus to a precautionary buildup
21We will use the same graphical exposition for all plots describing the distributions of simulation results.
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of the capital stock.22 Also, throughout the 10,000 simulations of DSICE, we found It/Yt to ranged

roughly between 22 and 36 percent, expanding the distributional results reported in Table 2.

Figure 3: Simulation results of the stochastic growth benchmark—ratios to gross world output

Panel C presents quite the opposite statistical picture for Ct/Yt. We see that with more than 90

percent probability Ct/Yt will be lower than in a purely deterministic model, and that toward the

end of this century Ct/Yt appears to stabilize at about 70 percent–a reduction of about 6 percent
22The simulation paths of gross world output, capital, and per capita consumption growth are shown in Figure A.2

in Appendix A.8.
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over the deterministic model. Overall, this reduction is not fully offset by higher capital investments

and, as panel B indicates, that difference is allocated to expenditures on the abatement of emissions.

We find that the latter, which is denoted by Ψt/Yt, is generally quite low and does not exceed 0.2

percent in this century in the deterministic case. Yet, as the black solid line in panel B indicates,

there is a 50 percent probability that the expenditures on emissions abatement will be at least three

times higher by the year 2100 when growth is modeled stochastically. Furthermore, with more than

20 percent probability, more than 1 percent of gross world output should be devoted to mitigation

by the year 2100.

Some recent research has argued for simple rules of thumb for SCC. In particular, Golosov et al.

(2014) set up a dynamic, forward-looking climate–economy model with logarithmic utility and full

capital depreciation to argue that SCC is proportional to output. Barrage (2014) shows that the

benchmark in Golosov et al. (2014) implies that the ratio of SCC to decadal gross world output is

8.07× 10−5 (i.e., SCCt/Yt = 8.07× 10−4 for annual gross world output Yt) and constant over time

with constant productivity growth, but that it increases over time for the productivity process in

Nordhaus (2008), approaching 8.07× 10−4 from below.23

Panel D in Figure 3 uses red dash-dotted lines to represent the results of Golosov et al. (2014).

However, our Panel D shows that the SCCt/Yt ratio is stochastic and that its mean or quantile

paths have an upward trend, while its volatility is also expanding. Its mean path increases from

0.11 percent in 2005 to 0.12 percent in 2100. This implies that long-run risk shows that the constant

SCCt/Yt in Golosov et al. (2014) does not hold true in general.

5.2 Sensitivity Analysis for Preference Parameters

Empirical work suggests plausible values for ψ and γ, but the data do not give us precise values for

the key parameters. We next examine how SCC varies across values of ψ and γ. Each example will

differ from the stochastic growth benchmark only in the preference specification, with no change in

the stochastic growth productivity process.

Our sensitivity analysis of IES (i.e., ψ) and RA (i.e., γ) in stochastic growth cases will look at

consumption, capital investment, and SCC in 2005. Tables 3–6 report the sensitivity of the initial
23More precisely, we report the ratio SCCt/1000/Yt in order to have the same units as those used in Golosov et al.

(2014).
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ratios of consumption to gross world output (Ct/Yt), capital investment to gross world output

(It/Yt), and SCC, respectively, assuming the values of the elasticity of inter-temporal substitution

to be ψ = 1.25, 1.5, 1.75, and 2.0, and the risk-aversion parameter to be γ = 2, 5, 10, and 15 (we

also include the cases with ψ = 0.5 and/or γ = ∞ for comparison, and ψ = 0.7, 0.9, 1.1 for SCC

in Table 6). For example, in our benchmark example with ψ = 1.5 and γ = 10, the 2005 Ct/Yt is

0.682, the 2005 It/Yt is 0.682, and the optimal 2005 SCC is $61. We see that SCC ranges from $57

to $99 for these combinations of 1.25 ≤ ψ ≤ 2 and 2 ≤ γ ≤ 15, about 60 percent to 168 percent

larger than the 2005 SCC of the baseline deterministic model with ψ = 0.5.

IES (ψ)
DICE-CJL RA (γ)

2 5 10 15 ∞
0.50 0.76 0.75 0.73 0.71 0.69 0.58
1.25 0.72 0.71 0.70 0.69 0.68 0.64
1.50 0.72 0.71 0.69 0.68 0.68 0.65
1.75 0.71 0.70 0.69 0.68 0.67 0.66
2.00 0.71 0.69 0.68 0.67 0.67 0.67

Table 3: Initial consumption–output ratio in stochastic growth cases

IES (ψ)
DICE-CJL RA (γ)

2 5 10 15 ∞
0.50 0.24 0.29 0.27 0.29 0.31 0.42
1.25 0.28 0.29 0.30 0.31 0.32 0.36
1.50 0.28 0.29 0.31 0.32 0.32 0.35
1.75 0.29 0.30 0.31 0.32 0.33 0.34
2.00 0.29 0.31 0.32 0.33 0.33 0.33

Table 4: Initial investment–output ratio in stochastic growth cases

ψ
DICE-CJL RA (γ)

2 5 10 15 ∞
0.5 2.6(−4) 2.9(−4) 4.1(−4) 5.7(−4) 6.6(−4) 8.0(−4)
1.25 9.1(−4) 8.4(−4) 7.0(−4) 5.9(−4) 5.5(−4) 3.9(−4)
1.5 1.1(−3) 9.9(−4) 7.6(−4) 5.9(−4) 5.5(−4) 3.5(−4)
1.75 1.3(−3) 1.1(−3) 8.1(−4) 6.3(−4) 5.5(−4) 3.3(−4)
2.0 1.4(−3) 1.2(−3) 8.6(−4) 6.4(−4) 5.6(−4) 3.1(−4)

Table 5: Initial abatement-expenditure-to-output ratio in stochastic growth cases. Note that a(−n) repre-
sents a× 10−n
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IES (ψ) DICE-CJL RA (γ)
2 5 10 15 ∞

0.5 37 39 49 60 66 76
0.7 51 52 56 60 62 62
0.9 64 63 61 60 60 55
1.1 75 71 65 60 58 50
1.25 82 77 68 61 58 48
1.5 94 86 71 61 57 45
1.75 103 93 74 62 57 43
2 111 99 76 62 57 41

Table 6: Initial social cost of carbon ($/tC) in stochastic growth cases

Tables 3–6 show that the patterns of the impact of IES and RA in the stochastic growth cases

are similar to those of IES and productivity growth in the deterministic growth cases. We use the

extreme case of γ =∞ to provide some intuition. In that case, the planner focuses on the worst-case

scenario, which in our discretization of the productivity process means that decisions are the same as

if productivity were deterministic and constantly declining, allowing us to use deterministic optimal

control methods for that case; see Appendix A.9 for details. The last column of Table 6 displays

how IES affects economic quantities when γ =∞. In this case, DSICE is essentially optimal growth

with declining productivity. A small IES implies a strong desire to smooth per capita consumption,

and save more today to reduce a future decline in consumption. As IES increases, smoothing

consumption is less of a priority, implying less savings in both forms, capital and mitigation, and a

smaller SCC.

When there is no risk (the “DICE-CJL” column of Table 6) or if risk-aversion is small, then

the patterns are reversed. In these cases, the positive future growth in productivity implies that as

IES increases, there is less desire for smoothing and more willingness to save for the future, when

productivity is higher. SCC and the share of savings going to mitigation rise as IES increases,

indicating that the relative importance of avoiding climate damage increases.

Table 6 shows that SCC is decreasing over RA when ψ ≥ 0.9, and increasing over RA when

ψ ≤ 0.7. From the above discussion, we see that RA in DSICE is related to productivity growth

in DICE-CJL: γ =∞ corresponds to DICE-CJL with negative productivity growth, and a smaller

RA corresponds to DICE-CJL with a higher productivity growth. Appendix A.10 shows that SCC

from DICE-CJL with a range of ψ and 2005 productivity growth rate has a pattern similar to that
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of Table 6.

5.3 Comparisons with Others’ SCC Estimates

Our results differ from other studies on SCC estimates, but usually for understandable reasons.

Golosov et al. (2014) obtains a relatively high SCC due to the assumption that all global warming

effects from carbon emissions occur instantaneously, ignoring the lags in the climate system. Anthoff

and Tol (2014) use their model, FUND, to argue for lower estimates for SCC in the early twenty-first

century because their disaggregated damage function takes into account the fact that increases in

CO2 plus mild warming can improve agricultural productivity in the upper latitudes. However,

FUND does not allow agents to optimize consumption decisions dynamically. Future versions of

DSICE will aim to include more sophisticated damage functions.

IWG (2010) finds that lowering the rate of discounting for damages from 3 percent to 2 percent

increases SCC by a factor of 1.64. Another major component that affects SCC is the dynamic

structure of damages caused by global warming. For example, Dietz and Stern (2015) assume much

higher damages due to high temperature than does DICE (when the temperature increase is 4°C,

the damage is 50 percent of output in Dietz and Stern (2015), but only 4 percent in DICE-2007).

We do not examine these questions extensively in this study, but the limited experimentation we

did indicate that DSICE responds to these changes in the same way.

6 Social Cost of Carbon with Stochastic Climate Tipping

We next study how a tipping element in the climate system may affect SCC in the absence of any

economic uncertainty. First, we present a Markov chain specification of a representative climate

tipping element. We then specify benchmark parameters calibrated to a “representative” scenario,

and study the optimal climate policy; we call this our climate tipping benchmark. In a final step we

present a multidimensional sensitivity analysis. In light of the numbers provided in the few studies

available, we conclude that the impact of potential tipping point events should be carefully assessed.
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6.1 A Markov Chain Specification of the Climate Tipping Process

We study a simple example of tipping, with uncertainty about the time of tipping and the long-

run damage. J0 will denote the initial state, which we call the pre-tipping state, and D(J0) = 0.

“Tipping” is the time and event when the climate leaves state J0 and moves to some other state in

the tipping process. We follow the common assumption that warming alone causes tipping (IPCC

2014; Smith et al. 2009), and assume that the probability that a tipping event occurs at time t is

a function of temperature,

ptip,t = 1− exp
{
−λmax

{
0, TAT,t − TAT

}}
, (18)

where λ is the hazard rate parameter and TAT is the temperature for which ptip,t = 0. The hazard

rate parameter, λ, together with the temperature process determines the duration of the initial

state J0.

In this study, we examine a simple tipping process that models the gradual nature of the tipping

process and uncertainty about the ultimate damage caused. After a tipping event, the state J

follows one of three possible processes, each one also modeled by a Markov chain. Define Mi, for

i = 1, 2, or 3, to be a Markov chain with states {Ji,1,Ji,2,Ji,3,Ji,4,Ji,5} . Each processMi moves

in sequence through transient tipping states Ji,2, Ji,3, Ji,4, and ultimately arrives at the absorbing

state Ji,5.

The damage factor in state Ji,j is Di,j = D (Ji,j). The damages at the terminal states,

{D1,5,D2,5,D3,5} represent three different levels of long-run permanent damages. Let J∞ denote

the random long-run state, and let D∞ denote the random long-run damage from tipping (i.e.,

D∞ = D (J∞)).

Therefore, we begin in state J0, leave J0 at time t with probability ptip,t, and after a tipping

event J jumps to one of {J1,1,J2,1,J3,1} with equal probability. Before the tipping event, we do

not know which Mi process will be followed after tipping and we do not know the final level of

damage. However, at the tipping time, we learn whichMi governs the post-tipping process and the

long-run damage.

This is a stark simplification, but it does allow us to distinguish the expected duration of the

transient post-tipping process, D, from the uncertainty about the ultimate damage level. The fact
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that the uncertainty about D∞ is resolved when the climate tipping process is triggered allows us

to make statements about the relative impact of the hazard rate of the tipping point event, the

expected duration of the whole transient post-tipping process, and the mean and variance of D∞.

The unconditional mean of D∞ is denoted D∞, and the variance of D∞ is qD2
∞, where q is called

the “mean squared-variance ratio”. The ratio q is analogous to the square of the Sharpe ratio, a

concept used in portfolio theory, and arises naturally in our discussion of results.

In our examples, for each post-tipping Markov chainMi, we assume that its expected duration

from the time when the tipping event occurs to the time when the tipping state reaches the absorbing

state is known, and denoted Γ. We also refer to it as the expected duration of the post-tipping process.

There are four transient stages in the post-tipping process, and we assume that each transient stage

from Ji,j to Ji,j+1 has the same expected duration24 and that all transitions have an exponential

distribution, implying that the transition probability is p = 1 − exp
(
−4/Γ

)
.25 The complete

mathematical description of J and its calibration are contained in Appendix A.4.

6.2 SCC with Stochastic Climate Tipping

We choose parameter values that are roughly the average of the range of opinions in the literature.26

More precisely, the climate tipping benchmark case assumes λ = 0.0035, D∞ = 0.05, q = 0.2, and

Γ = 50. The choice of λ = 0.0035 implies that the conditional annual probability of tipping increases

by 0.35 percent for a warming of 1 °C. The Epstein–Zin preference parameters in the climate tipping

benchmark case are again ψ = 1.5 and γ = 10.

First, we use Figure 4 to show two sample paths of damage to output, 1 − Ω(TAT,t, Jt), in

percentage terms (the solid lines) and their corresponding paths for SCC (the dashed lines). The

two lines in the left panel represent one sample realization of a tipping process that tips in 2146

with the largest long-run damage level, and the two lines in the right panel represent one sample

realization of a tipping process that tips in 2102 with the smallest long-run damage level. The

sample paths of damage to output clearly show the four transient post-tipping stages (jumps).

The realized duration of the whole transient post-tipping process is 38 years for the sample path
24Technically, DSICE could easily handle cases where the the duration of each stage depends on the entire state

space.
25Experimentation indicated that five post-tipping stages is adequate to approximate processes with more states.
26A discussion of that literature is contained in Appendix A.4.
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Figure 4: Sample paths of damage on output and social cost of carbon for the stochastic climate
tipping benchmark

in the left panel (from 2146 to 2184) and 69 years for the sample path in the right panel (from 2102

to 2171), while the expected duration of the post-tipping process, Γ, is 50 years. Moreover, the

realized final damage level D∞ is 7.74 percent for the sample path in the left panel and 2.26 percent

for the sample path in the right panel, while its expectation is 5 percent. Therefore, the jumps in

SCC paths just represent the fact that the decision with regard to emissions mitigation strongly

depends on whether the tipping process has been triggered or not. This is due to the fact that

once the tipping process is triggered, we cannot prevent or delay the sequential damages that occur

during its multiple post-tipping stages and thus there is no strong incentive to change mitigation

policy, such as strong discontinuous changes in the SCC.

It is obvious that adding a tipping element to DICE will increase SCC. The question is how

much SCC is increased given the magnitude of the tipping point damages. Figure 5 helps addressing

that issue. It is based on computing the BAU case with and without tipping. The red line shows

the relative increase in damage when we add the tipping element. The increase is negligible until

2050, and peaks in the late 2100s at 40 percent. Reducing carbon emissions in 2005 would delay any

tipping and shift the red curve to the right, but most of those changes would occur after 2100. The

black line shows the impact of tipping on the marginal social cost of carbon, and shows that the

marginal damage of carbon rises by 60% in 2005. Even though the tipping element only moderately

increases damages 150 years from now, the impact on SCC today is substantial.
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Figure 5: Comparison of DSICE and DICE-CJL with ψ = 1.5 under Business-As-Usual (BAU)

We next consider the implications of a climate tipping point for the dynamics of SCC, the

carbon tax, the emissions control rate, and the two most important climate states (atmospheric

carbon concentration and surface temperature), respectively. Figure 6 shows the results of 10,000

simulation paths over the first 200 years for these variables.

Adding climate tipping risk is expected to result in a more intense mitigation compared to that

of a deterministic model. In fact, as panel C in Figure 6 shows, the optimal emissions control rate

follows a pattern related to that of the abatement expenditures in the previous figure. Throughout

this century it is optimal to more than double mitigation efforts in response to the threat of a

tipping point in the climate. Emissions reductions imply a strict reduction of atmospheric carbon

concentrations (panel D) compared to the result from the deterministic model. The resulting path

of surface temperature (panel E) corresponds to the temperature paths from the lowest of the most

recent emissions scenarios used by the IPCC (2013), implying a peak temperature increase before

2100 of around 2°C and a decline afterward.

A striking result in panel A of Figure 6 is the 2005 SCC of $188/tC, a large increase over the

$94/tC resulting from DICE-CJL (where ψ = 1.5) in the absence of any tipping risk. To underline

the significance of this major increase in SCC, recall our rather conservative assumptions on the

nature of the tipping point’s processes: we assume an expected duration of the tipping process of

50 years, expected post-tipping damage of 5%, and a mean squared-variance ratio of 0.2. As can

be seen from the blue dashed line in panel A of Figure 6, these assumptions indicate that there
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Figure 6: Simulation results for the climate tipping benchmark—climate system and policies
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is a 75 percent probability that a tipping process will not be triggered before 2150. Yet today’s

optimal SCC is $188/tC, twice the value obtained from the same model when the tipping point is

ignored. This strongly suggests that analyses of climate policy that simply ignore the potential of

abrupt changes to the climate system—as does the current United States government study (IWG

2010)—are significantly underestimating SCC.

Related to the analysis in the previous section, we also note here that by the year 2125 some

of our 10,000 simulated paths will produce a carbon tax that is less than SCC, indicating that

the benefits of mitigation may be exhausted. In fact, it appears that, with a slightly higher than

75 percent probability, mitigation policies will reach the limits of their effectiveness by 2125 and

alternative carbon management options might prove useful.

6.3 Discounting Damages

To understand the impact of a tipping element on SCC, we compute the discount rate of damages

from carbon emissions, denoted by ρ∆, which is implicitly used to value the marginal damage; that

is, we solve the following equation:

SCC0 =

∞∑
t=0

(1 + ρ∆)−t∆t

for the unknown ρ∆ , where SCC0 is given by the DSICE solution and ∆t is the expected extra

damage to consumption at time t caused by one extra unit of carbon emission in 2005. We do

this for DICE-CJL with ψ = 1.5, which has no tipping element, and the benchmark tipping case

described above (with ψ = 1.5 and γ = 10), but we use their BAU versions to cancel out the impact

of mitigation on damages by following the method of IWG (2010) for computing the discount rate

of damages. For comparison, we also compute the internal rate of return on capital investment,

which is the rate used to discount the additional consumption caused by one extra unit of capital

in 2005.

Table 7 displays ρ∆ and the internal rate of return on capital investment for both cases. We first

see that marginal damages in DICE-CJL BAU are discounted at 3.7 percent and capital investment

at 2.7 percent, a difference that is natural given that BAU sets mitigation to zero. These results

are also similar to other deterministic models. In contrast, we see that ρ∆ is only 2.4 percent in the
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Table 7: Discount rate of damages and internal rate of return on capital investment
DSICE BAU with DSICE BAU with the DICE-CJL BAU
the benchmark benchmark tipping setting with ψ = 1.5
tipping setting but ΩT (TAT) ≡ 1

Discount rate of damages 2.4% 2.4% 3.7%
Internal rate of return 2.6% 2.7% 2.7%on capital investment

tipping benchmark DSICE BAU case. But the internal rates of return on capital investment are

close to each other between DICE-CJL BAU and DSICE BAU. This tells us that our higher SCC is

not simply implied by higher potential damage from climate tipping events; otherwise the discount

rate of damage would be the same as with DICE-CJL. This lower discount rate of damages from

carbon emissions indicates that part of the justification of the higher SCC is demand for insurance.

To illustrate this justification more clearly, Table 7 also reports ρ∆ and the internal rate of return on

capital investment for the case of DSICE BAU with the benchmark tipping setting but ΩT (TAT) = 1

(i.e., damages are only from tipping events). Both rates are, respectively, close to those in the case

of DSICE BAU with the benchmark tipping setting and the default damage factor for temperature.

This implies that the lower discount rate of damages in DSICE BAU with the benchmark tipping

setting is not arising from the potentially nonlinear effect of additional damages from tipping events.

The intuition is that the damages from a permanent shock to productivity have little covariance

with short-run fluctuations in consumption. Therefore, damages from tipping events should be

discounted less than damages from temperature (which are proportional to output).

6.4 Sensitivity Analysis for the Climate Tipping Process

We next examine how the 2005 SCC is affected by parameter uncertainty in the climate tipping

process by recomputing SCC over a range of parameter choices that reflect scientific opinions. We

examine the six-dimensional collection of parameter values defined by the tensor product of the

following finite sets:

λ ∈ {0.0025, 0.0035, 0.0045} , D∞ ∈ {0.025, 0.05, 0.10} , q ∈ {0, 0.2, 0.4},

ψ ∈ {0.5, 1.25, 1.5, 1.75, 2.0}, γ ∈ {2, 5, 10, 15}, Γ ∈ {5, 50, 200}.
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We compute SCC in 2005 for all the cases and Table 8 presents the 2005 SCC for some of the

representative cases. For example, when λ = 0.0025, Γ = 5, D∞ = 0.025, and q = 0 (i.e., the first

row in Table 8) the 2005 SCC is $132/tC for ψ = 1.5 and γ = 10. The value of SCC with the

climate tipping process is always greater than in the deterministic case in which the climate tipping

process is ignored. This is expected since the tipping element increases possible future damage.

Table 8 also shows that SCC is larger for a higher inter-temporal elasticity of substitution

(IES, i.e., ψ), and a higher value of the risk-aversion parameter γ. Furthermore, we observe that

the initial-time SCC increases with higher (present-discounted) expected damage from the climate

tipping process, which can be caused by a higher hazard rate parameter (λ), a shorter expected

duration of the tipping process (Γ), a higher mean long-run damage level (D∞), or a higher mean

squared-variance ratio of the expected damage level (q). As mentioned earlier, our specification of

a climate tipping point in an economic growth model is unique by the standards of how climate

scientists view the nature of climate tipping points (e.g., Lenton and Ciscar 2013).

Hazard Mean duration of Mean long-run Mean squared Social cost of carbon (SCC)
rate tipping process damage level -variance ratio ψ = 0.5 ψ = 1.5 ψ = 2

λ Γ D∞ q γ = 2 γ = 10 γ = 2 γ = 10 γ = 2 γ = 10

0.0025 5 0.025 0 61 61 128 132 160 164
0.4 61 61 129 135 161 169

0.100 0 74 87 275 349 348 412
0.4 75 107 285 413 357 458

200 0.025 0 59 59 111 112 136 138
0.4 59 59 111 112 136 139

0.100 0 62 64 174 195 237 276
0.4 63 65 177 224 241 318

0.0045 5 0.025 0 63 64 148 151 188 192
0.4 63 64 149 155 189 200

0.100 0 91 113 365 418 422 461
0.4 94 144 375 462 429 498

200 0.025 0 59 59 120 121 149 151
0.4 59 59 120 122 150 153

0.100 0 66 69 227 259 318 356
0.4 67 71 233 304 324 394

Table 8: Initial social cost of carbon ($/tC) with stochastic climate tipping

Table 8 shows that with climate risk only, a higher IES (i.e., ψ) implies a higher SCC. Given

the positive productivity growth in our cases with climate risk only, a higher IES implies a lower

desire to smooth per capita consumption, leading to a higher investment on mitigation for higher
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future consumptions. This effect occurs because the discount rate of damages from tipping events

is less than the internal rate of return on capital investment, as shown in Table 7.

Table 8 also shows that a higher risk-aversion will imply a higher SCC too. Since our tipping

probability ptip,t can be reduced by slowing down the temperature increase through mitigation, and

the variance of output at time t is proportional to ptip,t(1−ptip,t), we see that the variance of output

can be diminished by reducing ptip,t (note that ptip,t is always smaller than 0.5 in our cases), and

so can the variance of consumption be reduced. Thus, a higher risk-aversion implies a greater value

for mitigation, and therefore also a higher SCC for the cases with climate risk only.

Table 8 shows that when D∞, the mean long-run damage level, is small, SCC is insensitive to

risk-aversion γ, or to the mean squared-variance ratio q (see rows with D∞ = 0.025), as a small D∞

implies a much lower variance of the uncertain, final, long-run damage level, which is equal to qD2
∞.

For example, when λ = 0.025, Γ = 5, D∞ = 0.025, and ψ = 0.5, SCC is $61/tC for all γ ∈ {2, 10}

and q ∈ {0, 0.4}. However, when D∞ is large (e.g., D∞ = 0.1), SCC increases significantly when

γ increases from 2 to 10, since a large D∞ implies a much larger variance of the uncertain, final,

long-run damage level. This reflects the nonlinear effect of climate tipping damage on SCC. In

models assuming separable preferences, it is only the mean of the uncertain damage, and not its

variance, that affects SCC.

In addition, from the results of all the cases we find that one common pattern exists: the 2005

SCC is linear in q. Figure 7 shows the numbers for SCC for various values of γ and q, when ψ = 1.5,

λ = 0.0035, Γ = 50, and D∞ = 0.05.27 Other cases have the same qualitative pattern, so we omit

them here. In Figure 7, the green line, the blue line, the black line, and the red line represent the

cases of γ = 2, 5, 10, and 15, respectively. We see that all these lines are straight, and that a higher

γ implies a greater slope, meaning that it is more sensitive to the variance of the uncertain damage

level.
27In Figure 7, the horizontal axis is the variance of the uncertain damage level at the final absorbing stage–namely

qD
2
∞, and it is scaled by 10,000.
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Figure 7: Sensitivity of the social cost of carbon to the risk-aversion parameter and uncertainty regarding
post-tipping damage (ψ = 1.5, λ = 0.0035, Γ = 50, and D∞ = 0.05).

This is not surprising since it fits into the logic of the basic consumption-based capital asset

pricing model (Lucas 1978), which tells us that the price of risk is related to its covariance with the

aggregate endowment. Since the magnitude of the damage is proportional to output, the damage

is strongly related to output; in fact, in this case climate damage is the only stochastic element of

output conditional on the tipping event. Therefore, the correlation is unity and SCC has a price of

risk component that is linear in the variance of the uncertain damage level.

Note that SCC increases as the variance of the uncertain damage level increases. One interpre-

tation of variance is that it represents our ignorance of the consequences of an unfolding tipping

process. With that interpretation, the horizontal difference represents the decline in SCC that

would result if we carried out more scientific research and reduced the uncertainty regarding the

post-tipping damage level. This observation shows that DSICE could be used to identify the value

of reducing uncertainty and to indicate which kinds of scientific studies would be the most valuable

to pursue. We leave this point for further research.

6.5 Other Approaches to Damage Functions with Tipping Events

A few studies attempt to integrate stochastic tipping into their deterministic models (e.g., Lempert

et al. 2000, Nordhaus 2009, Ackerman et al. 2010 and Ackerman and Stanton 2012). They do

this by altering the damage function in an ad hoc manner, such as increasing the convexity of
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the damage function. Similarly, Mastrandrea and Schneider (2001) increase the exponent of the

DICE-type damage function with the purpose of quantifying the effects of an abrupt non-linear

climatic change: the shutdown of the thermohaline circulation. The reasoning for increasing the

exponent is to deal with abrupt non-linear changes by creating a more non-linear damage function.

Lontzek et al. (2015) discusses this approach, showing with the DSICE model that this approach

fails to capture the implications of stochastic tipping points. It is furthermore, incompatible with

the real-world task of decision making under uncertainty. Therefore, DSICE shows that there is no

need for such ad hoc approximations.

Several IAMs have carried out analyses of a climate catastrophe event that directly affects utility.

Early studies include Gjerde et al. (1999) and Castelnuovo et al. (2003). These studies assume

that an uncertain level of global temperature triggers an irreversible drop in utility and find that

large reductions in emissions are optimal. Nevertheless, these studies apply a certainty-equivalent

approach to uncertainty and do not address stochasticity. Most recently, Cai et al. (2015) use

the DSICE framework to include the possibility of a catastrophic event with non-market impacts,

such as impacts on the ecosystem. Most cost−benefit analyses rarely take account of environmental

tipping points leading to abrupt and irreversible impacts on market and nonmarket goods and

services, including those provided by the climate and by ecosystems. Cai et al. (2015) shows that

including environmental tipping point impacts in a stochastic dynamic integrated assessment model

profoundly alters cost−benefit assessment of global climate policy. The risk of a tipping point, even

if it only has nonmarket impacts, could substantially increase the present optimal carbon tax.

7 The Social Cost of Carbon with Stochastic Growth and Climate

Tipping

The previous two sections have examined the impacts on SCC from stochastic growth and stochastic

climate tipping, both in isolation. The real world system includes both uncertainties and this section

presents the results of DSICE in the presence of long-run risk in both economic growth and in the

climate tipping process. The optimal policy will now have to balance the need to delay the triggering

of the tipping point process with the accumulation of additional capital in the face of stochastic

growth, and with the desire to smooth our consumption patterns. We study a stochastic growth and
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climate tipping benchmark case of parameter specification and carry out a sensitivity analysis.

7.1 The Stochastic Growth and Climate Tipping Benchmark

We use ψ = 1.5, γ = 10, λ = 0.0035, D∞ = 0.05, q = 0.2, and Γ = 50 for the stochastic growth

and climate tipping benchmark. Figure 8 shows the results of 10,000 simulation paths over the first

100 years with regard to the dynamics of SCC, the carbon tax, and the ratio of SCC to gross world

output, respectively. Other variables such as capital, consumption and its growth, atmospheric

carbon concentration, and surface temperature have pictures visually similar to the corresponding

pictures in Figures 2 and 6, so we omit them. We use the same line and color types as in previous

figures.

Figure 8: Simulation results for the stochastic growth and climate tipping benchmark
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We first study SCC. Its initial-time level is $124/tC and at 2100 the average (or expected) SCC

is $461/tC. Thus, the path of the expected SCC is situated between its paths obtained from our

analyses of each risk component in isolation. In 2005, the SCC of $124/tC is even exactly the average

of the numbers obtained from the two cases from the previous sections ($61/tC and $188/tC).

Compared to a deterministic model, which ignores both risk components and has ψ = 0.5, we find

that the 2005 SCC increases by a factor of more than three, and that with 90 percent probability

SCC will be significantly higher throughout this century.

The presence of both stochastic growth and climate tipping risk also increases the variance of

the future SCC relative to the separate stochastic growth and climate tipping benchmarks. For

example, SCC in 2100 ranges from $100/tC (the 1% quantile) to $1,700/tC (the 99% quantile).

The carbon tax, which we present in panel B, is also more likely to hit its upper bound after 2072

than in either of the single-risk benchmarks. The combination of these risks implies that there

is a probability of about 7.5 percent that mitigation policies will have reached the limit of their

effectiveness by 2100.

We also revisit the analysis of the SCCt/Yt ratio of Section 5.1, here in the case of stochastic

growth and climate tipping. Panel C in Figure 8 shows that the SCCt/Yt ratio is quite stochastic.

First, we note that compared to the deterministic version of the model, SCCt/Yt is about three

times larger in 2005 while at 2100 it is expected to be about twice as large. Second, we find that

the expected SCCt/Yt is decreasing over time by about 50 percent, and is thus not constant. Third,

and most importantly, we find that the ratio of SCC to gross world output is not close to any simple

path, but is rather a stochastic process varying over the interval [0.00108, 0.00215] at year 2100

and over an even larger interval for the second half of this century. When contrasting our results

with the constant SCCt/Yt ratio postulated by Golosov et al. (2014), we find that the inclusion

of a long-run risk and a tipping process with Epstein–Zin preference makes SCCt/Yt significantly

uncertain, and leads to substantially different qualitative and quantitative results.

Table 9 shows SCC in 2005, mean SCC in 2100, and the 90 percent quantile SCC in 2100

for our three benchmark examples. We see that the 2005 SCC and the mean SCC in 2100 of

the stochastic growth and tipping benchmark are, respectively, in between those of the stochastic

growth benchmark and the climate tipping benchmark, but that the 90 percent quantile SCC in

2100 of the stochastic growth and tipping benchmark is larger than the corresponding ones of both
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DICE-CJL DICE-CJL DSICE (ψ = 1.5, γ = 10)
(ψ = 0.5) (ψ = 1.5) Stochastic Climate Stochastic Growth

Growth Tipping with Tipping
2005 SCC 37 94 61 188 124

Mean SCC in 2100 180 389 357 620 461
S.d. of SCC in 2100 0 0 247 105 316

90% quantile SCC in 2100 180 389 667 662 844

Table 9: SCC ($/tC) for three benchmark examples

the stochastic growth benchmark and the climate tipping benchmark.

Furthermore, when comparing our results to DICE-CJL with ψ = 0.5, we find that the interac-

tion between multiple uncertainties, such as long-run risk and a tipping process, could be nontrivial:

for example, while either long-run risk or a tipping process leads to a higher 2005 SCC than does the

deterministic DICE-CJL (with ψ = 0.5), their combination does not imply a further increase in the

2005 SCC when compared to cases with only one type of uncertainty. Thus, it is necessary to carry

out a systematic analysis rather than a stylized one. For the case of DICE-CJL with ψ = 1.5 we

have already argued in Section 5.2 that, as there is no risk, the positive future growth in productivity

and a higher ψ (here: 1.5) leads to larger incentives to avoid climate damage increases. The SCC

will be larger in that case when compared to the case of stochastic growth only. Nevertheless, the

combination of stochastic growth and climate tipping will produce SCC substantially larger than in

the deterministic case.

7.2 Sensitivity of the Stochastic Growth and Climate Tipping Benchmark

We compute the sensitivity of the stochastic growth and climate tipping benchmark case to several

parameters. Table 10 lists the 2005 SCC for selected combinations of the parameter values for the

sensitivity analysis. These parameters are the hazard rate λ, the mean duration time of the tipping

process D, the mean long-run damage level D∞, the mean squared-variance ratio q, the elasticity

of inter-temporal substitution ψ, and the risk-aversion parameter γ.
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Hazard Mean duration of Mean long-run Mean squared Social cost of carbon (SCC)
rate tipping process damage level -variance ratio ψ = 0.5 ψ = 1.5 ψ = 2

λ Γ D∞ q γ = 2 γ = 10 γ = 2 γ = 10 γ = 2 γ = 10

0.0025 200 0.025 0 43 70 102 76 120 78
0.0035 5 0.05 0 63 133 177 144 217 149

0.10 0.4 93 337 313 373 400 384
50 0.05 0 55 111 156 124 192 128

0.2 55 114 157 124 193 132
0.10 0 73 187 247 212 317 220

0.0045 5 0.10 0 102 294 356 314 455 324
0.2 104 339 365 372 466 383
0.4 106 394 374 438 477 446

50 0.05 0 59 122 171 136 212 141

Table 10: Initial social cost of carbon ($/tC) under stochastic growth and climate tipping

We find that some qualitative properties found in previous examples with only climate risk still

hold—that is, a higher hazard rate parameter λ, a shorter expected duration Γ, a higher mean

damage level D∞, or a larger mean squared-variance ratio q will lead to a higher SCC, although

their quantitative values differ substantially. For example, by comparing the cases of λ = 0.0035

and λ = 0.0045 from Table 10 with the other values, D∞ = 10%, Γ = 50, and q = 0, we see that the

case with λ = 0.0045 has a larger SCC than the case with λ = 0.0035. Moreover, the range of the

initial SCC is wide, from $43/tC (the case with λ = 0.0025, Γ = 200, D∞ = 0.025, q = 0, ψ = 0.5,

and γ = 2) to $477/tC (the case with λ = 0.0045, Γ = 5, D∞ = 0.10, q = 0.4, ψ = 2, and γ = 2).

Furthermore, by comparing the columns with γ = 2, or comparing the columns with γ = 10,

we see that a higher IES always implies a higher SCC for the cases with γ ≤ 10. This is consistent

with our findings in earlier examples with stochastic growth only or climate risk only. However,

the qualitative properties of the risk-aversion parameter γ are now nontrivial: Table 10 shows that

the effect of a higher γ on SCC can be positive or negative. This non-triviality comes from the

combination of economic risk and climate tipping risk: with economic risk only, if ψ is small (i.e.,

ψ < 0.7), then a higher risk-aversion implies a higher SCC; but with climate tipping risk only, a

higher risk-aversion always implies a higher SCC for any IES. For the cases with ψ = 0.5 in Table

10, a higher risk-aversion implies a higher SCC, but in most cases in Table 10 with ψ = 1.5 and

all cases with ψ = 2, a higher γ will result in a smaller SCC, implying that for lower levels of ψ

the effect of higher γ is more likely to be positive. This complicated pattern originates from the
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interaction between the nontrivial pattern of the impact of ψ and γ on SCC in the stochastic growth

cases and the pattern in the climate tipping cases.

8 Summary and Conclusion

This study has presented DSICE, a computational framework for the stochastic integrated assess-

ment of issues related to the joint evolution of the economy and the climate. We analyzed the

optimal level and dynamic properties of SCC and the associated optimal carbon tax in the face of

stochastic and irreversible climate change and its interaction with economic factors including growth

uncertainty and preferences regarding risk. We did this in a manner that allows us to compare our

results to the deterministic model in Nordhaus (2008), an influential and well-known integrated

assessment model. The specific examples in this study show three basic points.

First, we use Epstein–Zin preferences in order to specify tastes that are more compatible with

the evidence on risk-aversion and the inter-temporal elasticity of substitution. This also allows us

to separate the impact of risk-aversion from the impact of inter-temporal substitution. The impact

of risk-aversion depended on the nature of the risk, with SCC rising as risk-aversion increases for

the tipping case, but with more ambiguous implications for the case of stochastic growth.

Second, the incorporation of long-run risk shows that SCC is itself a stochastic process with

considerable uncertainty. Climate change issues are not just about the expected state of the climate

in the future, but also about avoiding disasters. Climate change policy has to recognize the uncer-

tainty about future SCC, and be prepared to consider policies, such as geoengineering and carbon

capture, that are currently considered to have costs that would never be justified by deterministic

models which essentially focus on the expected SCC. An examination of parameter uncertainty

also shows that the range of plausible SCC values is much larger than implied by other integrated

assessment analyses. We found this great uncertainty for single parameterizations; when we also

include uncertainty regarding economic parameters, that uncertainty is even greater.

Third, climate scientists have recently argued that tipping elements in the climate system con-

tribute to uncertainty regarding future climate conditions. We incorporate the concept of tipping

elements into DSICE, and find that the threat of a tipping element leads to significant and immedi-

ate increases in SCC, where the increase in SCC is disproportionately large relative to the damage
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caused by tipping. This is true even for moderate assumptions regarding the likelihood and im-

pacts of climate tipping events. SCC can be very high, even without assuming catastrophic climate

change events, but rather by merely assuming plausibly parameterized examples of uncertain and

irreversible climate change. An internal rate of return analysis showed that one should use a smaller

discount rate when valuing damage from tipping events, a natural result since the damage caused

by tipping is less correlated to total consumption than is damage to output.

Finally, we have also shown that it is possible to solve empirically plausible nine-dimensional

models of the climate and the economy that include (i) productivity shocks of the kind studied in

macroeconomics, (ii) dynamically non-separable preferences consistent with observed prices of risk,

and (iii) stochastic tipping elements in the climate system. Our examination of examples including

both the usual Nordhaus-style damage function for output and damages arising from tipping events

show that these separate sources of damages must be examined together. The usual approach is

to study them separately or to create ad hoc approximations. This study shows that analyses that

avoid such shortcuts are both feasible and necessary if we are to obtain reliable answers. This study

has ignored many features that might be important, but this weakness is unavoidable when modeling

a complex system, particularly one which is a merger of two enormously complex systems. This

study has shown that it is possible to look at models of much greater complexity than before, and,

in the case of SCC, incorporating that complexity significantly alters the implications for economic

policy. The fact that we solve a nine-dimensional dynamic programming problem with long-run risk

over a span of 600 years implies that it is straightforward to use those nine dimensions to model

other topics, such as geoengineering, robust optimization, and learning.
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Appendices

A.1 Definition of Parameters and Variables

In Equations (10), (11), (1), and (6), we introduce Lt (world population), σt (carbon intensity

of output), θ1,t (mitigation cost coefficient), ELand,t (annual carbon emissions from biological pro-

cesses), and FEX,t (exogenous radiative forcing). In the following, we specify these variables more

precisely. Here, we use annual time steps, which correspond to the decadal time steps in Nordhaus

(2008):

Lt = 6514e−0.035t + 8600(1− e−0.035t) (A.1)

σt = σ0 exp
(
−0.0073(1− e−0.003t)/0.003

)
(A.2)

θ1,t =
1.17σt

(
1 + e−0.005t

)
2θ2

(A.3)

ELand,t = 1.1e−0.01t (A.4)

FEX,t =


−0.06 + 0.0036t, if t ≤ 100

0.3, otherwise.

(A.5)

Tables A.1–A.6 list the values and/or definitions of all critical parameters, variables, and symbols

used in the main text. We use Nordhaus (2008) for economic parameters common to DSICE and

DICE. Table A.1 lists the critical parameters and variables in the economic system in the absence

of climate impact and mitigation.
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t ∈ {0, 1, ..., 600} time in years (t represents year t+ 2005)
ψ ∈ [0.5, 2] inter-temporal elasticity of substitution (default: 1.5)
γ ∈ [2, 15] risk-aversion parameter (default: 10)
β = 0.985 utility discount factor
α = 0.3 capital share
α1 2005 growth rate of the productivity trend (default: 0.0092)
α2 rate of decline in growth rate of the productivity (default: 0.001)
δ = 0.1 annual capital depreciation rate
At productivity trend at time t, A0 = 0.0272

Lt population at time t
Kt capital at time t (in $ trillions), K0 = 137

Ct consumption at time t
It investment at time t
Yt gross world output at time t

Table A.1: Parameters, variables, and symbols for the economic system of DSICE

Table A.2 lists the critical parameters and variables about climate impact, emission and miti-

gation in the economic system.

ΩT damage factor function from temperature increase at time t
π1 = 0 climate damage factor parameter
π2 = 0.0028388 climate damage factor parameter
θ2 = 2.8 mitigation cost parameter
σ0 = 0.13418 carbon intensity in 2005
σt carbon intensity at time t
θ1,t adjusted cost for backstop at time t
Ψt mitigation expenditure at time t
µt emission control rate at time t
Et carbon emissions (billions tons) at time t
EInd,t industrial carbon emissions (billions tons) in year t
ELand,t carbon emissions (billions tons) from land use in year t
SCCt social cost of carbon at time t

Table A.2: Parameters, variables, and symbols for the economic system of DSICE

Table A.3 lists the critical parameters and variables for the long-run risk in productivity.
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Ãt = ζtAt stochastic productivity at time t
ζt stochastic productivity shock at time t, ζ0 = 1
χt persistence of productivity shock at time t, χ0 = 0
% = 0.035 stochastic productivity process parameter
r = 0.775 stochastic productivity process parameter
ς = 0.008 stochastic productivity process parameter
gζ transition function of ζt
gχ transition function of χt
ωζ,t i.i.d. shocks in transition of ζt
ωχ,t i.i.d. shocks in transition of χt

Table A.3: Parameters, variables, and symbols for the stochastic growth specification

Table A.4 lists the critical parameters and variables for the carbon cycle.

MAT,t carbon concentration in atmosphere (billion tons)
at time t, MAT,0 = 808.9

MUO,t carbon concentration in upper ocean (billion tons)
at time t, MUO,0 = 1255

MLO,t carbon concentration in lower ocean (billions tons)
at time t, MLO,0 = 18365

Mt = (MAT,t,MUO,t,MLO,t)
> carbon concentration vector at time t

ΦM transition matrix of carbon cycle
φ12 = 0.019 rate of carbon diffusion from atmosphere to upper ocean
φ23 = 0.0054 rate of carbon diffusion from upper ocean to lower ocean
φ21 = 0.01 rate of carbon diffusion from upper ocean to atmosphere
φ32 = 0.00034 rate of carbon diffusion from lower ocean to upper ocean

Table A.4: Parameters and variables in the carbon system

Table A.5 lists the critical parameters and variables for the temperature system.

TAT,t global average surface temperature increase
above the year 1900 temperature level (in °C), TAT,0 = 0.7307

TOC,t global average ocean temperature increase
above the year 1900 temperature level (in °C), TOC,0 = 0.0068

Tt = (TAT,t, TOC,t)
> temperature vector at time t

ΦT transition matrix of temperature system
ξ1 = 0.037 temperature transition parameter
ξ2 = 0.047 rate of TAT,t decrease due to infrared radiation to space
ϕ12 = 0.010 rate of heat diffusion from atmosphere to ocean
ϕ21 = 0.0048 rate of heat diffusion from ocean to atmosphere
Ft radiative forcing at time t
FEX,t exogenous radiative forcing in year t
η = 3.8 radiative forcing parameter
M∗AT = 596.4 preindustrial atmospheric carbon concentration

Table A.5: Parameters and variables in the temperature system
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Table A.6 lists the critical variables for the tipping element part of the climate system:

Jt tipping state at time t
J0 initial state of Jt (i.e., pre-tipping state)
Mi post-tipping Markov chain i ∈ {1, 2, 3}
Ji,j possible values of the tipping state variable inMi for j ∈ {1, 2, 3, 4, 5}
J∞ uncertain long-run tipping state given time t = 0 information
Di,j = D(Ji,j) damage level at the tipping state Ji,j
D∞ = D(J∞) uncertain long-run tipping damage level given time t = 0 information
ptip,t tipping probability (i.e., probability that the tipping state leaves its

initial state, J0) at time t
p transition probability of transient states in the post-tipping process
ωJ,t i.i.d. shock in transition of Jt
gJ(ωJ,t) transition function of Jt
TAT = 1 surface temperature parameter used in tipping probability function
λ ∈ [0.0025, 0.0045] annual hazard rate parameter
D∞ ∈ [0.025, 0.10] mean tipping damage level in the long run
q ∈ [0, 0.4] mean-square-variance ratio for the uncertain tipping damage level
Γ ∈ [5, 200] expected duration (years) of the whole tipping process

Table A.6: Parameters and variables for the climate tipping element

A.2 Calibration and Discretization of the Productivity Process

We construct a time-dependent, finite-state Markov chain for the productivity process (ζt, χt),

which depends on three parameters: %, r, and ς. Our calibration target is to choose these three

parameters so that we match the conditional and unconditional moments of endogenous consumption

growth with the statistics from observed annual market data. The data on consumption growth are

from 1930 to 2008. For each choice of %, r andς, and the sizes of the Markov chains, nζ and nχ, we

solve DSICE assuming damage from climate is zero (i.e., Jt = J0 and π1 = π2 = 0) because there

is little climate damage in the period with observed consumption data. We also use our default

case preference parameters, ψ = 1.5 and γ = 10. Once we obtained a solution, we computed 10,000

simulations of the consumption process over the first century and computed the conditional and

unconditional moments of the per capita consumption growth paths.

We now present the details. Our construction of the Markov chain is adapted from the following

processes:28

log
(
ζ̂t+1

)
= log

(
ζ̂t

)
+ χ̂t + %ω̂ζ,t,

28To avoid confusion, we use ζ̂t and χ̂t to represent the continuous random variables at each time t, while ζt and
χt represent the Markov chains.
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χ̂t+1 = rχ̂t + ςω̂χ,t,

where ω̂ζ,t, ω̂χ,t ∼ i.i.d.N (0, 1). We know that χ̂t is a normal random variable with mean 0. Denote

Υt ≡ Var {χ̂t}, we have Υt+1 = r2Υt + ς2, then from recursive iteration we get

Υt =
ς2
(
1− r2t

)
1− r2

(A.6)

for t > 0. We also know that log
(
ζ̂t

)
is a normal random variable with mean 0, and

log
(
ζ̂t

)
=

t−1∑
s=1

χ̂t + %

t−1∑
s=0

ω̂ζ,s.

Denote ∆t ≡ Var
{

log
(
ζ̂t

)}
. Since E {χ̂tχ̂s} = r|t−s|Υmin{t,s}, we have

∆t = E
{(

log
(
ζ̂t

))2
}

=

(
t−1∑
s=1

Υs + 2
t−1∑
τ=2

τ−1∑
s=1

rτ−sΥs

)
+ %2t, (A.7)

for t > 0.

Now we use the the values of Υt in (A.6) and ∆t in (A.7) to define the values of our Markov

chains (ζt, χt). We choose the values of χt as {χt,j : j = 1, ..., nχ} where χt,j are equally spaced

in
[
−3
√

Υt, 3
√

Υt

]
(the probability that the continuously distributed random variable χ̂t is in[

−3
√

Υt, 3
√

Υt

]
is 99.7 percent), at each time t. Similarly, we choose the values of ζt as {ζt,i : i = 1, ..., nζ}

so that log (ζt,i) are equally spaced in
[
−3
√

∆t, 3
√

∆t

]
(the probability that the continuously dis-

tributed random variable log
(
ζ̂t

)
is in

[
−3
√

∆t, 3
√

∆t

]
is 99.7 percent).

Next we set the transition probability matrices for our Markov chains (ζt, χt). For the paired

values {(ζt,i, χt,j) : i = 1, ..., nζ , j = 1, ..., nχ} (ζ0,i ≡ 1 and χ0,j ≡ 0), we apply the method in

Tauchen (1986) to define the transition probability from χt,j to χt+1,j′ :

Pr
{
χt+1,j′ | χt,j

}
= Φ

(
1

ς

(
χt+1,j′ + χt+1,j′+1

2
− rχt,j

))
−Φ

(
1

ς

(
χt+1,j′−1 + χt+1,j′

2
− rχt,j

))
,
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for j′ = 2, ..., nχ − 1, and

Pr {χt+1,1 | χt,j} = Φ

(
1

ς

(
χt+1,1 + χt+1,2

2
− rχt,j

))
,

Pr {χt+1,n | χt,j} = 1− Φ

(
1

ς

(
χt+1,n−1 + χt+1,n

2
− rχt,j

))
,

where Φ (·) is the cumulative normal distribution function, for any j = 1, ..., nχ. Similarly, the

transition probability from (ζt,i, χt,j) to ζt+1,i′ is defined as

Pr
{
ζt+1,i′ | (ζt,i, χt,j)

}
= Φ

(
1

%

(
log
(
ζt+1,i′

)
+ log

(
ζt+1,i′+1

)
2

− (log (ζt,i) + χt,j)

))

−Φ

(
1

%

(
log
(
ζt+1,i′

)
+ log

(
ζt+1,i′+1

)
2

− (log (ζt,i) + χt,j)

))
,

for i′ = 2, ..., nζ − 1, and

Pr {ζt+1,1 | (ζt,i, χt,j)} = Φ

(
1

%

(
log (ζt+1,1) + log (ζt+1,2)

2
− (log (ζt,i) + χt,j)

))
,

Pr {ζt+1,n | (ζt,i, χt,j)} = 1− Φ

(
1

%

(
log (ζt+1,n−1) + log (ζt+1,n)

2
− (log (ζt,i) + χt,j)

))
,

for any i = 1, ..., nζ , j = 1, ..., nχ.

We examine sizes of the Markov chains, and find that nζ = 91 and nχ = 19 are enough for a good

approximation (i.e., distributions of the solutions of our stochastic growth benchmark example in

the first 100 years are almost invariant to a higher nζ or nχ) with the calibrated values at % = 0.035,

r = 0.775, and ς = 0.008. Moreover, with nζ = 91 and nχ = 19, our transition probability matrix

is not nearly degenerated at all times in our examples.29

We compare the performance of DSICE to match the statistics of market data with the perfor-
29

A nearly degenerated probability matrix means that at one state, the maximum of its nonzero transition probabil-
ities is more than 99.9%.
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mance of the study by Jensen and Traeger (2014) who specify a model for labor productivity growth.

Because the logarithm of the total factor productivity is equal to (1−α) times the logarithm of the

labor productivity, where α = 0.3 is the output elasticity of capital, the process implied in Jensen

and Traeger (2014) is equivalent to the following total factor productivity process:

log
(
ζ̃t+1

)
= log

(
ζ̃t

)
+ χ̃t + 0.0133ω̃ζ,t,

χ̃t+1 = 0.5χ̃t + 0.0133ω̃χ,t.

Table A.7 provides a comparison of the statistics of the observed annual consumption data with the

simulation statistics of DSICE (with % = 0.035, r = 0.775, and ς = 0.008), and with the simulation

statistics of DSICE when using the Jensen and Traeger (2014) parameters (% = 0.0133, r = 0.5,

and ς = 0.0133). For each simulation path of the per capita consumption growth, gc, we compute

its mean E (gc), standard deviation σ(gc) and order-j autocorrelations (i.e., the correlation between

gc,t+j and gc,t). Using 10,000 simulation paths of DSICE, we compute the medians and confidence

intervals of E (gc), σ(gc), and order-j autocorrelations. Nordhaus (2008) uses an initial-time growth

rate of 0.92 percent (and decreasing afterward) for the productivity trend, which leads to 1.3 percent

for per capita consumption growth for this century in DICE-2007 and DICE-CJL with ψ = 0.5. We

follows Nordhaus (2008) and use the same productivity trend, so our median of E (gc) is also 1.3

percent; smaller than the market estimate of the per capita consumption growth in the last century.

However, our confidence interval still contains the historical estimate. The medians of σ(gc) and

the order-1 autocorrelation are 0.023 and 0.43, close to the corresponding numbers from the annual

market data, and the order-2 autocorrelation of the data is also inside its 90 percent corresponding

confidence interval from our simulations.

However, the process in Jensen and Traeger (2014) has a much smaller median standard devia-

tion, only 0.013, and even its confidence interval [0.010, 0.016] does not contain the market estimate

of the standard deviation, 0.022 . Moreover, the 90 percent confidence interval of the order-2 au-

tocorrelation of the simulation from the Jensen–Traeger process, [0.27, 0.70], does not contain the

order-2 autocorrelation of the data.

We also performed a lag-1 autoregression analysis for each consumption growth path gc,t, that
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is, we assume

gc,t+1 − gc,t+1 = Λ(gc,t − gc,t) + εt, (A.8)

where gc,t is the mean of gt from the 10,000 simulation points at time t, and Λ is the autoregression

coefficient. For each simulation path, we use the first 100 years to get an estimate of Λ, and the

standard deviation of the lag-1 autoregression residuals, denoted σ(ε), which is also known as the

one-period-ahead conditional standard deviation. In total, we obtain 10,000 estimates of Λ and

σ(ε).

From Table A.7, we see that the autoregression statistics with our calibrated parameter values

also perform better in matching the data than the statistics resulting from the parameter choices in

Jensen and Traeger (2014), particularly σ(ε) as its value from observed data, 0.0179, is outside of

the confidence interval from the Jensen–Traeger process, but is still within the 90 percent confidence

interval from DSICE.

Observed data DSICE Jensen and Traeger (2014)
Variable Estimate Median 5% 95% Median 5% 95%
E (gc) 0.019 0.013 0.002 0.025 0.013 0.006 0.020
σ(gc) 0.022 0.023 0.019 0.028 0.013 0.010 0.016

order-1 autocorrelation 0.48 0.43 0.19 0.64 0.55 0.30 0.73
order-2 autocorrelation 0.17 0.37 0.13 0.59 0.51 0.27 0.70

Λ 0.46 0.48 0.24 0.68 0.59 0.36 0.76
σ(ε) 0.0179 0.0203 0.0177 0.023 0.011 0.009 0.012

Table A.7: Statistics of per capita consumption growth

A.3 Calibration of the Deterministic Climate System

The climate system parameters of Nordhaus (2008) were chosen to represent a 10-year time

period discretization and match the business-as-usual path (i.e., no emissions control) in Nordhaus

(2008). Analyses of economic uncertainty and productivity shocks typically use much shorter time

periods. Our choice of one-year time periods for the economic system requires us to choose climate

system parameters, φ12, φ21, φ23, φ32, ξ1, ξ2, ϕ12, and ϕ21, consistent with one-year periods. As

in Nordhaus (2008), φ21 = φ12M̃
∗
AT/M̃

∗
UO and φ32 = φ23M̃

∗
UO/M̃

∗
LO, where M̃

∗
AT = 587.5, M̃∗UO =

1144, and M̃∗LO = 18340 are the preindustrial equilibrium carbon concentrations in the atmosphere,

upper ocean, and lower ocean, respectively; moreover, we also set ξ2 = ξ1η/ξ3, where ξ3 = 3 is
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the equilibrium climate sensitivity and η = 3.8 is the radiative forcing parameter, as in Nordhaus

(2008). Thus, there are five parameters left for the calibration: φ12, φ23, ξ1, ϕ12, and ϕ21.

We choose parameters to match the first 500 years of the business-as-usual paths. At first, we

compute the business-as-usual data on the dynamics of the three-dimensional carbon cycle and two-

dimensional temperature from the model of Nordhaus (2008), denoted as MN (t) = (MN,AT (t) ,MN,UO (t) ,MN,LO (t))

and TN (t) = (TN,AT (t) , TN,OC (t)), respectively, for only the values of t at the decadal time nodes,

t0 = 0, t1 = 10, t2 = 20, ..., and t50 = 500. These serve as our data. We take the rate of emissions

in the Nordhaus business-as-usual path at decadal time, and use linear interpolation to produce

data on the business-as-usual emissions path, denoted EN(t), for each year t. For each choice of

the parameters, we solve the climate system equations with emissions set at EN(t) and find the

implied climate system paths, M (t) = (MAT (t) ,MUO (t) ,MLO (t)), and T (t) = (TAT (t) , TOC (t)).

We choose values for the parameters φ12, φ23, ξ1, ϕ12, and ϕ21 to minimize the L2 norm of the

difference between the decadal time series data, MN (ti) and TN (ti), and our annual paths at those

decadal times, M (ti) and T (ti); more precisely, we solve

min
φ12,φ23,ξ1,ϕ12,ϕ21

50∑
i=1

{(
MAT (ti)−MN,AT (ti)

MN,AT (ti)

)2

+

(
MUO (ti)−MN,UO (ti)

MN,UO (ti)

)2

+

(
MLO (ti)−MN,LO (ti)

MN,LO (ti)

)2

+

(
TAT (ti)− TN,AT (ti)

TN,AT (ti)

)2

+

(
TOC (ti)− TN,OC (ti)

TN,OC (ti)

)2
}
,

s.t. M(t+ 1) = ΦMM(t) + (EN (t) , 0, 0)> ,

T(t+ 1) = ΦTT(t) + (ξ1Ft (MAT(t)) , 0)> ,

t = 0, 1, 2, ..., 500.

The solution is φ12 = 0.019, φ23 = 0.0054, ξ1 = 0.037, ϕ12 = 0.01, and ϕ21 = 0.0048, which then

implies φ21 = φ12M̃
∗
AT/M̃

∗
UO = 0.01, φ32 = φ23M̃

∗
UO/M̃

∗
LO = 0.00034, and ξ2 = ξ1η/ξ3 = 0.047.

Figure A.1 shows the five business-as-usual paths from the model of Nordhaus (2008) with

decadal time steps in marks, circles, and pluses, and the corresponding fitted business-as-usual

paths from our annualized deterministic model at the calibrated parameter values. The match is

very good in the first 100 years, a horizon often used for calibration in the climate literature. The

errors in the fit are in the later centuries, where they are unlikely to significantly affect the results
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Figure A.1: Business-as-usual paths for calibration

for the first century, the focus of this study.

A.4 Calibration of the Stochastic Climate Tipping Process

One example of tipping elements would be the glaciers in the west Antarctic. Suppose that we

believe this system of glaciers is stable at preindustrial temperatures but worry about the impact of

warming. Increases in atmospheric temperatures could accelerate melting in the glaciers. Perhaps

a small increase in temperature and melting will not upset their long-run stability, but higher

temperatures may increase melting by so much that the glaciers’ structure is disturbed and melting

is accelerated and will continue even if temperatures were to go back to preindustrial levels.

The climate literature has identified several major tipping elements in the climate system. An

example of a major tipping element is irreversible melting of the Greenland ice sheet. Recent

projections of future global warming suggest that it is more likely than not that the Greenland ice

sheet tipping point will be triggered within this century (IPCC 2014). Joughin et al. (2014) argue

that marine west Antarctic ice sheet collapse is already under way. Melting of the Greenland ice

sheet (which contains the equivalent of about seven meters of global sea level) could lead to a global

sea level rise of up to 0.5–1 meter per century (Lenton et al. 2008). Other examples of climate

tipping elements include the weakening or shutdown of the Atlantic thermohaline circulation or the

dieback of the Amazon rainforest.

We first calibrate the probability of triggering the tipping point event. Given Equation (18),
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we need to calibrate λ, the hazard rate parameter, and TAT, the lower bound of atmospheric

temperature for which ptip,0 = 0. Ideally, climate scientists would specify a value for the hazard rate

parameter λ. Unfortunately, no studies exist that would provide specific conditional probabilities

of triggering a tipping point event for any given location in the state space. According to Kriegler

et al. (2009) there is a substantial lack of knowledge about the underlying physical processes of

climate tipping elements. The most reliable source of information is reviews of expert opinion on

the cumulative trigger probability at some distant time given some degree of global warming, for

example 3 °C in 2100 (see Kriegler et al. 2009; Zickfeld et al. 2007; and Lenton 2010). The subjective

probability assessments differ significantly between experts, albeit the range of uncertainty about

the likelihood of triggering a tipping point is much lower for some climate elements (Kriegler et

al. 2009). However, the absence of precise knowledge about the physical system is not essentially

a problem for our analysis: decisions today must be based on current beliefs about the climate

system and will reflect the imprecise nature of those beliefs. Therefore, we make use of the assessed

cumulative trigger probabilities of tipping and infer trigger hazard rates from them. Doing so,

we assume tacitly that the subjective expert opinions are the same as those held by the social

planner. Lenton (2010) studies several climate elements and provides the cumulative probability of

triggering a tipping point of each element. We choose Lenton (2010) as the source of data because

he summarizes the findings from Kriegler et al. (2008) and other expert elicitation studies. Since

our interest is in modeling a representative tipping element we use the average of these numbers to

approximate the probability of triggering a representative climate tipping element.30

The first two rows of Table A.8 depict the cumulative probabilities of triggering a climate tipping

event until 2100 for different levels of global warming until 2100. We have inferred these numbers

from Lenton (2010).31 These numbers imply, for example, that given a 4 °C increase in global

warming in the year 2100, the likelihood of a tipping point event being triggered until 2100 is 50

percent. Our goal is to use these numbers to compute an annual conditional trigger probability. We

do this by first specifying the general relationship between a hazard rate ht and the contemporaneous

level of global warming above the 2000 temperature in a simple linear form by ht = λT̃AT,t, where λ
30The tipping elements used for the calibration of the benchmark tipping element are: Arctic summer sea ice,

Greenland ice sheet, Amazon rain forests, west Antarctic ice sheet, Boreal forests, Atlantic thermohaline circulation,
El Niño—Southern Oscillation, and West African monsoon.

31We thank Timothy Lenton for helping us identify the probability numbers for each tipping element and their
average, based on Lenton (2010).
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is a hazard rate parameter and T̃AT,t is the nominal change in temperature above the year 2000 level

(t represents year t + 2000 here). We then assume that experts in general express their subjective

probabilities while bearing in mind that temperature linearly evolves until the specified level at the

end of this century.32

We then integrate the hazard rate ht for up for 100 years and obtain the cumulative hazard H100.

The probability of a tipping point having not occurred during this century is then exp (−H100). It

follows that P , the cumulative probability of a tipping point having been triggered until 2100, is

P = 1− exp (−H100). With the former equation we can solve for the hazard rate parameter λ:

λ = − log(1− P )

50
(
T̃AT,100 − T̃AT,0

) . (A.9)

T̃AT,100 − T̃AT,0 1 °C 2 °C 3 °C 4 °C 5 °C 6 °C
P (cumulative probability until 2100) 12.5% 25% 37.5% 50% 62.5% 75%
λ (inferred hazard rate parameter) 0.00267 0.00288 0.00313 0.00347 0.00392 0.00462

Table A.8: Cumulative probabilities of triggering a representative tipping element (until 2100) for different
levels of global warming and the inferred hazard rate parameter

We use the above expression for the hazard rate parameter and plug in for each column of

Table A.8 the levels of T̃AT,100 − T̃AT,0 and P . We report the computed hazard rate parameters

in the bottom row of Table A.8. For our previous example of a 4 °C increase in global warming

and a cumulative trigger probability of 50 percent, our calibration implies a hazard rate parameter

of roughly 0.0035, which is approximately the central value in our calibrated range. Practically,

λ = 0.0035 implies that, for example, a two-degree increase in temperature (above the year 2000

temperature) until year 2090 would yield a conditional probability of triggering the tipping point

event in year 2090 of about 0.7 percent. We choose λ = 0.0035 as the default parameter setting for

our benchmark case and set up a range for the sensitivity analysis—λ ∈ [0.0025, 0.0045]. Since we

choose not to model any specific tipping element explicitly, we set up the range with respect to how

different hazard rate specifications relate to the optimal SCC. Finally, we set TAT = 1 °C, which we
32The linearity assumption comes in handy in deriving a simple formula for the hazard rate parameter, while at

the same time not being incompatible with the recent temperature scenarios used by the Intergovernmental Panel on
Climate Change, which we have obtained from Meinshausen et al. (2011).
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calibrate as today’s global warming level using a climate emulator (Meinshausen et al. 2011).

Next, we turn to the calibration of Γ, the expected duration of the tipping process. Climate

scientists note that tipping elements in the climate system exhibit heterogeneity with respect to the

assumed duration of the post-tipping process. Lenton et al. (2008) consider current climate models

and paleo-data, and argue that the post-tipping process may last less than ten years or up to several

centuries. Table A.9 presents the expected transition scale for the selection of the most prominent

tipping elements drawn from Lenton et al. (2008), where we consider the lower estimates in Lenton

et al. (2008) based on the limits of physical plausibility or on past experience.

Arctic Atlantic West West El Niño—
Tipping Greenland summer Amazon Boreal thermohaline Antarctic African Southern
Element ice sheet sea ice rainforest forests circulation ice sheet monsoon Oscillation
Expected
transition >300 10 50 50 100 >300 10 100

scale (years)

Table A.9: Duration of expected transition scales for different climate tipping elements

Following the numbers in Table A.9 we choose Γ = 50 (years) for our benchmark tipping process.

In addition, in our sensitivity analyses we also consider Γ = 5 (years) as the lower bound, Γ = 100

(years), and Γ = 200 (years) as the upper bound.33 As mentioned in the main text, we assume that

each of our five stages occurs stochastically and the expected transition time at each stage of the

post-tipping process is Γ/4 years.

In this paper, all of our examples of tipping elements assume that there are three possible tipping

damage levels in the long run if q > 0, and that we do not know the long-run damage level until

tipping begins. Since the variance of the long-run tipping damage level is qD2
∞, we assume that

the values of the three possible tipping damage levels in the long run are
(
1 + (i− 2)

√
1.5q

)
D∞,

for i = 1, 2, 3, with equal probability. For our benchmark case with D∞ = 5% and q = 0.2, the

three possible long-run damage levels are 2.26%, 5%, and 7.74%, each with 1/3 probability. In the

extreme cases of D∞ = 2.5% (or D∞ = 10%) and q = 0.4 in our sensitivity analysis, the three

possible long-run damage levels are 0.56%, 2.5%, and 4.44% (or 2.25%, 10%, and 17.75%).

We also assume that the cascading damage linearly increases over the five post-tipping stages.
33For Γ > 200 we find very little change in the 2005 SCC as compared to Γ = 200.
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That is, if the post-tipping Markov chain Mi is realized, then its corresponding level of long-

run tipping damage is
(
1 + (i− 2)

√
1.5q

)
D∞, and the damage at the j-th post-tipping stage is(

1 + (i− 2)
√

1.5q
)
D∞ · j/5, for j = 1, 2, ..., 5. Thus, the values of Jt are J0 = 0 and

Ji,j =
j

5

(
1 + (i− 2)

√
1.5q

)
D∞, (A.10)

for i = 1, 2, 3, and j = 1, ..., 5. When q = 0, it means that there is only one possible post-tipping

Markov chain, and there are only six values of Jt: J0 = 0 and Ji,j = D∞ · j/5 for j = 1, 2, ..., 5 and

all i.

Since we assume that we know the long-run damage level once the tipping event happens and

the three possible levels are equally distributed, the probability from the initial pre-tipping state

J0 = 0 to Ji,1 at time t is ptip,t/3 for i = 1, 2, 3. Moreover, in the post-tipping Markov chainMi, if

its current state is Ji,j with j < 5, meaning that it is at the j-th post-tipping stage, then it could

either move to state Ji,j+1 with the probability p = 1 − exp
(
−4/Γ

)
, or stay with the probability

1− p. Thus the probability transition matrix forMi is



1− p p 0 0 0

0 1− p p 0 0

0 0 1− p p 0

0 0 0 1− p p

0 0 0 0 1


.

A.5 Value Function Iteration

Here, we summarize the numerical method we used to solve the dynamic programming prob-

lems in this study. The value functions for our problems are continuous, and almost everywhere

differentiable in the continuous state variables. In each case, we approximate the value function

V (x, θ) using a functional form V̂ (x, θ; b) with a finite number of parameters, b. In DSICE, the

state variable x represents the six-dimensional vector (K,M,T) of continuous states, and θ rep-

resents the three-dimensional vector of discrete states, (ζ, χ, J), contained in a finite set Θ. The

functional form V̂ may be a linear combination of polynomials, a rational function, a neural net, or
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some other parameterization specially designed for the problem. After the functional form is set,

we focus on finding the vector of parameters, b, such that V̂ (x, θ; b) approximately satisfies the

Bellman equation (Bellman 1957). Numerical dynamic programming with value function iteration

can solve the Bellman equation approximately (Judd 1998).

A general dynamic programming model is based on the Bellman equation:

Vt(x, θ) = max
a∈D(x,θ,t)

ut(x, a) + βHt (Vt+1(x+, θ+)) ,

s.t. x+ = F (x, θ, a),

θ+ = G(x, θ, ω),

where Vt(x, θ) is the value function at time t ≤ T (the terminal value function VT (x, θ) is given),

(x+, θ+) is the next-stage state, D(x, θ, t) is a feasible set of a, ω is a random variable vector, F

and G are the transition laws of x and θ, β is a discount factor and ut(x, a) is the utility function,

and Ht is a functional operator34 at time t. The following is the algorithm of parametric dynamic

programming with value function iteration for finite horizon problems.

Algorithm 1. Numerical Dynamic Programming with Value Function Iteration for Finite Horizon

Problems

Initialization . Choose the approximation nodes, Xt = {xi,t : 1 ≤ i ≤ mt} for every t < T , and

choose a functional form for V̂ (x, θ; b), where θ ∈ Θ. Let V̂ (x, θ; bT ) ≡ VT (x, θ). Then for

t = T − 1, T − 2, . . . , 0, iterate through steps 1 and 2.
34

A typical one is Et, the expectation operator conditional on time-t information. In DSICE, it is

Ht (Vt+1) =

[
Et

{
V

1−γ
1− 1

ψ

t+1

}] 1− 1
ψ

1−γ

.
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Step 1. Maximization step. Compute

vi,j = max
a∈D(xi,θj ,t)

ut(xi, a) + βHt
(
V̂ (x+, θj+; bt+1)

)
s.t. x+ = F (xi, θj , a),

θj+ = G(xi, θj , ω),

for each θj ∈ Θ, xi ∈ Xt, 1 ≤ i ≤ mt.

Step 2. Fitting step. Using an appropriate approximation method, compute the bt such that

V̂ (x, θj ; bt) approximates (xi, vi,j) data for each θj ∈ Θ.

We considered alternative functional forms for V̂ (x, θ; b), including ordinary polynomials and poly-

nomials in logs. We were always able to find some parsimonious functional form for approximating

the value function. Detailed discussion of numerical dynamic programming methods can be found

in Cai (2010), Cai and Judd (2010), Judd (1998), and Rust (2008).

The terminal value function is computed by assuming that after 2600, the system is deterministic,

population and productivity growth ends, all emissions are eliminated, and the consumption–output

ratio is fixed at 0.78. Consideration of alternatives showed that changes in the terminal value

function at 2600 had no significant impact on any results for the twenty-first century.

A.6 Constructing the State Space Domains

The key challenge for any dynamic programming problem, deterministic or stochastic, is to accu-

rately approximate the value function over the set of states that could be visited by the optimal

decision rules. Those domains vary greatly across the various instances of DSICE we solve. Fur-

thermore, in each case, the approximation domain is different at each time t, starting with a narrow

domain at t = 0 and expanding as t increases. The state variable domain at every time t contains

the optimal state at time t in the solution to the deterministic case. The time t+1 domain is chosen

so that any combination of time t states, time t optimal action, and time t shocks will be a point
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inside the time t+ 1 domain . For example, Figure A.2B shows the lower and upper bounds of the

capital stock (on log10 scale) for the stochastic growth benchmark case.

The approximation method will differ across problems due to the different ranges of state vari-

ables and the different amount of curvature. For example, of the three benchmark cases, the

approximation domains for the benchmark with both stochastic growth and climate tipping are the

widest because it has the largest volatility, and we use degree-8 complete Chebyshev polynomials for

approximation. For the stochastic growth benchmark case, we also use degree-8 complete Chebyshev

polynomials. The climate tipping benchmark case has a narrower band of possible paths, allowing

us to achieve high accuracy with degree-4 complete Chebyshev polynomials. Some experimentation

is required to find good choices for the approximation method, but this was not a major challenge.

A.7 Code Test

In order to have confidence in our code, we compared how our code performed on a few cases

where we could compute the true solution using another method. Our tests used two ways of

computing solutions to deterministic versions of DSICE—that is, versions where we eliminate all

randomness. The two methods were our dynamic programming code and optimal control methods.

Since the latter can be computed with high accuracy with standard finite-dimensional solvers, we

can compare those solutions with the results of the dynamic programming algorithm.

We performed three tests for solving the deterministic versions of DSICE, each using the same

approximation domains and polynomial degrees as those used in one of the three benchmark cases,

as our approximation domains of the state variables in the stochastic versions of DSICE contain the

optimal states in the deterministic versions. Table A.10 shows the relative L1 errors, over the first

one hundred years, of three of the endogenous state variables (K, MAT, TAT), two control variables

(C, µ), and SCC. It also shows the relative error in 2005 for the control variables and SCC. Table

A.10 shows that all the relative errors were small. This gives us confidence that our implementation

is reliable.
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Variable

Approximation Approximation Approximation
degree and domains degree and domains degree and domains

of the stochastic growth of the climate tipping of the stochastic growth &
benchmark benchmark climate tipping benchmark

first 100 years 2005 first 100 years 2005 first 100 years 2005
K 5.5(−3) — 2.1(−4) — 4.0(−3) —
MAT 1.5(−4) — 1.3(−5) — 1.1(−4) —
TAT 8.7(−5) — 2.5(−5) — 8.3(−5) —
C 2.0(−3) 4.6(−5) 2.4(−5) 2.6(−5) 1.6(−3) 4.0(−5)

µ 2.4(−3) 1.3(−4) 4.4(−4) 1.7(−4) 2.0(−3) 1.3(−4)

SCC 9.2(−3) 5.4(−3) 4.1(−3) 7.2(−4) 1.0(−2) 6.2(−3)

Table A.10: Relative errors for the solution of the deterministic case obtained by our numerical dynamic
programming algorithm with approximation domains and polynomial degrees used by the three benchmark
cases. Note: a(−n) means a× 10−n.

A.8 Dynamics of the Economic System in the Stochastic Growth

Benchmark Case

Figure A.2 shows the dynamics of gross world output (Yt), total capital (Kt), and the per capita

consumption growth rate. Both gross world output and the total capital stock grow exponentially,

which is not surprising since productivity grows exponentially. The uncertainty of both is substan-

tial; for example, the 10 percent and 90 percent quantiles of the capital stock in 2100 are $270 trillion

and $1,500 trillion respectively. The growth of per capita consumption in Figure A.2C ranges from

−4.4 percent to 7.1 percent. The mean and median of the dynamic stochastic equilibrium paths

are close to the deterministic solution, but the variation around those paths is very large.

The wide range of possible outcomes for the total capital stock displayed in Figure A.2B implied

that our approximation of the value function had to be defined over an even larger range. The blue

dashed lines in Figure A.2B represent, for each time t, the minimum and maximum level of the

capital stock (on log10 scale) over which the value function is computed. The ratio of maximum

to minimum capital stock exceeded 175 in 2100, and continues to grow thereafter. If we had

used significantly smaller ranges, then the Bellman equation for states close to the maximum or

minimum capital stock would try to evaluate the value function beyond the domain on which it is

approximated. These ranges are the natural outcome of the productivity process. The large range

for capital creates difficulties for simpler approximation methods, such as orthogonal polynomials,

A.18



but nonlinear changes in variables allowed us to find suitable function forms for approximating the

value function.

Figure A.2: Simulation results of the stochastic growth benchmark—economics

A.9 Stochastic Growth with Infinite Risk-aversion

For DSICE with stochastic growth only, the Bellman equation is

Vt (S) = max
C,µ

{
u(Ct, Lt) + β

[
Et
{

(Vt+1 (S+))
1−γ

1−1/ψ

}] 1−1/ψ
1−γ

}
,

where S = (x, ζ, χ) with (ζ, χ) representing the discretized long-tun risk of economic growth defined

in Appendix A.2. Let ζt and χt be the lower bounds of (ζ, χ) at time t—that is, ζt = exp
(
−3
√

∆t

)
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and χt = −3
√

Υt from Appendix A.2. When γ = ∞, the Bellman equation transforms into one of

solving the class of max-min problems:

Vt (S) = max
C,µ
{u(Ct, Lt) + βmin {Vt+1 (S+) : P ((ζ+, χ+) | (ζ, χ)) > 0}}

= max
C,µ

{
u(Ct, Lt) + βVt+1

(
x+,min {ζ+ : P (ζ+ | (ζ, χ)) > 0} ,

min {χ+ : P (χ+ | (ζ, χ)) > 0}
)}

= max
C,µ

{
u(Ct, Lt) + βVt+1

(
x+, ζt+1, χt+1

)}
,

where the second equality holds because the value function Vt+1 is increasing over ζ and χ, and the

third equality holds because the support of our conditional probabilities includes the lower bounds

in order to avoid the unbounded nature of the (log-)normal distribution. Thus, the problem is

equivalent to solving the deterministic optimal control problem

max
T∑
t=0

βtu(Ct, Lt)

with the production function

f(K,L,At) = AtK
αL1−α,

where At = Atζt is the smallest productivity at time t under the discretized long-run risk process.

A.10 Impact of IES and Productivity Growth in Deterministic Growth

Cases

A higher IES means a lower desire for consumption smoothness over time, implying less consumption

and higher total investment (a sum of capital investment It and mitigation expenditure Ψt) in the

current period if both average short-term economic growth and average long-term economic growth

are positive, or more consumption and less total investment in the current period if both average

short-term economic growth and average long-term economic growth are negative, where investment

in mitigation is reflected by SCC. A higher productivity growth implies that less investment today

can yield the same level of future consumption. Consequently, a higher productivity growth implies

more consumption and lower total investment in the current period. Since capital investment
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makes up a major portion of total investment (around 99.7%), whether total investment increases

or decreases capital investment will have the same direction, which is opposite to the direction

of consumption. We validated these economic intuitions in Tables A.11 and A.12, which report

consumption (C0) and capital investment (I0) in 2005, respectively, for a variety of IES (ψ) and

initial productivity growth (α1), for the deterministic growth case.35 Note that when α1 = −0.01,

a higher IES implies more consumption and less capital investment in 2005, because both average

short-term economic growth and average long-term economic growth are negative; when α1 ≥

0, a higher IES implies less consumption and higher capital investment in 2005, because both

average short-term economic growth and average long-term economic growth are positive; when α1 =

−0.002, a higher IES still implies less consumption and higher capital investment in 2005, because

average short-term economic growth is positive although average long-term economic growth is

negative, as capital investment pays more weights in short-term welfare due to the 10% depreciation

rate on capital.

IES (ψ) Initial productivity growth (α1)
-0.01 -0.002 0 0.002 0.005 0.0092 (default)

0.5 36.8 39.2 39.8 40.3 41.1 42.1
0.7 37.5 39.2 39.6 40.0 40.6 41.3
0.9 37.8 39.1 39.4 39.7 40.2 40.8
1 37.9 39.1 39.3 39.6 40.0 40.6
1.1 38.0 39.0 39.3 39.5 39.9 40.4
1.5 38.2 38.9 39.0 39.2 39.4 39.7
2 38.3 38.7 38.8 38.9 39.0 39.2

Table A.11: Initial consumption (trillions of USD) for parameters of IES (ψ) and 2005 productivity
growth (α1) for the deterministic growth case

35When ψ = 1, the utility u(Ct, Lt) becomes log(Ct/Lt)Lt.
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IES (ψ) Initial productivity growth (α1)
-0.01 -0.002 0 0.002 0.005 0.0092 (default)

0.5 18.6 16.3 15.8 15.2 14.5 13.5
0.7 18.1 16.4 16.0 15.6 15.0 14.2
0.9 17.8 16.5 16.1 15.8 15.4 14.8
1 17.6 16.5 16.2 15.9 15.5 15.0
1.1 17.6 16.5 16.3 16.0 15.7 15.2
1.5 17.3 16.7 16.5 16.4 16.1 15.8
2 17.2 16.9 16.8 16.7 16.5 16.3

Table A.12: Initial capital investment (trillions of USD) for parameters of IES (ψ) and 2005 pro-
ductivity growth (α1) for the deterministic growth case

However, the direction of mitigation investment (a small portion of total investment, around 0.3

percent only) will depend on a combination of IES and productivity growth. Table A.13 reports the

2005 SCC for the deterministic growth case with various IES and 2005 productivity growth rates.

Our analysis with the deterministic version of the model confirms the findings in Azar and Sterner

(1996)—that economic growth has a substantial effect on SCC.

IES (ψ) Initial productivity growth α1

-0.01 -0.002 0 0.002 0.005 0.0092 (default)
0.5 175 73 63 55 46 37
0.7 85 67 64 60 56 51
0.9 64 64 64 64 64 64
1.0 58 63 64 66 67 70
1.1 54 62 65 67 70 75
1.5 46 60 65 70 80 94
2.0 41 59 66 73 87 111

Table A.13: 2005 SCC for parameters of ψ and α1 for the deterministic growth case

At first we see that when the productivity growth rate is positive, SCC is increasing over IES, but

when the 2005 productivity growth rate is negative (implying the whole path of productivity growth

is negative from our definition of productivity At), SCC is decreasing over IES. This happens because

negative productivity growth corresponds to negative average long-term consumption growth gc

(although average short-term growth could be positive), and from Ramsey’s growth theory we know

that the internal rate of return (interest rate) is proportional to gc/ψ, so a higher IES (ψ) implies

a smaller internal rate of return when gc > 0, but a larger internal rate of return when gc < 0;

moreover, SCC is the present value of future damage from one additional ton of carbon emitted, so
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a larger internal rate of return implies a smaller SCC.

We also see that when ψ < 0.9, SCC is decreasing over 2005 productivity growth, but when

ψ > 0.9, SCC is increasing. This happens because an increase in productivity growth leads to an

increase in long-term consumption growth gc and then an increase in the internal rate of return, but

higher productivity growth also implies more carbon emissions (as carbon emissions Et is linearly

dependent on productivity). Since SCC is the present value of future damage from one additional

ton of carbon emitted, the direction of SCC will depend on which factor—higher damage or a higher

internal rate of return—plays a more important role. From Ramsey’s growth theory, a smaller ψ

implies a faster speed of the increase in the internal rate of return; so when ψ is small (here ψ < 0.9),

the increase in the internal rate of return will overwhelm the increase in damage, implying a smaller

SCC for higher 2005 productivity growth. But when ψ is large (here ψ > 0.9), the speed of the

increase in the internal rate of return is overwhelmed by the increase in damage, implying a larger

SCC for higher 2005 productivity growth, and when ψ = 0.9 the increase in the internal rate of

return is completely balanced by the increase in damage, so it has the constant SCC, $64/tC, for

all 2005 productivity growth rates.
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