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1 Introduction

The measurement of market power informs many branches of economics. This paper uses

the Lerner index—the ratio of price minus marginal cost to price—as the measure of market

power. A profit-maximizing price-taking firm equates its marginal cost to the prevailing

price of output. That price is invariant to the firm’s output choice. The price-taking firm’s

Lerner index is zero. A firm facing a constant-elastic residual demand, with elasticity ε,

maximizes profit at the point where the Lerner index is 1/ε. In general, the Lerner index,

designated L in this paper, is a useful way to think about market power or monopoly power.

It has a simple functional relationship to an equivalent measure, the markup ratio, that is,

the ratio of price to marginal cost, µ:

µ =
1

1− L
, (1)

which maps the Lerner index from L ∈ [0, 1] to µ ∈ [1,∞].

The literature on measurement of marginal cost has two main branches. The demand-side

approach infers the residual elasticity ε, typically from a differentiated-products oligopoly

model. The production-side approach uses data on price and cost from firms. Thirty

years ago, Hall (1988) proposed a refinement of the production-side approach that mea-

sures marginal cost rather than average cost. De Loecker and Warzynski (2012) developed

a quite different method that measures marginal cost from the production function. De

Loecker and Eeckhout (2017) recently captured a great deal of attention with the finding

that market power has risen substantially in the US in recent decades. See Traina (2018)

and Gutiérrez and Philippon (2017) for critiques of that paper.

De Loecker and Eeckhout (2017) use data from individual firms, where the data on inputs

are limited to the accounting measure of cost of goods sold. I use data on 60 fairly detailed

industries, with measures of actual output (not value added) and five categories of inputs.

Though the data have much higher quality than anything available for individual firms, the

data are aggregated across heterogeneous firms. The results may suffer from aggregation

bias. I examine this issue toward the end of the paper.

Since the publication of my 1988 paper, much improved data have become available,

thanks to the efforts of US statistical agencies in developing productivity data. Their com-

piled data feed directly into calculations of L. In addition, a number of recent papers on

market power and profit, together with a literature on the rising importance of large firms
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and the decline in the labor share, has generated great interest in the growth of market

power. This paper responds to those developments. It finds support for the conclusion that

market power has risen in recent decades, though by less than in De Loecker and Eeckhout’s

paper.

An older manifestation of the production-side approach studies profit margins in various

ways. Some attempt to distinguish marginal from average cost, generally by measuring the

margin by subtracting only costs that are deemed variable. Their accuracy depends entirely

on the investigator’s success in guessing how costs vary with output. The methods of this

paper and of De Loecker and Eeckhout turn that job over to the data in systematic ways.

This paper is self-contained and presumes no acquaintance with my earlier work or other

work on this subject. Everything here is new, including a novel derivation of the basic idea

of extracting marginal cost from time-series data as an empirical partial derivative.

The text describes the many calculations underlying this paper in general terms. The

calculations are fully documented in the computer files available from my website.

2 The Lerner Index of Market Power

2.1 Measuring marginal cost and the Lerner index

In time-series data, a natural measure of marginal cost is the change in cost divided by the

change in output. More precisely, the numerator is the change in cost not associated with

changes in factor prices and the denominator is the change in output not associated with

the change in Hicks-neutral productivity. Cost is

c =
∑
i

wi xi, (2)

in obvious notation. The change in cost is

dc =
∑
i

xi dwi +
∑
i

wi dxi. (3)

The first summation is the component associated with changes in factor prices, while the

second is the desired component purged of effects from changing factor prices:∑
i

wi dxi. (4)

The technology is

y = Af(x), (5)
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so output growth is

dy = Adf(x) + f(x)dA = Adf(x) + y
dA

A
(6)

The desired component purged of effects from changing productivity is

Adf(x) = dy − ydA
A

(7)

Marginal cost is the ratio of adjusted cost change to adjusted output change,

m =

∑
iwi dxi

dy − y dA/A
. (8)

The Lerner index is

L =
p−m
p

= 1−
∑

iwi dxi
p(dy − y dA/A)

. (9)

so

1− L =

∑
iwi dxi

p(dy − y dA/A)
. (10)

Now let

αi =
wixi
p y

, (11)

the share of factor i in revenue, p y. The equation can then be written

(1− L)

(
dy + y

dA

A

)
= y

∑
i

αi
dxi
xi.

. (12)

Dividing by y and rearranging yields a useful result,

dy

y
−
∑
i

αi
dxi
xi

= L dy
y

+ (1− L)
dA

A
. (13)

With discrete time, the same equation is

∆ log y −
∑
i

αi ∆ log xi = L∆ log y + (1− L)∆ logA. (14)

This formulation is useful because the left-hand side is the Solow residual, calculated metic-

ulously in productivity accounts. Note that if L > 0, the Solow residual does not measure

actual technical progress, because it does not adjust for market power.

This derivation of the measurement of L does not assume anything about optimal choice

by the firm, apart from remaining on its production function. The firm is not necessarily

satisfying its first-order conditions in the output market or any input market. The coefficient

L does not necessarily describe the residual demand function facing the firm, effects of market
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power by sellers of inputs including labor unions, or monopsony power of the firm in those

input markets.

The growth rate of productivity, a = (1−L)∆ logA, is a statistical residual in equation

(14). It can only be measured with knowledge of the Lerner index, L. The most basic

approach is to treat L as a parameter to be estimated in time-series or panel data, with

suitable instrumental variables. Eligible instruments are variables that are uncorrelated with

productivity growth but are correlated with output changes. Shifts in supply and demand in

the output market or factor markets could be eligible. The residual based on the estimated

value of L is the estimated rate of true productivity growth, adjusted for market power.

With a single time series, the specification for L may capture changes over time, with a

small number of parameters. For example, an equation that considers a linear trend is

∆ log yt −
∑
i

αi ∆ log xi = (φ+ ψt)∆ log y + at. (15)

Here φ controls the level of the Lerner index and ψ is the per-period growth of the index.

With panel data, the function multiplying ∆ log y may capture differences in market power

across industries as well.

2.2 Interpretation

Here I consider whether the procedure described earlier measures the Lerner index accurately

or measures it with a bias of known sign in the presence of decreasing and increasing returns

to scale, market power of factor suppliers, and monopsony power in factor markets. This

discussion introduces the assumption of optimization by firms, an assumption deliberately

omitted from the earlier derivation of the empirical marginal cost measure.

Differentiation of the production function,

y = Af(x), (16)

yields
dy

y
=
dA

A
+
∑
i

xi
f(x)

∂f

∂xi

dxi
xi
. (17)

Now assume that the firm is a price-taker in all of its input markets, and the firm equates

the marginal revenue product of a factor to its price:

(1− L)pA
∂f

∂xi
= wi. (18)

5



Use this equation to substitute out the ∂f
∂xi

in the previous equation and rearrange to get

dy

y
−
∑
i

αi
dxi
xi

= L dy
y

+ (1− L)
dA

A
, (19)

as before. Under the new assumptions, L is the Lerner index of market power. Notice that

the assumptions do not include constant returns to scale. But the second-order condition for

profit maximization requires that the Lerner index exceed 1−1/γ, where γ is the returns-to-

scale index of the production function, the elasticity of f(θx) with respect to θ, at θ = 1. A

firm with strong increasing returns and weaker market power will not satisfy the second-order

condition.

To make some further progress on these issues, consider the simple case with only one

factor, labor, n, paid wage w. The production function is

y = nγ. (20)

The elasticity γ is positive but may lie in either side of 1. In changes,

dy

y
= γ

dn

n
. (21)

The Solow residual uses the revenue share,

α =
w n

p y
= (1− L)γ, (22)

capturing the well-known depressing effect of market power on the measured share of labor.

The Solow residual is
dy

y
− αdn

n
=
dy

y
− (1− L)γ

dn

n
. (23)

From above, two of the terms on the right net to zero, so

dy

y
− αdn

n
= Lγ dn

n
, (24)

and, as before,
dy

y
− αdn

n
= Ldy

y
(25)

The assumption that the firm is a price taker in its input markets does not mean that

those market are competitive. That property is sufficient but not necessary. The price-taking

assumption would apply if a labor union or dominant seller of another input chose to exercise

its market power by sticking to a fixed non-negotiable price quote.
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On the other hand, if a firm has monopsony power in an input market and perceives that

increasing its purchase volume will drive up the price, a downward bias in the estimate of

the firm’s Lerner index will result. Suppose the elasticity of the wage with respect to the

firm’s level of employment is λ. Then the observed labor share is further depressed by the

fact that the average wage understates the marginal wage:

α =
w n

p y
= (1− L)

γ

1 + λ
, (26)

which propagates through the rest of the math to the conclusion,

dy

y
− αdn

n
=
L − λ
1 + λ

dy

y
. (27)

Thus the coefficient on the right side of the equation is L−λ
1+λ

, which is less than L for any

positive value of the monopsony parameter λ.

An important case deviating from the assumptions stated earlier is an omitted variable in

the productivity calculation. A leading example is the firm’s stock of intangible capital of a

type not included in its measured capital stock. Let xo designate the omitted factor quantity

and αo be the elasticity of the production function with respect to the omitted factor. Also

let α̃k designate the true elasticity of capital, on the assumtion that the measured elasticity

αk is overstated because its revenue share includes the firm’s earnings from the omitted

factor along with the earnings of capital. The growth of output becomes

dy

y
=
∑
i

αi
dxi
xi

+ α̃k
dxk
xk

+ αo
dxo
xo

+ L dy
y

+ (1− L)
dA

A
. (28)

The estimating equation becomes

dy

y
−
∑
i not o

αi
dxi
xi

= (α̃k − αk)
dxk
xk

+ αo
dxo
xo

+ L dy
y

+ (1− L)
dA

A
. (29)

The omitted variable is (α̃k−αk)dxkxk +αo
dxo
xo

. If it is correlated with the instruments, the IV

estimates will be biased. Under the hypothesis that an instrument is positively correlated

with dxk
xk

and with dxo
xo

, the two components will contribute offsetting effects to the bias,

because, by assumption, α̃k − αk < 0.

2.3 Conclusions about the applicability of the approach

Increasing returns to scale. The approach is robust to increasing returns. A fixed cost

of continuing operations is a commonly considered source of increasing returns. Increasing
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returns must be coupled with market power. A leading example of a firm with a combination

of increasing returns and market power is one satisfying the assumptions of the monopolistic

competition model. In that model, entry of firms with differentiated products (giving them

market power) occurs to the point of zero profit. In the simplest model, increasing returns

takes the particular form of a fixed cost of operation, independent of scale but avoidable by

shutting down. In equilibrium, the firm makes just enough excess profit from market power

to offset the fixed cost.

Decreasing returns to scale. Decreasing returns occur when factors, notably capital, involve

delays, adjustment costs, or permanent restrictions on inputs. The approach is also robust

to decreasing returns, which will be accompanied by profit in excess of factor costs.

Omitted input. As noted earlier, if the effect of the instrument on the growth of the omitted

factor has the same sign as its effect on capital growth, there are two biases in opposite

directions. In the best case, the net effect would be zero.

Market power held by a seller of an input. The leading example is unionized labor. If a seller

of an input exercises its market power by setting a higher price that reflects that power,

the calculation described in this paper takes account of the true marginal cost associated

with that input, and the calculation uncovers the true Lerner index of the firm. Notice that

such an arrangement is bilaterally inefficient. If the firm and the input seller use efficient

two-part pricing, the average price paid exceeds the underlying marginal price. In that case,

the calculation overstates L.

Monopsony power in an input market. The leading example is a firm whose employment

level is a substantial fraction of total employment in its labor market. The average price paid

for the input understates the effective marginal price. The employment share is understated

and the estimate of L is correspondingly understated.

2.4 Data for measuring the Lerner index

The data in the Solow productivity framework come from klemscombinedbymeasure.xlsx,

available at bls.gov/mfp/mprdload.htm#Multifactor%20Productivity%20Tables. See bls.gov/

mfp/#technotes for extensive technical descriptions of the data. The data are annual start-

ing in 1987. I use the version of the data for 60 distinct non-overlapping industries. Some of
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the advantages of the data relative to data in earlier work on production-side measurement

of the price/marginal cost literature are:

• Rigorous adherence to proper measurement of output—no reliance on value added

• Uniform use of the modern NAICS industry definitions

• Breakdown of inputs into 5 categories: capital, labor, energy, materials, and services

• Aggregation of capital and labor inputs from detailed underlying data using appropri-

ate methods

• Use of Tørnqvist’s refinement of the weights applied to log-changes in factor inputs

For instrumental variables, I follow the identification strategy of Hall (1988), which treats

an industry’s productivity growth as orthogonal to government purchases of military goods

and services and to movements of the oil price. NIPA table 3.11.3 breaks down real military

purchases into a variety of categories. I use FRED series ACOILWTICO, the market price

of west Texas intermediate crude, as a measure of the oil price. The instruments are:

• Military purchases of equipment

• Military purchases of ships

• Military purchases of software

• Military expenditure on research and development

• The oil price

All of these enter as log differences. Figure 1 displays the instrumental variables.

2.5 Results for the Lerner index

Some other investigations, including my earlier work, measure market power with µ, the

ratio of price to marginal cost. I noted earlier that µ = 1/(1 − L). There is no problem

going back and forth between the two measures. In fact, for values in the center of the

distribution of estimates in this paper, the linear approximation µ ∼= 1 + L is pretty good.

As noted earlier, µ ranges from 1 to infinity. Very high values will occur in cases where

variable inputs are unimportant—software and proprietary pharmaceuticals are examples.
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Figure 1: Instrumental Variables

The reported standard error for these cases will be high. The results in those cases make

more sense where L is estimated, and the high and uncertain values of µ are mapped into a

small region around 1 for µ−1 or zero for L. In those cases, the linear approximation implicit

in a standard error is completely unreliable.

2.5.1 First-stage results

The first-stage regressions have output growth on the left and the five instruments, as log-

changes, on the right. The KLEMS data form a panel with 60 industries and 28 years when

stated as log differences. Because the instruments are all time series, cross-section regressions

in single years, or in small groups of years, are not identified. I focus on the 60 first-stage

regressions where each industry contributes a time-series OLS regression. The question at

hand is whether the instruments have adequate power to support instrumental-variables

estimation.

Table 1 describes the power of the instruments in terms of the p values corresponding

to the F -statistics of the first-stage regressions. In 59 percent of the KLEMS industries,

the hypothesis of no relation between the instruments and output growth can be rejected

at the 5-percent level or better. In the industries where the instruments are weak, sampling
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Percent of 
KLEMS 

industries

Greater than 0.50 8

0.20 to 0.50 10

0.20 to 0.05 23

0.05 to 0.01 32

0.01 to 0.001 20

Less than 0.001 7

p-value range

Table 1: Metrics for the Power of the Instruments Across Industries

error of the estimates of the Lerner index are high; in a few industries, the estimates are

uninformative.

2.5.2 Estimates of the Lerner index, L, by industry

The results for the 60 industries are too extensive to digest in a single table. Table 2

summarizes them in aggregates at the level of 19 NAICS sectors, sorted by the estimated

value of the Lerner index. The first column of the table presents averages across the industries

contained in the sectors, weighted by the1987 distribution of industry values of output. The

second column reports bootstrap standard errors. The standard errors for the three sectors

with inadmissable negative values of the Lerner index are sufficiently large to render the

estimates meaningless. In these cases, the instruments lack the power to identify the markup

ratio with usable accuracy. The table also reports the percent of the value of output arising

from the sector and the number of KLEMS industries in the sector.

2.6 Inference about the sources of dispersion of the measured
Lerner index across industries

The estimates of the Lerner index specific to the industries have a good deal of noise. In

particular, 30 percent of the industries have negative values of Li despite the fact that the

true value of L cannot be negative. To disentangle the distribution of the true values of

the Lerner index across industries from the distribution of the sampling error, I consider a

simple statistical model that exploits the fact that sampling error must have a role sufficient

to explain the 30 percent of values of the ratio that are estimated to be negative. The
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Lerner 
index

Bootstrap 
standard 

error

Percent 
of value 
of output 
in sector

Number 
of 

industries 
in sector

Sector name

-0.11 (0.32) 5.3 3 Health Care and Social Assistance

-0.05 (0.79) 0.5 1 Educational Services

-0.02 (0.45) 6.7 1 Construction

0.03 (0.21) 3.3 2
Administrative and Support and Waste 
Management and Remediation Services

0.05 (0.05) 1.3 3 Mining, Quarrying, and Oil and Gas Extraction

0.07 (0.10) 5.4 4 Information

0.08 (0.10) 6.1 2 Real Estate and Rental and Leasing

0.10 (0.07) 3.0 1 Utilities

0.16 (0.10) 1.9 1 Management of Companies and Enterprises

0.18 (0.19) 27.5 18 Manufacturing

0.21 (0.10) 5.4 1 Wholesale Trade

0.21 (0.11) 4.0 8 Transportation and Warehousing

0.23 (0.22) 7.2 3 Professional, Scientific, and Technical Services

0.24 (0.06) 8.0 4 Finance and Insurance

0.25 (0.08) 2.4 1 Other Services (except Public Administration)

0.29 (0.07) 0.8 2 Arts, Entertainment, and Recreation

0.31 (0.13) 6.3 1 Retail Trade

0.34 (0.08) 3.0 2 Accommodation and Food Services

0.46 (0.14) 1.7 2 Agriculture, Forestry, Fishing and Hunting

Weighted averages 
across industries

Table 2: Estimates of the Lerner Index by Industry, Stated as Sector Averages
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statistical model is

L = L+ η, (30)

where L is distributed as beta(ν, β), with density proportional to Lν−1(1 − L)β−1. The

measurement error ηi accounts for the residual distribution of the measured index.

Four assumptions identify the model:

1. The true value of the Lerner index obeys the beta distribution, so it is between zero

and one: L ∈ [0, 1]

2. The second shape parameter of the beta distribution of the true Lerner index is β = 8

3. The two components are statistically independent

4. The mean of the measurement error η is zero

Independence and zero mean of measurement error are standard assumptions in models of

this type. The restriction β = 8 defines a reasonable family indexed by the first shape

parameter, ν. Figure 2 shows several members of the family.

The following result establishes the principle that the desired untangling is possible:
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Identification Theorem: The mean of the measured Lerner index identifies the first shape pa-

rameter of the beta distribution of the true Lerner index; the distribution of the measurement

error η is identified by solving a convolution problem.

Proof: By assumption 4, the mean of the estimated Lerner index is the mean of the true

index. That mean is the mean of the beta distribution,

M =
ν

ν + β
. (31)

Thus

ν =
βM

1−M
. (32)

The distribution of the estimates of the Lerner index is the convolution of the distributions

of L and η. By the convolution theorem—see Cramér and Wold (1936)—the characteristic

function of the convolution of two random variables is the product of the two characteristic

functions. Thus the characteristic function of η is the ratio of the characteristic function

of the observed random variable L to the characteristic function of the random variable

L. Distributions are one-to-one with characteristic functions, so the distribution of η is

identified. �

Although manipulating characteristic functions might seem to be the natural way to

calculate the distribution of η, it appears to be unworkable in this application, so I proceeded

by a direct solution—representing the distribution in a flexible parametric form and solving

the convolution by minimizing the distance between the actual distribution of the estimates

L and the distribution calculated as the convolution of the parametric distribution and the

known distribution of the true Lerner index L. I use a discrete 32-point support ηj so the

probabilities πj serve as the parameters, subject to the natural restrictions
∑

j πj = 1 and

πj ≥ 0 and small penalties encouraging smoothness of the πjs. The convolution defining the

calculated cdf is ∑
j

πj

∫ plus(Li−ηj)

0

f(L)dL. (33)

Here plus(·) is the positive part function. With the estimated values sorted in increasing

order, the observed value of the cdf at Li is i/60. Let Di(π) be the discrepancy between the

calculated and actual cdfs.
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Mean 0.15

Stan. dev. 0.31

Skewness -1.84

Shape parameter of true 
Lerner index

α 1.36

Mean 0.15

Stan. dev. 0.11

Skewness 1.14

Mean 0.00

Stan. dev. 0.29

Skewness -2.30

Moments of estimated 
Lerner indexes across 
industries

Moments of true Lerner 
indexes across industries

Moments of measurement 
errors

Table 3: Moments of the Distribution of the Estimated Lerner Index, and Inferred Properties
of the Distributions of the True Index and the Error in Measurement

The problem becomes

min
πj

Di(π)2 +

(
1−

∑
j

πj

)2

+
∑
j

minus(πj)
2 + ω

j∑
2

(πj − πj−1)2
 . (34)

Here minus(·) is the negative part function. The weight ω on the smoothness term is taken

as 0.01, so the much higher weight on the matching conditions results in values of πj that

come close to satisfying the matching conditions.

Table 3 shows the inputs to and results of these calculations based on the distribution of

estimates of the estimated Lerner index L. The upper panel shows the moments of the 60

estimates of L. The next lower panel reports the value of the first shape parameter of the

beta distribution assumed to describe the distribution of the true, ν = 1.36. The third panel

down gives the implied mean and standard deviation of the level of the true Lerner index,

L. The mean is 0.15 and the standard deviation is 0.11. The distribution of the true Lerner

index is fairly tightly contained in the range between 0 and 0.4. As Figure 2 indicates, the

distribution is skewed to the right, with a skewness coefficient of 1.14. The bottom panel

gives moments of the solved distribution of the measurement errors. The mean is zero by

assumption. The standard deviation of the implied distribution of the sampling error, η, is

0.29. The main feature of the distribution of the estimated Lerner index that supports this

finding is that 31 percent of the estimates are negative, which can only arise from the left

tail of the distribution of the sampling error.
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Figure 3 plots the inferred distribution of the true value of the Lerner index L. The

density of the beta distribution is

Bxν−1(1− x)β−1. (35)

Figure 4 is a bar chart summarizing the inferred distribution of the measurement error

η. The actual distribution over the 32 points of its support is quite jagged, reflecting the

randomness in the 60 draws of the underlying data on the observed Lerner index L. Because

the assumed distribution of L is smooth, all of the randomness in the observed index maps

into corresponding randomness in the inferred measurement error.

All of the distribution of the measured value L below zero is the result of the sampling

error, and a fair amount of the distribution above 0.5. Figure 5 compares the calculated

cumulative distribution—the convolution of the distributions of L and η—to the cumulative

distribution of the 60 estimates. The fit is pretty good. Its imperfections arise entirely from

the assumption that the distribution of η has the assumed 16 discrete points in its support,

rather than being a continuous distribution.
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2.7 The change in the markup coefficient over time

To study the widely discussed hypothesis of growth in market power, I extend the specifi-

cation to include an industry-specific linear time trend over the sample period from 1988

through 2015:

∆ log yt −
∑
i

αi,t ∆ log xi,t = (φi + ψit)∆ log yt − at. (36)

Here t advances by one each year and crosses zero in the middle of the sample period, 2001.

The implied functional form for the Lerner index is

Li,t = φi + ψit. (37)

I extend the set of instruments to include the product of the log-changes and the time-trend

variable, so there are 10 instruments.

Table 4 shows the growth coefficients ψi in the same sector groupings as in Table 2 earlier.

They are sorted from lowest to highest. Though the ranking is plausible—for example, the

information sector has relatively rapid growth in market power—there is substantial sampling

error. There is no neat way to separate sampling variation from heterogeneity in the true

coefficients.

Despite the sampling variation, the estimates give reasonable support to the hypothesis

that the overall price/marginal-cost ratio rose over the period from 1998 through 2015. Table

5 shows the weighted average of the 60 estimates of ψ, which is 0.0061 increase in L per

year. The weights are the shares of the industries in total value of output. The t-statistic for

the hypothesis that ψ is actually zero, and that sampling error accounts for the increase, is

1.20. The p-value for the one-tailed test is 0.11, which is reasonably strong evidence against

the null hypothesis.

Figure 6 plots the growth of the Lerner index at the weighted averages of the parameters

φi and ψi. The index grew from 0.11 in 1988 to 0.28 in 2015. This finding indicates substantial

growth in market power, though less than the economy-wide increase reported by De Loecker

and Eeckhout (2017). The figure also shows lines one standard error above and below the

estimated Lerner index for the year.
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Growth 
coefficient, 

ψ

Standard 
error

Sector name

-0.122 (0.074) Mining, Quarrying, and Oil and Gas Extraction

-0.021 (0.009) Retail Trade

-0.021 (0.012) Wholesale Trade

-0.009 (0.009) Professional, Scientific, and Technical Services

-0.001 (0.009) Educational Services

0.000 (0.008) Accommodation and Food Services

0.001 (0.008) Manufacturing

0.001 (0.009) Transportation and Warehousing

0.006 (0.010) Other Services (except Public Administration)

0.006 (0.007)
Administrative and Support and Waste 
Management and Remediation Services

0.007 (0.025) Agriculture, Forestry, Fishing and Hunting

0.013 (0.012) Arts, Entertainment, and Recreation

0.015 (0.024) Management of Companies and Enterprises

0.016 (0.006) Health Care and Social Assistance

0.017 (0.010) Construction

0.018 (0.013) Information

0.019 (0.008) Real Estate and Rental and Leasing

0.036 (0.073) Utilities

0.057 (0.024) Finance and Insurance

Weighted averages 
across industries

Table 4: Estimates of the Growth in the Lerner Index by Industry, Stated as Sector Averages
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Weighted average of estimate of trend ψ 0.0061

Standard error 0.0051

t -statistic for hypothesis ψ  = 0 1.20

p- value, one-tailed 0.11

Table 5: Evidence about the Statistical Reliability of the Finding of an Upward Trend in
the Markup Ratio
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Figure 6: Implied Values of the Aggregate Lerner index by Year, with Bootstrapped Error
Bands
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3 Aggregation Issues: Are There Biases from Using

Averages across Heterogeneous Firms?

In his discussion of this paper at the NBER conference, “The Rise of the Megafirm: Causes

and Consequences for Labor and Product Markets”, October 19, 2018, Emmanuel Farhi

suggested that applying the method of this paper to industry aggregates might encounter

problems of aggregation. He cited results on aggregation from Baqaee and Farhi (2017). He

observed that a failure of the assumption of orthogonality of the disturbance (characterized

as productivity growth) and the instruments could occur in aggregates even though orthogo-

nality held at the firm level. The failure would result from a component of measured produc-

tivity growth induced by the instruments arising from heterogeneity in markups within the

units included in the aggregate. This problem would be less serious if the data came from

individual firms, though still present with aggregation across the products of the individual

firms. However, the data available from individual firms is vastly inferior to the KLEMS

data in many other respects.

The potential aggregation bias would also arise in data aggregated from KLEMS indus-

tries, so one way to get at the magnitude of the bias is to compare results from aggregates of

the industry-level results discussed earlier. Aggregation of the KLEMS data involves removal

of transactions of firms within the aggregate. The agencies create 10 aggregates on this basis.

Table 6 compares the results of (1) applying the method of this paper to those aggregates

to (2) the weighted averages of the underlying KLEMS industries. It uses the values of the

estimated coefficients φi for the industries and similar coefficients for the aggregates. These

estimates are interpreted as the Lerner Index in the middle year of the sample. Note that

there are two levels of aggregates for manufacturing, so the upper level, total manufacturing,

is not independent of the two lower levels, non-durables and durables.

The results in Table 6 do not suggest any important overall bias from the further

aggregation—5 of the aggregates have higher estimates and 5 have lower estimates. And

there is almost no evidence of differences for individual aggregates from the aggregation of

the underlying industries—among the 8 aggregates with reasonably small standard errors,

only total manufacturing has a discrepancy of more than one standard error of the aggregate.

21



Aggregation
Number of 

KLEMS 
industries

Estimate of φ 
based on 
aggregate 

data

Standard 
error of 
estimate

Weighted 
mean of 

estimated 
industry φs

Agriculture, Forestry, and Fishery 2 0.97 (0.44) 1.05

Mining 3 0.22 (0.64) 1.63

Manufacturing 18 0.38 (0.10) 0.25

 Non-Durable Manufacturing 8 0.14 (0.16) 0.12

 Durable Manufacturing 10 0.42 (0.09) 0.34

Trade 2 0.29 (0.07) 0.31

Transportation and Warehousing 8 0.29 (0.09) 0.29

Information 4 0.24 (0.14) 0.27

Finance, Insurance, and Real Estate 6 -0.16 (0.16) -0.19

Services 15 0.13 (0.07) 0.15

Table 6: Comparisons of Estimates of the Lerner Index for Aggregates to Averages across
Detailed Industries

4 Concluding Remarks

Direct measurement of market power using high-quality annual time-series productivity data

for 60 industries yields good information of the heterogeneous incidence of positive market

power in US industries. There is a good deal of noise in the calculations at the individual

industry level. The noise is interpreted as the annual growth of Hicks-neutral technology.

The paper tries to state the precision in its estimates using standard statistical tools. There

is a good deal of cross-industry heterogeneity in the estimated parameters. All of the results

are interpreted in a framework of heterogeneity.

All of the results in this paper support the hypothesis that the sellers in many industries

in the US economy have substantial market power. According to Figure 3, the distribution

of the Lerner index across industries includes many with Lerner indexes above 0.3.

The choice to use modern productivity data has advantages and disadvantages. The

alternative is to use data from individual firms, such as Compustat for publicly traded firms

or confidential survey or administrative data. The advantage of the productivity data is the

care with which the BEA and BLS measure inputs and outputs. No data on individual firms

comes close to the accuracy and detail of the productivity data. The advantage of the data

on individual firms is much more variation in growth rates of inputs and outputs and thus

lower sampling variation in the estimated coefficients.
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