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A major question in labor economics is how wages are determined and evolve over time. Wage growth is known to

be closely related to job mobility (Topel and Ward(1992) and Keane and Wolpin(1997)) not just across firms, as workers

pursue better job opportunities through turnover (Buchinsky et al. (2010) and Bagger et al. (2014)), but also within firms,

as workers advance through a firm’s internal hierarchy of jobs (Lazear (1992, 2009), Gibbons and Waldman (1999a,b,

2006), and Lazear and Shaw(2007)). For instance, the wages of promoted workers are 28 percent higher after five years,

whereas those of unpromoted workers grow only by 7 percent over five years, owing to wage increases at promotion and

higher wages at higher job levels(Baker and Holmström(1995);see also Waldman(2013) and Frederiksen et al. (2017)).

Workers who are promoted or experience wage increases once are more likely to receive future promotions and wage

increases. Thus, understanding the determinants of job mobility within firms is central to explaining wage growth.

Yet, the dynamics of wages within firms cannot be described solely by the progression of workers through a firm’s

job hierarchy. For example, a large fraction of the changes in real wages that workers experience yearly in a firm are

negative, which leads both to a sizable variability in individual wages over time and to a significant dispersion in wages

at any level of the job hierarchy (Waldman(2013)). Uncovering the sources of this variability is key to interpreting the

forces that shape wage profiles, the nature of labor income risk, and, ultimately, the origins of inequality.

A common interpretation of these features of careers is that job and wage mobility arise from a gradual process

of firms and workers learning about workers’ ability, which is uncertain when workers enter the labor market, and of

workers acquiring human capital with experience in the market (Rubinstein and Weiss (2006)). Intuitively, as workers

discover their talents and accumulate new skills through their success and failure on the job, they eventually settle in the

jobs and firms that best match, and most reward, their productivity. Indeed, learning and human capital acquisition have

long been recognized as key sources of the dynamics of jobs and wages. To date, though, their relative importance is

debated (Neal and Rosen(2000), Rubinstein and Weiss (2006), and Neal (2017)). One reason is the empirical challenge

of the required measurement exercise. When jobs differ in the output they generate and in the opportunities they offer for

information and human capital acquisition, job and wage mobility are the result of a complex dynamic selection process,

as workers match with the jobs and firms that best fit their accumulating information and skills and will determine their

future information and human capital. Here, I show that this process, ignored by the empirical literature so far, is the

critical channel through which learning affects wages.

The goal of this paper is to assess the importance for careers of learning about ability and human capital acquisition

within a model that accounts for detailed patterns of job and wage mobility in firms. Specifically, I estimate how workers

sort into firms and jobs and the extent to which the resulting assignment and wage process is governed by the acquisition

of new information about workers’ ability and of new skills by workers. I use rich panel data on the wages, jobs,

and performance of all managers (supervisory workers) of a U.S. firm first analyzed by Baker, Gibbs, and Holmström

(1994a,b)—henceforth, BGH.Based on these data, I infer how the organization of production within a firm and, in turn,

the allocation of workers to jobs affect the acquisition of information about workers’ ability and of workers’ human
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capital and, conversely, how these two investment processes influence the dynamics of jobs and wages in a firm.1

Three main findings emerge. First, in contrast to the literature (Gibbons et al. (2005),Lluis(2005),and Hunnes(2012)),

I find the contribution of learning to wages to be sizable: the additional wage growth and dispersion due to it amount

to one-quarter of the cumulative wage growth and dispersion over the first seven years at the firm—the rest is due to

human capital acquisition. This novel result stems from accounting for both the direct and indirect effects of learning on

wages. I estimate that the direct effect, which captures the impact of current beliefs about ability on current wages in a

job, is small as consistent with the literature, which has focused solely on it. But by estimating the process for beliefs,

human capital, jobs, and wages, I can also measure the indirect effect of learning on wages resulting from its impact on

the dynamics of promotions. I find that this effect is responsible for almost the entire impact of learning on wages.

This indirect effect operates through the endogenous process by which managers are progressively selected to higher

levels of the job hierarchy whenever higher ability and acquired skills are more valuable at higher-level jobs. Intuitively,

as information about managers’ ability and their human capital accumulate and are revealed by performance, managers

who perform well advance to the jobs that are most suited to their ability and skills. Since wages at higher-level jobs are

on average much higher and more dispersed than those at lower-level jobs, this sorting process is key to the growth and

dispersion of wages with tenure. The combined patterns of promotions, wages, and job performance in my data suggest

that this indirect effect is indeed present: wage growth and dispersion primarily occur as higher performance leads to

promotions to jobs at which managers are paid higher and more variable wages. This process is closely related to the

sorting mechanisms in Heckman and Singer(1984) and Cameron and Heckman(1998,2001), who emphasize the role of

dynamic selection on observed and unobserved characteristics for careers and educational attainment.2

The second main finding is that the differential informativeness of jobs, which is absent from models of careers, is a

crucial determinant of wage profiles. To see why, note that according to my estimates, the firm’s lowest job level, at which

managers are hired, is the most informative about ability, but wages at this level are the lowest. The informational benefit

of this job level implies that the firm prefers to employ managers at this level even when beliefs about ability imply

they would produce more at higher levels—this force depresses wages in early tenures relative to the case of equally

informative jobs. But learning about ability is faster at this entry level, so when managers are promoted to higher levels,

their priors and wages are on average higher than in the case of equally informative jobs—this force increases wages

in later tenures. Hence, the different informativeness of jobs explains why wage returns may be small in early tenures;

accounts for the markedly convex relationship between wages and job levels, or tenure, in firms (Waldman(2013)); and

rationalizes the wage increases paid even to experienced workers at promotion—a known puzzle for learning models

(Gibbons and Waldman(2006))—as compensating differentials for switching from more to less informative jobs.3

1The BGH data are well known in the literature because they include information on performance and many of their features, which have been
replicated by other studies, are now considered stylized facts about careers. See Waldman (2013) and Frederiksen et al. (2017).

2The idea that selection is a key force shaping careers builds on the pioneering insight of Heckman(1979) and work by Heckman(1981,1990),
Heckman and Honoré(1990),Heckman and Sedlacek(1985,1990), and Sauer(1998). Search frictions and performance incentives are also sources
of wage growth and dispersion. Like most of the literature on the careers of non-executives, my paper focuses on learning and human capital. See
Gayle et al. (2015) for a model of promotions, turnover, and incentives that accounts for the relationship between executive pay and firm size.

3In this case, wage premia at promotion compensate workers for the discrete loss in information—namely, in the option value of learning about
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The third main finding concerns the measurement of learning. As I have argued, the firm acquires information

about ability by first assigning managers to jobs that are especially informative, although they contribute little to output.

Since these jobs pay lower wages, the benefits of learning delay promotions to higher-paying positions. The speed of

a promotion, then, does not necessarily reflect the amount of learning that occurs before it, as often conjectured. In

particular, it may take time for learning to have a positive effect on wages through promotions. As a result, to measure

the impact of learning on wages, it is critical, as I show, to capture its cumulative effect on job assignment.4 However,

popular instrumental-variable methods (Gibbons et al. (2005)) cannot be used for this purpose, as they abstract from the

estimation of the dynamics of beliefs and job assignment. When jobs differ in informativeness, I prove that these methods

cannot be applied to estimate the direct effect of learning either. The reason is that this approach relies on using variables

such as past jobs as instruments for the assigned job in the wage equation. Intuitively, when jobs are equally informative,

the additional performance information on which a new assignment is based is random—namely, independent of job

assignment and previous information, as beliefs are martingales. But when jobs vary in informativeness, any information

acquired is endogenous to the choice of job, so past jobs or wages do not provide suitable instruments for current jobs.

Formally, I consider a labor market in which a worker’s ability is symmetrically unobserved to all and correlated

across jobs and firms, as in Gibbons and Waldman (1999b, 2006)—hereafter, GW. Production in firms is organized in

jobs that differ in the output they generate, the information they provide about ability, and the human capital workers

acquire when assigned to them. In particular, differently from influential learning models of the labor market (Jovanovic

(1979), Miller (1984), and Flinn (1986)), in my model, ability is transferable across jobs and firms, so job transitions

occur after good and bad performance. Also, the speed of learning about ability differs across jobs. For instance,

performance at entry-level jobs, which usually entail simple tasks of limited value to a firm, may provide a less noisy

signal about ability than performance at higher-level jobs, which normally involve more complex tasks of greater value

to a firm.5 Employed workers stochastically accumulate human capital, which depends on their ability and experience

at jobs and firms. Firms compete à la Bertrand in segmented, skill-specific submarkets for workers in wages and jobs,

possibly facing repeated trade-offs between output today and information and workers’ human capital tomorrow. As

output technologies can differ across firms, this competition implies that wages in general differ from expected output.

Central to the identification of the model, which I formally establish, is that the BGH data inform not only about

managers’ jobs and wages but also about the yearly evaluation of each manager’s performance, which provides direct

evidence on the signals at each job that the firm and its managers use to learn about ability.6 I estimate the model by

maximum likelihood using eight years of observations on managers entering the firm between 1970 and 1979, imposing

all the model restrictions.7 The estimates shed light on several characteristics of the process of information acquisition at

ability—resulting from their new jobs and so can be large, even for very small changes in uncertainty about ability.
4As this cumulative effect arises from the sorting of managers to jobs, which is also affected by human capital, the impact of learning could be

small even once its indirect effect on promotions is taken into account. I find instead that through this effect, learning has a large impact on wages.
5See Prescott and Visscher (1980), Holmström and Tirole (1989), and Jovanovic and Nyarko (1997) on this trade-off, and Harris and Holmström

(1982) and MacDonald (1982) for related models of symmetric learning about ability.
6Without performance information, identification holds under suitable invertibility conditions. See Section 2.1 in the Supplementary Appendix.
7The model captures well the rich patterns of jobs and wages described, as well as finer moments of the data, including the tenure profiles of
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the firm. First, uncertainty about ability at entry is substantial, and the job level at which managers are first assigned is the

most informative but the least productive. Second, by comparing the estimated wage growth with that in the counterfac-

tual scenario in which learning is absent—beliefs about ability are not updated—I find that learning contributes to more

than 25 percent of wage growth and dispersion over the first seven years at the firm. In the absence of learning, wages

would increase much more slowly, owing to the lower speed of promotions, and be significantly less dispersed. Third, I

estimate learning to be a gradual process: uncertainty about ability declines slowly over time,thereby significantly reduc-

ing the pace of transitions to higher levels relative to the counterfactual case in which ability is learned in a single period.

Both this persistent uncertainty and the differential informativeness of jobs are responsible for a substantial compression

of wage growth in early tenures, and together they account for the curvature of wages in job levels and tenure.8

As for human capital, I estimate that the human capital acquired at the firm accounts for most of the growth and

dispersion in wages, but like learning, it affects wages primarily through its impact on the dynamics of job assignment.

It does so in two ways. First, as managers acquire skills that make them more productive at higher levels, the firm

promotes them to jobs to which they are progressively better suited and at which they are correspondingly paid higher

wages. Second, although stochastic, human capital acquisition increases productivity on average and so makes demotions

less likely for any decrease in beliefs about ability after low performance.

Overall, many features of careers in my data are similar to those documented in the literature, in terms of the

patterns of job assignment, the size of wage increases at promotion, the curvature of wages in job levels and tenure, and

the magnitude of wage growth on the job (Topel (1991),Belzil and Bognanno(2008),Buchinsky et al. (2010),Waldman

(2013),Song et al. (2019), and Frederiksen et al. (2017)). Along these dimensions, the firm I study is comparable to those

studied in other work. By focusing on detailed data on one such firm, I can examine aspects of careers that are difficult to

measure in more representative worker or matched employer-employee data—for instance, the relationship between jobs,

wages, and performance, and the characteristics of a firm’s internal organization as reflected in the job hierarchy—but

are important to gauging the determinants of job and wage mobility and distinguishing among them. Since my analysis

is limited to one firm, however, results must be subject to further verification to establish their generality. The availability

of data on more firms would also make it possible to relax the assumptions I have imposed on market structure and the

wage-setting mechanism and to dispense with the maintained restrictions of symmetry in the informational and human

capital process across firms. The linkage of the firm I study to the rest of the market crucially relies on them. With multi-

firm data, additional sources of productivity differences and systematic uncertainty across firms, including about their

demand conditions, could be incorporated. My estimates provide just a peek into one firm’s wage policy that hopefully

offers a first step towards a reassessment of the role of learning for wages.

In the literature, learning about worker productivity and job mobility in the labor market have been investigated

job-to-job transitions at the firm and of separations and the distributions of performance and wages at the main job levels in each tenure.
8Relatedly, Lochner et al. (2018) identify the role of changes in the returns to unobserved skills and in the variance of unobserved skills and

of transitory non-skill shocks for the increase in U.S. residual wage inequality from the 1980s onward. See also Lochner and Shin (2014) on
the importance of unobserved skills for the evolution of log earning residuals. Ghosh (2007) proposes a model of learning and human capital
acquisition in which worker turnover across firms arises from disutility shocks to continuing employment with a same firm.
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by Berkovec and Stern (1991), Farber and Gibbons (1996), Altonji and Pierret (2001), Antonovics and Golan (2012),

and Sanders (2016).9 Pries and Rogerson (2005) consider a model with learning and matching frictions to account for

differences in turnover between the U.S. and Europe. Moscarini (2005) integrates a job-matching model à la Jovanovic

(1979) into an equilibrium model with search frictions and finds that idiosyncratic productivity risk dampens learning

and worker sorting, thus compressing wage inequality. Nagypál (2007) proposes a model of match-specific informational

capital that integrates two learning processes—namely, learning about match productivity and about the best use of a

technology in a match—and finds support for a gradual version of the former from the response of worker turnover to

first-order Markov price shocks.10 Papageorgiou(2014) analyzes a search model of occupational mobility with learning

in which ability is correlated across occupations, documenting the importance of comparative advantage for occupa-

tional sorting. All this work, though, abstracts from within-firm job and wage mobility. Papageorgiou (2018) enriches

Papageorgiou(2014) with occupational mobility in firms to account for the relationship between firm size and wages.

As for learning in firms, Garicano and Van Zandt (2013) investigate the role of organizations for acquiring infor-

mation. Chiappori et al. (1999) provide evidence of learning and downward wage rigidity for executives of a French

state-owned firm. Gibbons et al. (2005) study sectoral and inter-industry wage differentials based on the framework of

GW.As noted, this strand of work on careers in firms is based on models of job assignment with general rather than firm-,

match-, or occupation-specific ability, unlike nearly all of the literature in the previous paragraph. Only when ability is

correlated across firms, jobs, or occupations, do workers turn over across them not only after bad performance, as in

Jovanovic (1979), Miller (1984), and Flinn (1986), but also after good performance, as observed in the data. Building

on Gibbons et al. (2005),Lluis (2005) and Hunnes(2012) assess the importance of comparative advantage and learning

for worker mobility in firms as well as across occupations. Using information on wages and performance to estimate a

perfectly competitive labor-market model without job assignment, Kahn and Lange (2014) document that learning and

stochastic productivity changes are important determinants of the variance of wages in the BGH data. My results, based

on a framework that extends GW to asymmetric firms and differentially informative jobs, imply that the selection of

managers to jobs through promotions is central to the growth and dispersion of wages in the BGH firm.

As for the rest of the paper, Section 1 examines the data, Section 2 describes the model, Section 3 establishes identi-

fication and discusses model specification, Section 4 presents the model estimates, Section 5 contains the counterfactual

exercises, and Section 6 concludes. See Appendixes A to C and the Supplementary Appendix (S.A.) for omitted details.

1 Data

The data, first analyzed by BGH, consist of the personnel records of all management employees of a medium-sized U.S.

firm in a service industry observed between 1969 and 1988. The firm’s job hierarchy consists of eight levels, Levels 1
9Analogously to Farber and Gibbons (1996), Altonji and Pierret (2001) show how the importance of learning can be inferred from the impact

on wages of individual attributes that are not observed by employers, such as AFQT test scores, but, because of learning, should be progressively
reflected in wages. This is in contrast to early signals about ability, such as schooling, whose importance for wages should correspondingly decline.

10The progressively greater selectivity implied by the first learning process leads matches of low and high tenure to be vulnerable to termination
after adverse price shocks, owing to the countervailing effects of a higher match quality and a lower option value of learning on match-specific
capital as tenure increases. By contrast, under the second learning process, matches of the shortest tenure are the most vulnerable to termination.
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to 8 (chairman-CEO), but is clearly divided into two distinct parts: Levels 1 to 4, which contain nearly all observations

(97.6 percent), and Levels 5 to 8, which consist of top management positions.11 Given the small number of observations

at Levels 3 and higher, I use BGH’s original Levels 1 and 2 and aggregate Levels 3 to 8 into a single level, henceforth

referred to as Level 3. The number of managers varies from 400 to 1,078 at Level 1, from 375 to 1,254 at Level 2,

and from 496 to 3,199 at Level 3 across years, which suggests that capacity constraints on managerial employment at

any level, or strong forms of fixed complementarity among managers, may not be too relevant. Ratings of managers’

performance are available for about two-thirds of the original records and range from 1, the highest, to 5, the lowest.

Ratings of 3 to 5, though, represent a very small fraction of all ratings: 36,750 of the 45,673 observations are 1 or

2. Hence, I combine ratings of 2 to 5 into a single measure of “0,” obtaining a binary classification of high and low

performance. I focus on 1,426 managers who enter managerial positions between 1970 and 1979 at Level 1 and have

at least 16 years of education, experience no change in the recorded number of years of education during their first 10

years at the firm, and have no level information missing. No such manager is missing age or education information or

is older than 45 years at entry. Because of the high separation rate from the firm each year (Table 1), I restrict attention

to managers’ first 8 years at the firm.12 For completeness, I also estimated the model on a larger sample that includes

entrants at the original Levels 1 to 4, which displays very similar features to those of the sample of entrants at Level 1.

The estimates of the key parameters based on it are almost indistinguishable from those reported below (see the S.A.).

Job Assignments and Separations. Table 1 displays two main features. First, separation rates are high in all tenures.

By the seventh year, over half the managers hired at Level 1 have separated from the firm and are no longer employed

by it. Second, the percentage of managers assigned to Level 1 rapidly decreases with tenure, whereas that of managers

assigned to Levels 2 and 3 first increases and then decreases with tenure. Table A.1 converts these distributions into

level-specific hazard rates of separation, retention at the same level, and promotion to the next level by tenure. Note

that whereas separation hazards at each level are approximately constant, promotion hazards initially increase and then

decrease with tenure—as is common, promotions are by one level and demotions (almost) never occur. Interpreting the

data through the lens of a learning and stochastic human capital acquisition model rationalizes all these features of the

data. When higher ability and acquired skills are more valuable at higher-level jobs, managers advance through a firm’s

hierarchy, and possibly turn over across firms, as information and human capital accumulate. Such a process can also

account for the nonmonotone tenure profile of promotion rates in two ways, which the model will incorporate. First, as
11To see that levels are not just pay grades, note that if levels were determined only by pay, then the firm would promote managers once their

pay reached a certain threshold. So, promoted managers would always belong to the top percentiles of the wage distribution at the previous level,
which is not the case in the BGH data; see BGH (1994a, Table VII).I use information on managers’ year of entry, age, education, job level, salary,
and performance rating but not on bonus pay, as it is unavailable before 1981 and otherwise missing for no fewer than 45.8 percent of managers
in each tenure with higher percentages, up to 100, in early tenures; see Ekinci et al. (2019) for an analysis of bonus pay in the BGH data.

12Like BGH, I consider ratings as year-end variables. Since managers with a performance of 2 display assignment and wage profiles similar to
those of managers with a performance of 3, 4, or 5, performance worse than 2 does not seem to convey information different from that conveyed
by a performance of 2, as is consistent with the evidence that supervisors are averse to negative evaluations. So, intermediate ones are effectively
equivalent to poor ones; see Section 3.1. In the BGH data, the average age of managers is 39 years with a standard deviation of 10 years, and
their average number of years of education is 15 with a standard deviation of 2 years, from a minimum of 12 (high school) to a maximum of 23
(Ph.D.). Age and education display little variation across entrant cohorts. BGH report that the share of minorities and women at the firm increased
over time; my copy of the data does not include information on race or gender. I consider entrants at Level 1 between 1970 and 1979 to be able to
compare my results with those of BGH, as most of their analysis also concerns this group, and to avoid an excessive right censoring of the careers
of later entrants. I exclude entrants in 1969, since it is unclear from the data in which year managers observed in 1969 entered.
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the best managers, according to their perceived ability and human capital, are promoted out of a level, the remaining

ones necessarily face worse promotion prospects. Second, if acquired human capital makes a manager on average more

productive at a given level than at any other, then the probability of promotion out of that level eventually decreases.

Performance Ratings. Table 2 shows two patterns for ratings. First, the percentages of high ratings at Levels 1 and 2

decrease with tenure. Second, high ratings are more likely at Level 2 than at Level 1 in any tenure.13 As shown in Table

A.14 in the S.A., the percentage of high ratings is also higher among promoted than among unpromoted managers and,

for promoted managers, higher among those promoted early in their tenure in a level relative to those promoted later. All

these features of the data are consistent with the idea that ability and acquired human capital affect performance and are

more valuable at higher levels. If managers receiving high ratings earlier in their tenure in a level are characterized, on

average, by higher priors about their ability and higher human capital, then they are naturally the first assigned to higher

levels.This selection process leads managers with greater ability and human capital to progress through the job hierarchy

and so explains the higher performance of managers at higher levels compared with that of managers at lower levels.As

a result, performance is lower for unpromoted than for promoted managers, and it worsens with tenure in a level.

Wages. Table 3 displays the distribution of (real in 1988 U.S. dollars) wages at the firm by level and tenure, and Table

A.2 reports statistics on the distribution of wage changes by tenure. Three features emerge. First, wages are on average

higher at higher levels, and the spread of the distribution of wages tends to increase with the level—see the note to Table

3. Since, as discussed, managers at higher levels tend to exhibit higher performance ratings, managers at higher levels

on average perform better and are paid more. These characteristics of the data are consistent with a sorting process

whereby managers with higher perceived ability and acquired human capital are promoted over time to higher levels and

receive higher wages. As beliefs about managers’ ability and their realized human capital increasingly differ over time,

wages become more dispersed. Second, as is apparent from Table A.2, negative wage changes are quite frequent—over

20 percent in each tenure—as is compatible with a learning and stochastic human capital process. Intuitively, if low

performance lowers beliefs about ability and implies lower levels of realized human capital, then it reduces the value of

a manager’s contribution to output and thus wages. Third, although wages tend to increase with tenure, their growth is

nonmonotone, which confirms that wages are not governed simply by managers’ progression through the job hierarchy.

Case for Integrated Model. As is common in firm-level data, in the BGH data, wages increase with tenure, job level,

and performance; promotions and wage increases occur after good performance and are correlated over time; demotions

(almost) never occur, despite the fact that wage decreases are frequent after low performance; and wage dispersion at each

level is substantial. (See BGH on the serial correlation of promotions and wage increases and on the relationship between

wages and performance.) I interpret these patterns of the data as resulting from a stochastic process of information and

human capital acquisition, whereby managers accumulate information about their ability in addition to new skills when

employed and progressively advance to the jobs (and firms) at which higher ability and human capital are most valuable.
13As ratings at Level 3 are missing for no fewer than 35 percent of managers assigned to Levels 3 and higher, with much higher proportions of

missing values in lower tenures, I do not use information on ratings at Level 3 in estimation and so omit statistics on them. See footnote 27.
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Crucially, ability must be correlated across jobs for managers to be promoted after good performance: were ability

independent across jobs, job transitions would occur only after bad performance—as in typical bandit problems.

To see the importance of combining learning and stochastic human capital acquisition to rationalize all these aspects

of careers and appreciate their separate roles, observe that learning and job assignment can account not just for mobility

across jobs and firms but, unlike random productivity shocks, also for the observed serial correlation in wage increases,

promotions, and performance (GW and Waldman(2013)). Learning further leads to wage increases and promotions after

high performance and to wage decreases and demotions after low performance. As for acquired human capital, note that,

on average, it gives rise to promotions and wage increases by augmenting managers’ productivity and so accounts for

the low frequency of demotions relative to promotions. Then, these two mechanisms can in principle be distinguished as

follows. For a given frequency of wage increases and promotions, the higher the serial correlation in wage increases and

promotions, the larger the role of unobserved ability—as in the runs test for the non-randomness of data. In addition, the

higher the frequency of wage decreases, the greater the scope for learning. Yet, for a given frequency of wage decreases,

the lower the frequency of demotions relative to that of promotions, the larger the role of human capital.14

The patterns of job assignments, performance ratings, and wages at the firm are also consistent with the notion

that learning affects wages not only directly, as managers with higher performance ratings, who are thus perceived to

be of higher ability, are paid more on average, but also indirectly. In particular, higher performance ratings, and so

higher beliefs about ability, are associated with a greater chance of promotions, which lead to higher and more dispersed

wages—a force the model will capture. That is, job assignment importantly mediates the impact of learning on wages.

2 A Model of Careers

I consider a labor market for an occupation (managers) in discrete time indexed by t ≥ 1 (experience), in which two

firms, f =A,C, compete for workers and use workers’ effective labor or human capital at their jobs as the only input

to production. Firms and workers discount the future by the factor δ ∈ (0, 1). Workers differ in their ability and human

capital, which evolves stochastically over time according to a process that depends on a worker’s ability, employing firm,

and assigned job. Since ability is unobserved to all, firms and workers learn about it based on realized output.

Firms and Workers. Firms produce a homogeneous good sold in a perfectly competitive market at a price of one. I will

occasionally refer to firmA as my firm, the firm in my data, and firmC asA’s competitor. Production in each firm f is

organized in a set Kf of jobs, which can be interpreted as groupings of productive tasks possibly different across firms;

for instance, tasks are known to be grouped by function, such as accounting or marketing, in certain firms and by skill

requirements in others. As in GW, a worker is characterized by a level of ability θ∈{α, β}, unobserved to all, including

the worker, and human capital, described next. Each θ corresponds to a vector of probabilities of success at the jobs of

each firm, α={αfk} and β={βfk} with αfk≥βfk, as detailed below. I refer to α as high ability and β as low ability.15

14In particular, since human capital, on average, increases productivity, acquired human capital offsets the adverse impact of low performance
on beliefs about ability, so that managers are retained at a level, rather than demoted to a lower level, even after repeated low performance.

15By allowing technologies to differ across firms, this setup nests the case of perfect competition when firms have the same technology, a
differentiated duopoly when firms have different technologies, or even a virtual monopoly when, say,A’s technology is uniformly more productive
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Human Capital and Output. A worker in t is endowed with human capital acquired before entry in the market,H1, with

general experience at the firms in the market, HG
t = {HG

fkt}, and with specific experience at their jobs, HS
t = {HS

fkt}.

The production function of general j=G and job-specific j=S human capital at job k of firmf is

hjfkt = lnHj
fkt = ajfkt + gjk(i

j
k1
, . . . , ijkt−1

) + εjfkt, (1)

with hjfk1=ajfk1+ε
j
fk1. The term ajfkt is stochastic and its distribution depends on a worker’s ability, ijkτ is the investment

in period τ ≤ t−1, and εjfkt is a zero-mean i.i.d. human capital or productivity shock, realized at the start of t, capturing

any temporary unexpected change in human capital unrelated to ability. Whereas general human capital accumulates

with time spent in the market, job-specific human capital is acquired with time spent at a job: iGkτ equals the constant i

if a worker is employed at any job of either firm in τ and zero otherwise, whereas iSkτ equals the constant ikτ if a worker

is employed at job kτ of either firm in τ and zero otherwise. All investments, ajfkt, and εjfkt are observed by all.

When a worker is employed at job k of firm f in t, ajfkt equals ajfkt with probability πfk(θ) and ajfkt otherwise, where

πfk(θ) is αfk for a high-ability worker and βfk for a low-ability worker. Thus, ability influences the evolution of human

capital by affecting the probabilities of the realizations of aGfkt and aSfkt, which are assumed to be Bernoulli distributed

and perfectly correlated for consistency with the essentially binary and one-dimensional measure of performance in the

data. (If the support of ajfkt depended on θ, ability could be inferred in one period.) As αfk ≥ βfk, the human capital

of a high-ability worker is on average higher than that of a low-ability worker. Denote by h
j
fkt and hjfkt realized human

capital after ajfkt (“success”) and ajfkt (“failure”) occur, which I refer to as high and low performance, respectively.16

Normalizing each worker’s labor supply to one, a worker’s (log) output at job k of firm f in t is given by

yfkt = h1fkt + hGfkt + hSfkt, (2)

with h1fkt function of h1 = lnH1. Denote output at the end of t by yfkt and y
fkt

, respectively, if (h
G
fkt,h

S
fkt) and

(hGfkt,h
S
fkt) are realized. At the start of t, let human capital be summarized by κt=(h1, {ijkτ }

t−1
τ=1), E(yfkt|θ, κt) be the

expected output at job k of firm f conditional on (θ, κt), and pt be the prior that a worker is of high ability. By (1) and

(2), expected output conditional on (pt, κt), which is the average of E(yfkt|θ, κt) across the two possible values of θ, is

yf (pt, κt, k) = ye
fkt

+βfk(yfkt − yfkt)︸ ︷︷ ︸
E(yfkt|β,κt)

+ (αfk − βfk)(yfkt − yfkt)︸ ︷︷ ︸
E(yfkt|α,κt)−E(yfkt|β,κt)

pt = dfk(κt) + efk(κt)pt, (3)

with ye
fkt

defined as y
fkt
−εGfkt−εSfkt. An α-worker has an absolute advantage at job k, sinceE(yfkt|α,κt)≥E(yfkt|β,κt)

if αfk ≥ βfk, and a comparative advantage at k′ over k if E(yfk′t|α,κt)/E(yfkt|α,κt)≥E(yfk′t|β,κt)/E(yfkt|β,κt).

Information and Beliefs. Firms and workers share the initial prior belief p1 that a worker is of high ability—in esti-

mation, I allow for different initial priors across workers. Since firms and workers learn about ability from performance,

than C’s. I assume that the value of not working in the market considered is low enough that a worker is employed each period.
16This process generalizes to a setting with multi-job firms and learning the process in Bagger et al. (2014), ht=a+g(t)+εt, where a is known

worker productivity, g(t) is a deterministic trend for acquired human capital, and εt is a zero-mean shock. In light of the data, I abstract from
differences in gjk(·) across firms. See Appendix B.1 for common laws of motion of human capital that can be expressed in cumulative form as (1).
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which is observed by all, learning is symmetric: firms and workers share the same information, and thus the same prior,

in any t.17 Each period after production occurs, firms and workers update their beliefs about a worker’s ability according

to Bayes’s rule. Given pt, this leads to two possible values of pt+1 after high (H) and low (L) performance,

PfHk(pt) =
αfkpt

αfkpt + βfk(1− pt)
or PfLk(pt) =

(1− αfk)pt
(1− αfk)pt + (1− βfk)(1− pt)

, (4)

respectively. Since the probability of high performance varies across jobs, the informativeness of jobs and so the speed

of learning about ability differ across them, ranging from the case of no learning (αfk=βfk), when the posterior always

equals the prior, to that of complete learning (αfk = 1 andβfk = 0), when the posterior belief that a worker is of high

ability is one or zero, depending on the worker’s actual ability, after just one period of employment. Note that jobs with

the same expected output can be differentially informative about ability: as αfk and βfk change, expected output in (3)

can be kept constant by adjusting yfkt and y
fkt

. In particular, low output variability jobs (with yfkt close to y
fkt

) can be

more or less informative than high output variability ones (with yfkt much larger than y
fkt

).18

Separations. As information and human capital accumulate, workers’ evolving absolute and comparative advantages

across jobs lead naturally to endogenous separations between workers and firms. I also account for exogenous separations

unrelated to ability or human capital by allowing a worker to leave the market at the end of each period t with probability

1−ηfk(κt), which depends on the worker’s employing firm f , assigned job k, and human capital as captured by κt.

Timing. At the start of t, productivity shocks are realized. Next, firms simultaneously submit their wage and job offers to

workers for the period.19 Then, each worker decides which offer to accept. Lastly, the offered wage is paid; performance,

human capital, and output are realized; beliefs about ability are updated; and separation shocks occur. As firms commit

to the period offers they make, the timing of wage payments in a period is immaterial. I refer to yf (pt, κt, k)+εfkt with

εfkt=εGfkt+ε
S
fkt as a worker’s conditional expected output before performance is realized. Without loss, I focus on the

competition between the two firms for one worker. Denote by (wt, kt)={wft, kft} the vector of each firm f ’s wage and

job offer and by lt={lft} the vector of the worker’s decisions to accept (lft=1) or reject (lft=0) each offer.

Equilibrium. I restrict attention to robust Markov perfect equilibria (Bergemann and Välimäki (1996)).The state firms

face when making their wage and job offers is (st, εt), where st = (pt, κt), pt is the prior that the worker is of high

ability, κt = (h1,{ijkτ }
t−1
τ=1) summarizes human capital, and εt = {εfkt} collects all realized productivity shocks. The

state the worker faces when choosing among offers consists of (st, εt) and firms’ wage and job offers, (wt, kt). An

equilibrium consists of offer strategies wft=wf (st, εt) and kft=kf (st, εt) for each firmf , an acceptance strategy lt=

l(st, εt, wt, kt) for the worker with typical element lft= lf (st, εt, wt, kt) for eachf , and belief-updating rules PfHk(pt)
17This setup captures the notion that in professional labor markets, resumes, references, recommendation letters, and other information gathered

by human resource departments can accurately convey performance at previous jobs (Oyer and Shaefer (2011)). Maintaining that performance
or human capital is commonly observed is less restrictive than it may seem: firms other than a worker’s current employer can infer a worker’s
performance in the previous period from the worker’s wage in the current period. Then, observing wages is analogous to observing performance.

18By Blackwell’s informativeness criterion, job k′ is more informative than k if the posterior after performance is observed atk′ second-order
stochastically dominates that at k. Relative to the perfectly competitive setup of GW, where human capital,hfkt=θf(xt)+εfkt, depends on ability
θ, experience, xt, and learning noise εfkt, in my setup the speed of learning differs across jobs, expected human capital and output vary across
firms and jobs, human capital is acquired with experience at firms and jobs, and productivity shocks are present in addition to learning noise.

19Productivity shocks stochastically affect the value of a job to a firm across periods and workers so that the variability of job offers over time
and among workers is not due just to the process of learning about ability and of human capital acquisition.
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and PfLk(pt) for each f and k such that in each period i) the worker maximizes the (expected present discounted)

value of wages;ii) both firms maximize the (expected present discounted) value of profits;iii) the non-employing firm is

indifferent between employing and not employing the worker at the job that maximizes its (expected present discounted)

value of profits;and iv) beliefs are updated as in (4). Given the firms’ strategies, the worker’s strategy satisfies

W (st, εt, wt, kt) = max{lf}
∑

f lf

{
wft + δηfkft(κt)

∫
εt+1

EW (st+1, εt+1, wt+1, kt+1|st, kft)dG
}
, (5)

where (wt+1, kt+1) is the future set of offers, G is thec.d.f.of future productivity shocks, εt+1, the expectation EW (·)

is over performance at the accepted job, kft, and (st+1, εt+1)=(PfHkft(pt), κt+1, εt+1) or (st+1, εt+1)=(PfLkft(pt),-

κt+1, εt+1). In evaluating an offer, the worker weighs the offered wage, wft, against the prospect of acquiring informa-

tion and human capital at job kft. Given the worker’s and the competitor’s strategies, firm f ’s strategy satisfies

Πf(st, εt)=max
w,k

(
lft

{
yf (st, k)+εfkt−w+δηfk(κt)

∫
εt+1

EΠf(·|st, k)dG
}

+lf ′tδηf ′kf ′t(κt)
∫
εt+1

EΠf(·|st, kf ′t)dG
)
, (6)

f ′ 6= f , where lf ′t = lf ′(st, εt, wt, kt) is the worker’s acceptance decision about the offer of firm f ′ and kf ′t is the job

offered by firm f ′ in t. Note that each firm takes into account the option value of not employing the worker in a period

and attracting the worker in some future period, which arises from the information revealed by performance and the

human capital acquired by the worker at the competing firm. In particular, by (5) and (6), workers and firms experiment

in that they contemplate sacrificing current wages and output to acquire more information about ability. Unlike in a

standard multi-armed bandit problem, in which a decision maker repeatedly chooses among alternatives (arms) with

uncertain independent rewards thus learning about their distribution, here the returns from firms’ jobs (the arms) depend

on the worker’s unobserved ability, which is common across them. By iii), I require a Markov perfect equilibrium to be

robust in that if firm f ′ employs the worker, then the offer by the losing firm f , f 6=f ′, must make it indifferent between

not employing (left side of (7)) and employing (right side of (7)) the worker; that is, Πf (st, εt|f ′)=Πf (st, εt|f), or

δηf ′kf ′t(κt)
∫
εt+1

EΠf (·|st, kf ′t)dG=maxw,k

{
yf (st, k)+εfkt−w+δηfk(κt)

∫
εt+1

EΠf (·|st, k)dG
}
. (7)

This refinement implies that wages and so equilibrium are unique. Intuitively, it rules out offers by f with a present value

of wages higher than firm f ’s present value of output, net of the continuation value from not employing the worker.20

Employment, Job Assignment, and Wages. With ability correlated across jobs and firms, each firm’s job offer policy

and the worker’s acceptance policy solve a dependent bandit problem, and so they do not admit a simple index form,

as in independent bandit problems. Employment and job assignment can be nonetheless characterized as the solution to

two pseudo-planning problems, which are natural analogues of the stopping problem that leads to an optimal (Gittins)

index policy for independent bandits. Formally, denote by V f (st, εt) the maximal value of firm f ’s match surplus at state

(st, εt) or match surplus value, which is defined as the sum of the worker’s value function W (st, εt), expressed using

20Offers with a present value of wages smaller than this net present value of output are already ruled out by equilibrium, since the losing firm
must obtain a higher value of profits by not employing than by employing the worker; that is, the left side of (7) must weakly exceed the right side
of it in any Markov perfect equilibrium. This notion of robust equilibrium generalizes that of cautious Markov perfect equilibrium introduced by
Bergemann and Välimäki (1996) to a setting of competition among firms in jobs as well as wages.
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the equilibrium dependence of wage and job offers on (st, εt), or value of wages and firm f ’s value function Πf (st, εt)

or value of profits. Let V f (st, εt|f ′), W (st, εt|f ′), and Πf (st, εt|f ′) be, respectively, firm f ’s match surplus value, the

worker’s value of wages, and firm f ’s value of profits conditional on firm f ′ employing the worker.

I establish two properties. First, given each firm’s choice of job, the employing firm at each state is the one generating

the largest sum of values to all, S(st, εt) = ΠA(st, εt)+W (st, εt)+ΠC(st, εt); that is, it is determined by a planning

problem in which the planner’s choice of job is restricted to the two jobs that maximize each firm’s value of profits. Thus,

conditional on a firm’s choice of job, a worker’s choice of firm is efficient. Second, each firm’s choice of job at each

state maximizes the value of its output, V f
(st, εt), defined in Proposition 1, regardless of whether the firm employs the

worker, as if it were the only firm in the market. This result is due to the worker’s indifference between the two firms’

offers and the non-employing firm’s indifference between employing and not employing the worker in equilibrium.21

Proposition 1. The employing firm is determined in equilibrium by the policy that solves

S(st, εt) = maxf

{
yf (st, kft) + εfkftt+δηfkft(κt)

∫
εt+1

ES(st+1, εt+1|st, kft)dG
}
, (8)

where kft = kf (st, εt) solves V f
(st, εt)=maxk∈Kf

{
yf (st, k)+εfkt+δηfk(κt)

∫
εt+1

EV
f
(st+1, εt+1|st, k)dG

}
.

As for equilibrium wages, the logic generalizes the one familiar from a static model of Bertrand competition. In

such a model, the wage the employing firm pays is sufficiently high that a competitor cannot match it and obtain positive

profits. For example, suppose for simplicity that the expected output of firms A and C when they employ the worker

is yAt and yCt, respectively. If yAt > yCt, then the worker is employed by A at wage wAt = wCt = yCt, whereas if

yAt<yCt, then the worker is employed by C at wage wAt=wCt=yAt. Thus, a worker is typically paid less than output,

unless the two firms share the same technology, in which case wAt=wCt=yAt=yCt, as under perfect competition.

Similarly, in the dynamic case, the employing firm must pay a wage high enough that a competitor cannot match it and

obtain a positive value of profits—net of the continuation value from not employing the worker. The wage rule, though,

is more general: a worker can be paid more or less than (conditional) expected output. For instance, A’s value of future

profits can be high enough to justify paying a wage higher than expected output in a period if A can sufficiently improve

its future employment and assignment decisions based on the information or human capital acquired by employing the

worker. When productivity shocks are Gumbel distributed (maximum) and any job k entails the same opportunity for

information acquisition (αAk=αCk and βAk=βCk) and risk of exogenous separation (ηAk(κt)=ηCk(κt)) across firms,

as I assume in Section 3, wages take a particularly simple form. See Section 2.2 in the S.A. for the general case.

Proposition 2. Let productivity shocks be Gumbel distributed with mean 0 and varianceπ2/6. The equilibrium wage is

wf (st, εt) = yf ′(st, kft)− ln Pr(kf ′t = kft|ft=f ′, st) + εf ′t (9)

when the worker is employed by firm f , f ′ 6= f , if αAk=αCk, βAk=βCk, and ηAk(κt) = ηCk(κt) at each job k.

By Proposition 2, the wage paid by, say, firm A can be conveniently expressed as the sum of the worker’s expected

output at C at the job chosen by A, yC(st, kAt), the negative log probability that C chooses the same job as A (the event
21These two efficiency properties do not imply overall efficiency, as neither firm internalizes the impact of its choices on its competitor’s profits.
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{kCt=kAt}) conditional on employing the worker (the event {ft=C}), and the productivity shock to C’s match surplus

value, εCt.22 The second term of (9) is a premium that accounts for C’s job offer typically differing from A’s. Intuitively,

Bertrand competition implies that C bids its entire match surplus value from employing the worker at its offered job—

net of the continuation value from not employing—which I do not observe. But this value can be expressed in terms of

C’s value had C chosen the same job as A, which I do observe, up to an adjustment term for the possibility that A’s

preferred job may not be C’s optimal choice. By standard Gumbel properties, this term is given by ln Pr(kCt = kAt|·).

By the symmetry in the state law of motion across firms, the remaining terms reduce to yC(st, kAt) and εCt.23

3 Empirical Analysis

In this section, I discuss the assumptions maintained in estimation, the identification of the model, and the estimated

specification.As I only observe workers,henceforth managers, atA, I denote by t=1 the year of entry inA from now on.

3.1 Preliminaries

Recall that κt = (h1, {ijkτ }
t−1
τ=1). I maintain that the discount factor, δ, is known, that productivity shocks are Gumbel

distributed (maximum) with mean zero and variance π2/6, and that firmsA and C have three jobs or job levels each with

common probabilities of high performance by manager ability, {αfk, βfk}, and rates of exogenous separation, {1−ηfkt}

with ηfkt=ηfk(κt). I refer to these probabilities as αk, βk, and ηkt. See Section 2.2 in the S.A. for the identification of

the model when the information and human capital processes and the risk of exogenous separation differ across firms,

provided that data from multiple firms are available.

Unobserved Heterogeneity. As managers may differ along dimensions known to managers and firms—say, through job

interviews—but unobserved to the econometrician, in the spirit of Heckman (1981) I assume that each manager is of

skill type i= 1, . . . , I , which affects the initial priors about ability, output, and wages. Based on changes in likelihood

values and the Akaike information criterion, I set I=4. Let pi1 be the initial prior that a manager of skill type i is of high

ability, sit=(pit, κt, i) be a manager’s state at the beginning of t, and qi=Pr(i|LA1 =1) be the probability of skill type

i, where Lft is a manager’s level at firm f in t, which corresponds to job kft=kf (sit, εt) in the model. I allow firm A to

face different competitors for managers of different skill types so that firm C varies across i. Thus, I let ajCkt depend on

i, and denote its two possible values for each j, k, t, and i by ajCkt(i) and ajCkt(i). Expected output in (3) then becomes

yf (sit, k)=ye
fkt

(i)+βk[yfkt(i)−yfkt(i)]+(αk − βk)[yfkt(i)− yfkt(i)]pit=dfk(κt, i)+efk(κt, i)pit. (10)

Performance Ratings. Like BGH, I interpret recorded ratings as noisy measures of performance and allow their error

to be biased, as in Keane and Wolpin (1997) and Keane and Sauer (2009).24 Formally, denote by E0(k, t) = Pr(RoAt =

22The term εf ′t is the random component of the maximum surplus C can generate by employing the worker. See the proof of the proposition.
23Note that if the two firms had the same technologies and a worker experienced the same productivity shocks across them, then the market

would be perfectly competitive and firms would choose the same jobs. In this case, the paid wage would equal a worker’s conditional expected
output as in the static case, wA(st, εt)=yA(st, kAt)+εAkAtt, where yA(st, kAt)+εAkAtt plays the role of yAt in the above example.

24It is well known that ratings measure performance imperfectly and that the associated error may be systematic. For instance, supervisors tend
to assign uniform ratings to employees regardless of their true performance, potentially leading to repeated misreporting of actual performance.
See Baker et al. (1988), Murphy (1992), Prendergast (1999), and, for a study that uses direct measures of worker output, Lazear et al. (2015).
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1|RAt=0, LAt=k, t) the probability of a recorded high rating, RoAt=1, when low performance is realized, RAt=0, at

Level k in t so that RoAt is the performance rating observed by the econometrician, whereas RAt is the true performance

observed by firms and managers. Similarly, denote by E1(k, t) = Pr(RoAt = 0|RAt = 1, LAt = k, t) the probability of a

recorded low rating when high performance is realized at Level k in t. I specify error rates as simple logistic functions,

E0(k, t)=
eρ0+ρ2(k)[t×1{k=1}+(t−1)×1{k=2}+(t−2)×1{k=3}]

1 + eρ0+ρ2(k)[t×1{k=1}+(t−1)×1{k=2}+(t−2)×1{k=3}] and E1(k, t)=
1− E0(k, t)

1− E0(k, t) + E0(k, t)eρ1
, (11)

with ρ1>0 so that the probability of a high rating increases with that of high performance, Pr(RoAt=1|RAt=1, LAt=

k, t)>Pr(RoAt=1|RAt=0, LAt=k, t). I allow error rates to vary across levels and tenures, since performance appraisal

is often job-specific and may be more thorough at certain stages of a manager’s career at the firm. As no manager is

observed at Level 2 before t=2 or Level 3 before t=3, I let error rates at these levels depend on t−1 and t−2.

Wages. I allow for measurement error in wages, εmit , that can differ across skill types and is zero-mean Gumbel distributed

(minimum) with standard deviation σAik. Let εAit=λεikεCt+ε
m
it , with λεik=

√
6σAik/π. For a manager of skill type i,

wAit=EwAit(k) + εAit=yC(sit, k)− ln Pr(LCt = k|ft=C, sit) + εAit (12)

is the recorded wage at Level k of firm A at state (sit, εt) by (9), where εAit is a zero-mean logistically distributed shock

with standard deviation σAik, since it is the difference between two Gumbel-distributed (maximum) random variables.

3.2 Identification

Identifying a partial-equilibrium model of the labor market from data on one firm is a known challenge. The approach

I follow combines information on wages, job assignments, and performance, and exploits two features of the model: i)

the symmetry in the opportunities for information acquisition across firms; and ii) the relationship between wages and

firm productivity implied by Bertrand competition. By this symmetry, the law of motion of beliefs about ability can be

recovered from just the distribution of performance ratings at A. Given a manager’s prior, human capital, and skill type,

Bertrand competition implies that a manager’s expected wage at A depends only on C’s productivity and job offer.

A first key observation is that by (12), the level distribution of wages at A in each tenure, conditional on managers’

histories of assignments and performance ratings at A, is an (identifiable) finite mixture of the logistic distributions of

wages of managers of each skill type with any possible history of true performance, given their histories of assignments

and performance ratings at A. The identified weights of these mixtures pin down the distribution of initial priors and,

over time, both the distribution of classification error in performance ratings and the joint probabilities of managers’

histories of assignments, true performance, and performance ratings at A by skill type. As repeated ratings information

at A identifies the distribution of true performance, from these joint probabilities, conditional assignment probabilities

at A can be recovered. These assignment probabilities, in turn, identify expected output at A at each state by standard

discrete choice arguments, and so the human capital and output process, up to a level normalization.

A second key observation is that mean wages atA at any job level are the sum of C’s expected output at the same level

and the probability that C chooses it by (12). But assignment probabilities at C are determined by C’sexpected match
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surplus value and so ultimately by C’s expected output. Thus, it is easy to establish not only that C’s expected match

surplus value can be recovered from mean wages atA but also that differences in mean wages atA across levels map into

differences inC’s expected output across levels. Intuitively, then, it is possible to show that mean wages atA identifyC’s

expected output by job level at each state, up to two level normalizations—relative to standard discrete choice arguments,

an additional normalization is required, since assignments at C are unobserved. In estimation, I dispense with these two

normalizations by setting {yf (sit, 2)} so that the probability of assignment to Level 2 (the “reference” level) is equal

across firms and by estimating{yC(sit, k)} relative to{yA(sit, k)}; see Section 3.3. Alternatively, identification can be

achieved by imposing exclusionary restrictions on the dependence ofyC(sit, k)on sit across levels.

Summary.The argument features four steps. In Step 1, I show that classification error rates,{E0(k, t), E1(k, t)}, and the

distribution of performance,{αk, βk}, at each level are identified from wages and performance ratings at A. In Step 2, I

prove that the initial priors about ability,{pi1}, are also identified from ratings. Since, as I show, the probability masses

of the initial priors, {qi}, are identified from the weights of the identified mixture distribution of wages in the first year

at the firm, these two steps identify the learning process. In Step 3, I establish that expected output at A, up to that at one

level, and the exogenous separation rates {1−ηkt} are identified from conditional assignment probabilities at A, which

can be recovered from the weights of the identified mixture distributions of wages in each tenure. In Step 4, I show that

C’s “ex ante” match surplus value, which governs wages at A, and, up to two level normalizations, C’s expected output

by level are identified at each state from wages at A. The wage means {EwAit(k)} and standard deviations {σAik} are

identified by Lemma 1 below. As it will become apparent in Section 3.3, the expressions for {yf (sit, k)} provide (linear)

moment conditions from which the human capital and output parameters of interest can be easily recovered.

Argument. By (12), the density of wages of managers with initial human capital h1 in the first year atA is a finite mixture

of the logistic densities of wages of each manager skill type i, f(wA1|LA1=1, h1)=
∑

i qif(wA1|LA1=1, h1, i), where

qi=Pr(i|LA1 =1) is the typical weight, independent of h1, and f(wA1|LA1 =1, h1, i) is the typical component density

with standard deviation σAi1. Since such a mixture is identified up to its labeling with respect to i (Al-Hussaini and

Ahmad(1981, Proposition 1) and Shi et al. (2014, Theorem 1)), so are its weights and components. In the second year,

wages depend on the updated beliefs about managers’ ability based on their true performance. Thus, the density of wages

of managers with initial human capital h1 and first-year ratingRoA1 at level LA2 is a finite mixture of the logistic densities

of wages of each manager skill type i with each possible first-year performance RA1, f(wA2|LA1 = 1,RoA1,LA2,h1) =∑
RA1,i

Pr(RA1, i|LA1 = 1,RoA1,LA2,h1)f(wA2|LA1 = 1,RoA1,LA2,RA1,h1, i). The weights and component densities

of this mixture are then identified up to their labeling with respect to i and RA1. The products of the probabilities

{Pr(LA1 = 1,RoA1,LA2,h1)}, known from the data, and the identified weights {Pr(RA1, i|LA1 = 1,RoA1,LA2,h1)} pin

down the probabilities of managers’ histories by skill type, {Pr(LA1 = 1,RoA1,RA1,LA2,h1, i)}. A similar logic applies

to t>2 and to wages conditional only on managers’ initial human capital and histories of assignments at the firm.

Lemma 1. LetHLt =(LA1 =1, . . . ,LAt−1),HLRt =(LA1 =1, RoA1, . . . ,LAt−1,R
o
At−1), andHt∈{HLt,HLRt}. Order

{σAik} by i for each k.The density of wages at Level LAt is an identified finite mixture up to its labeling by {RAτ}t−1τ=1,
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f(wAt|Ht,LAt,h1)=
∑

RA1,...,RAt−1,i
Pr(RA1, . . . ,RAt−1,i|Ht,LAt,h1)f(wAt|Ht,LAt,RA1, . . . ,RAt−1,h1,i). (13)

Thus, up to labeling, the component weights, means, and standard deviations of these mixtures can be recovered. As

shown in the proof of the lemma, ordering {σAik} by i at each level is sufficient to order mixture components by i. In

the proof of Proposition 5, I show that ρ1>0 in (11) resolves any label indeterminacy with respect to true performance.

Step 1: Distributions of Classification Error and Performance. Omitting the dependence on LA1 and h1 for simplic-

ity, the probability Pr(RoA1,RA1,LA2, i), as just noted, is identified from the mixture density of wages at Level LA2 in the

second year at the firm conditional on RoA1, f(wA2|RoA1,LA2). By Lemma 1, f(wA2|LA2) is also an identified mixture

density with weights {Pr(RA1,i|LA2)}. Then, multiplying each such weight by the corresponding known probability

Pr(LA2) yields that Pr(RA1,LA2, i) is identified. In turn, the ratio of Pr(RoA1,RA1,LA2, i) to Pr(RA1,LA2, i) pins

down Pr(RoA1|RA1,i), which is independent of i.25 By a similar logic, Pr(RoA2|RA2) is identified as well. By (11), from

Pr(RoA1|RA1) and Pr(RoA2|RA2), the error rates E0(1, t) and E1(1, t), t= 1, 2, and so the parameters (ρ0, ρ1, ρ2(1)),

are recovered. An analogous argument holds for {ρ2(k)}k≥2. Thus, the distribution of classification error is identified.

Note that the distribution of performance ratings of managers retained at Level k is a binomial mixture of the distri-

bution of true performance of managers of high and low ability with parameters (αk, βk), contaminated by classification

error. Once the error distribution is identified, this mixture is identified as follows. Consider managers at Level 1 up to

t=3. With the error rates E0(1,t) and E1(1,t) recovered, the probability of high performance in t≤3 at Level 1,

Pr(RA1= . . .=RAt=1|LA1=LA2=LA3=1, h1) = [
∑

i qi3(h1)pi1]α
t
1+[1−

∑
i qi3(h1)pi1]β

t
1, (14)

is identified from that of a high rating in t ≤ 3 at Level 1, Pr(RoA1 = . . . = RoAt = 1|LA1 = LA2 = LA3 = 1, h1),

where qi3(h1) denotes Pr(i|LA1 =LA2 =LA3 = 1, h1). Condition (14) evaluated in t= 1, 2, 3 yields a system of three

equations in three unknowns, α1, β1, and the average prior
∑

i qi3(h1)pi1, with a unique solution (if α1>β1). Similarly,

the performance ratings of managers employed at Levels 2 and 3 for three years identify {αk, βk} at these levels.26

Proposition 3. The classification error parameters (ρ0, ρ1, ρ2(1)) are identified from the distribution of wages in t=2, 3

of managers at Level 1 of A in t=1, 2 with either a high or low performance rating in t=1, 2. The parameter ρ2(k) for

k ∈ {2, 3} is identified from the distribution of wages in t=k+ 1 of managers at Level k of A in t=k with either a high

or low performance rating in t= k. The probabilities of high performance {αk, βk} at Level k≥ 1 are identified from

three years of consecutive observations on the distribution of performance ratings at the corresponding level.

Step 2: Initial Priors. As just discussed, α1, β1, and the average prior
∑

i qi3(h1)pi1 for each h1 are recovered from

performance ratings at Level 1 in the first three years. By the analogue of (14), the average prior
∑

i qit(h1)pi1 is

similarly identified in t ≥ 4 with qit(h1) = Pr(i|LA1 = . . . = LAt = 1, h1) recovered for each h1 by Lemma 1. Thus,

knowledge of
∑

i qit(h1)pi1 and {qit(h1)} from t=3 to t=6 provides a system of four linearly independent equations,

25Withf(wA2|RoA1,LA2,RA1,i) independent ofRoA1,{f(wA2|LA2,RA1,i)} can be recovered fromf(wA2|RoA1,LA2) or f(wA2|LA2), as these
mixtures have identical components through which each weight Pr(RA1,i|RoA1,LA2) can be paired with the corresponding one Pr(RA1,i|LA2).

26It is important that wage and rating distributions be identifiable mixtures of the distributions of wages of managers of each skill type and of
true performance of managers of each ability, respectively. I specify them as logistic and binomial, but they would be identified for many alternative
specifications. See Hunter et al. (2007) for semiparametric symmetric finite mixtures and Lindsay(1995) for general mixing distributions.
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q1t(h1)p11+. . .+q4t(h1)p41=
∑

i qit(h1)pi1 for each such t, in the four unknowns {pi1}, which are then identified.27

Proposition 4. If {Pr(i|LA1 = . . .=LAt= 1, h1)}, 3≤ t≤6, (α1, β1), and the classification error parameters at Level

1 are identified, then {pi1} are identified from the distribution of performance ratings at Level 1 of A from t=3 to t=6.

Step 3: Expected Output and Exogenous Separations. I first argue that conditional assignment probabilities at A in

each tenure are identified for each type. Omit the dependence onLA1 andh1 and recall that{Pr(RA1, LA2, i)} are iden-

tified by Step 1 from the wage densityf(wA2|LA2),{αk, βk, pi1} are identified by Steps 1 and 2 so that the probability

Pr(RA1|i) =α1pi1+β1(1 − pi1) is identified for each RA1 and i, and Pr(i) = qi is identified for each i by Lemma 1.

Thus, so is Pr(LA2|RA1, i), as it is the ratio of Pr(RA1, LA2, i) to Pr(RA1=1|i)Pr(i). This logic extends to any t.

As for expected output at A, abstract first from exogenous separations. By the properties of Gumbel distributions,

the expected value of V A
(sit, εit) in Proposition 1 conditional on sit can be expressed as ln

∑
k exp{vA(sit, k)}, where

vA(sit, k) = yA(sit, k) + δE[vA(sit+1, k)− ln Pr(LAt+1 = k|ft+1 = A, sit+1)|sit, k] (15)

and Pr(LAt=k|ft=A, sit)=exp{vA(sit, k)}/
∑

k′exp{vA(sit, k
′)} is the identified conditional assignment probability

to Level k. For fixed probabilities, (15) is a functional equation defining a contraction mapping and so admits a unique

solution. With the state law of motion and conditional assignment probabilities recovered, if yA(sit, 2) is known, then

vA(sit, 2) is identified. At Levels 1 and 3, in turn, vA(sit, k) is identified as vA(sit, 2)+ln Pr(LAt = k|ft = A, sit)−

ln Pr(LAt = 2|ft =A, sit), and so is yA(sit, k) as the difference between vA(sit, k) and δE[·] in (15). With exogenous

separations, defining ỹ(sit) as the identified value EwAit(k)+ln Pr(LAt=k|ft=A, sit), a similar argument applies.28

Proposition 5. Let {yA(sit, 2)} be known, and yA(sit, k)=yC(sit, k)=ỹ(sit), k≥1, t≥2, at one sit. Then, {yA(sit, k)},

k = 1, 3, at all other sit, and {ηkt} are identified from assignments and wages at A if {pi1, qi, αk, βk} are identified.

Step 4: Wages. By using (12), it is easy to express wage means, which are identified by Lemma 1, as

EwAit(k) = ln
∑

k′ exp{vC(sit, k
′)} − δηktE(ln

∑
k′ exp{vC(sit+1, k

′)}|sit, k),

which defines a functional equation that pins down C’s expected match surplus value, ln
∑

k′exp{vC(sit, k
′)}. I now

show how C’s expected output yC(sit, k) = dCk(κt, i)+eCk(κt, i)pit can also be recovered. By (12) and the fact that

conditional assignment probabilities sum to one, yC(sit, 1) can be expressed as a known functionm1(sit) of mean wages,

yC(sit, 2), and yC(sit, 3)−yC(sit, 1).29 If yC(sit, 2) and yC(sit, 3)−yC(sit, 1) are known at two values of pit for each κt

and i, then dC1(κt, i)+eC1(κt, i)pit=m1(sit) evaluated at these two values of pit for managers with the same values of

κt and i provides a system of two linearly independent equations in dC1(κt, i) and eC1(κt, i), which are then recovered.

This logic applies to all κt and i. Once yC(sit, 1) and yC(sit, 2) are known, by (12) the conditional probabilities of

assignment to Levels 1-2 are identified from{EwAit(k)}, and residually, so is the conditional probability of assignment
27Rating information at Levels 2 or 3 would alternatively identify {pi1}. With {pi1} recovered, the proof of Proposition 4, as shown, can be

adapted to establish {αk,βk}k≥2 are identified. See the S.A.(Section 2.1) for an argument à la Hu and Shum (2012) that does not require ratings.
28The probabilities of employment at A and C are equal if yA(sit, k) and yC(sit, k) equal the identified value ỹ(sit) at one sit for each k. In

this case, the survival probability ηkt−1t−1 is identified from the probability that a manager at Level kt−1 ofA in t−1 is retained atA at such sit.
29This function is m1(sit) = ln[eEwAit(2)−eyC(sit,2)]−ln[eEwAit(2)−EwAit(1)+eEwAit(2)−EwAit(3)+yC(sit,3)−yC(sit,1)]. Alternatively,

knowledge ofyC(sit, 2)and the existence of a component of sit affecting, say, yC(sit, 1) but not yC(sit, 3) would allow to recover yC(sit, 1)and
yC(sit, 3)at each state. So, by imposing simple exclusionary restrictions, one level normalization would suffice to pin down C’sexpected output.
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to Level 3. This probability andEwAit(3) identify yC(sit, 3). A similar argument holds if yC(sit, 1)+yC(sit, 3) is known

instead of yC(sit, 3)−yC(sit, 1) or, in general, if two sums of, or differences in, C’s expected output are known.30

Proposition 6. The expected match surplus value of C is identified at each state and tenure from wages at A. Suppose

one of the following is known at two values of pit for each κt and i: a) yC(sit, k) and either yC(sit, k
′)+yC(sit, k

′′) (or

yC(sit, k
′)−yC(sit, k

′′)) for some k, k′, and k′′ with k′ 6=k′′; or b) yC(sit, k)+yC(sit, k
′) (or yC(sit, k)−yC(sit, k

′)) for

some k 6=k′ and yC(sit, k
′′)+yC(sit, k

′′′) (or yC(sit, k
′′)−yC(sit, k

′′′)) for some k′′ 6=k′′′ with either k′′ or k′′′ different

from k and k′. Then, {yC(sit, k)} are identified from wages at A if {pi1, αk, βk} are identified.

3.3 Empirical Specification

In this section, I present the empirical specification of the model. See Appendix B for omitted details.31

Human Capital and Output. I specify gGk (iGk1 , . . . , i
G
kt−1

) = gGk (t − 1) in (1) so that, as commonly assumed, only the

sum of past investments matters for the accumulation of general human capital and gSk (iSk1 , . . . , i
S
kt−1

)= gSk (iSkt−1
) in (1)

so that only the last-period investment is relevant for the acquisition of job-specific human capital. This latter process is

flexible enough to capture the benefit of training before a promotion when gSk (iSkt−1
)>0 in t for k>kt−1, as is consistent

with much of the evidence that training often occurs right before a promotion or is effectively a prerequisite for it (Cobb-

Clark and Dunlop (1999)); the potential loss of job-specific human capital upon promotion when gSk (iSkt−1
) = 0 in t for

k > kt−1; or any constraints that may induce a cost of reallocating managers across levels when gSk (iSkt−1
)< 0 in t for

k 6=kt−1.32 Then, sit reduces to (pit, h1, t−1, kt−1, i), and the human capital functions in (1) become

hGfkt=aGfkt(i)+gGk (t− 1)+εGfkt and hSfkt=aSfkt(i)+gSk (iSkt−1
)+εSfkt, (16)

where ajfkt(i)=ajfkt+a
j
fk(i), ajfkt∈{a

j
fkt, a

j
fkt}, and ajfk(i)∈{a

j
fk(i), a

j
fk(i)}. As discussed, ajAk(i) is zero.

Let h1fkt = bk(h1) common across firms and let h1 = (e1, x1, y1) denote education at entry, e1, experience (age) at

entry, x1, and year of entry, y1, in firm A. As shown in Appendix B.2, expected output in (10) can thus be expressed as

yf (sit, k) = ye
fkt

(i) + βk[yfkt(i)− yfkt(i)]︸ ︷︷ ︸
bk(h1)+dfkt(kt−1,i)

+ (αk − βk)[yfkt(i)− yfkt(i)]︸ ︷︷ ︸
efkt(i)

pit, (17)

with yfkt(i)−yfkt(i)=
∑

j(a
j
fkt−a

j
fkt). I specify bk(h1)=b0k+b

x
kx1+b

xx
k x

2
1+b

e
ke1+

∑
m bym1{y1=m}, withm ranging

from 0 (1970) to 9 (1979). This formulation accounts for different degrees of transferability of human capital across job

levels that can be empirically detected. Namely, define human capital acquired at firm f to be task-general if the tenure

profiles of the parameters {dfkt(kt−1, i),efkt(i)} are positively correlated across levels (Gibbons and Waldman (2006))

and task-specific otherwise. This notion captures the idea that managers may become more productive at all levels with
30Intuitively, knowing, say, yC(sit, 1)+yC(sit, 2) and yC(sit, 1)−yC(sit, 3) or yC(sit, 1)+yC(sit, 2) and yC(sit, 2)+yC(sit, 3) is equivalent.
31As the sample covers only the first eight years of managers at firm A, I assume that {ηkt} are constant from t=8 on, in that ηkt=ηk7, t≥8.
32These forms for {gjk(·)}, as discussed, can be derived from standard laws of motion; the identification results can be easily extended to more

general forms for them. Baker et al. (1994b) argue that training takes place at the firm, since managers are rewarded for good performance primarily
with salary increases rather than bonuses, supporting the notion that these raises reward permanent rather than transitory increases in productivity.
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experience at a firm. Define, instead, human capital acquired at Level k of firm f to be task-general if it is at least as

productive at Level k′ 6= k as it is at Level k, dfk′t(k, i)≥ dfkt(k, i), and task-specific otherwise. This notion captures

the idea that experience at a job level (k) may increase productivity at other levels (k′) even more. As in Cameron and

Heckman (2001), to conserve on parameters, for transitions with relatively few observations, I do not estimate any of

the associated parameters and set them equal to their reference value (zero). For transitions with a similar number of

observations, I maintain their parameters are equal.33

Wages. By (12), wages at firm A depend on the probability of job assignments at firm C, which are not observed in my

data. It can be shown, though, that assignment probabilities at C can be expressed as simple functions of the identified

assignment probabilities at A under the assumption of free entry of firms in the labor market, no-recall of previously

employed managers (satisfied in my data), and the normalization of {yf (sit, 2)}, as is consistent with Propositions 5 and

6, so that Pr(LCt=2|ft=C, sit)=Pr(LAt=2|ft=A, sit) at each sit. In this case, EwAit(k) reduces to

EwAit(k) = yA(sit, k) + yC(sit, 2)− yA(sit, 2)︸ ︷︷ ︸
ω(i,h1,k)+ω4kt×(t−1)+(ω5i+ω5kt)pit

− ln Pr(LAt=k|ft=A, sit), (18)

where ω(i, h1, k)=ω0ik+ω1kx1+ω2kx
2
1+ω3ke1+

∑
mωym1{y1=m}. See Lemma 2 in Appendix B.3 and equation (68)

in Appendix B.7 for the simple mapping between the parameters in (18) and those of human capital and output at the

two firms. The parameters in (18) are easy to interpret: ω1k, ω2k, and ω3k measure the impact of human capital at entry

in the firm; ωym allows for aggregate conditions at the time of hiring, which BGH find important, to persistently affect

the value of a manager; and ω4kt×(t−1) and ω5i+ω5kt measure, respectively, the effects of the deterministic component

of the human capital acquired at the firm and of ability.34 As per Lemma 1, I maintain that σAik≥σA(i+1)k.

4 Estimation Results

This section discusses the estimates of the model parameters obtained by full-information, full-solution maximum like-

lihood, which are all significant at the 1 percent level. In estimation, I set the discount factor to 0.95. As Tables 1 to 3

and A.1 show, the model well captures the patterns of managers’ separations, their transitions across levels, and the level

distributions of performance ratings and wages at the firm. I discuss model fit and additional results in Appendix B.35

Uncertainty and Learning. Two findings emerge. First, the initial prior distribution in Table 4A, with pi1 estimated as

exp(φi1)/[1+exp(φi1)], implies a large degree of uncertainty about managers’ ability and dispersion in information at

entry in the firm. That is, the average initial prior probability that a newly hired manager is of high ability is 0.473, but

initial priors range from 0.338 to 0.607 across skill types, with a standard deviation of 0.102 (see the table note).
33I normalize dA3t(L1), dA1t(L2), dA1t(L3), and dA2t(L3), where Lk denotes the previous-period level, kt−1, to zero, since multi-level

promotions (first normalization) and demotions (last three normalizations) are rarely observed. I also impose a form of symmetry in that dAk′t(k)=
−dAkt(k′), k′>k, where dAkt(k′) can be interpreted as a demotion cost that I normalize to zero. The parameters left to estimate are then η1t and
those of bk(h1) in t≥1, (dA1t(L1), eA1t, eA2t, η2t) in t≥2, (dA2t(L2), eA3t, η3t) in t≥3, and dA3t(L3) in t≥4.

34As in the previous footnote, of the parameters {dCkt(kt−1, i)}, only {dCkt(k, i)} are estimated and captured by ω4kt×(t−1) in (18). Since
{ω5kt} did not vary much with k or t over the relevant range of values, I only estimated them as part of the robustness exercise in Appendix B.11.

35Section 5 in the S.A. reports estimates from a larger sample that includes managers entering the firm at levels higher than Level 1. Although
I estimate a richer specification on this larger sample, the estimates of the key parameters across the two samples are very close.
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Second, the estimates of {αk, βk} in Table 4B imply that learning about ability is gradual, as {αk} and {βk} are far

from 0 and 1, and suggest that Level 1 is the most informative level, thus playing an important role by allowing the firm

to gather information about managers.36 Specifically, by Blackwell’s informativeness criterion, the ordering of job levels

by informativeness from lowest to highest is 2, 3, and 1—note that the differences α2−α1 and β2−β1 are significant at

the 1 percent level. Interestingly, the ordering of job levels from lowest to highest by the probability of high performance

of a manager of high or low ability is the opposite: 1, 3, and 2. As a result, when deciding on a manager’s assignment,

the firm faces a clear trade-off between a manager’s output and the information it can acquire about ability. For instance,

although employment at Level 1 generates the most information, a manager of either ability has the lowest probability of

high output at this level. The greater informativeness of Level 1 mostly accounts for the premium that managers receive

upon promotion to Level 2—a mean percentage raise relative to unpromoted workers—consistent with the estimates in

BGH (1994a, Table VI). Such a premium compensates managers for switching to a less informative job level—that is,

for reaching higher levels at lower priors and so receiving lower wages than they would have received if they had been

assigned to Level 1 for a longer period. See Appendix B.8 for the estimates of classification error in performance.

Human Capital and Output. The estimates of the output parameters {dAkt(kt−1),eAkt}, expressed in thousands with

kt−1 = Lk, are reported in Table A.4; all unreported parameters are set to zero, the value to which dA2t(·) is normal-

ized.37 Three features emerge.First, both the parameters{eA2t} and{eA3t} start at low values, increase to peak at interme-

diate tenures (t=2 and t=4 for{eA2t} and t=4 for{eA3t}), and essentially flatten out thereafter. This positive correla-

tion in the tenure profiles of {eA2t} and {eA3t} suggests that the human capital acquired at firmA is task-general between

Levels 2 and 3 by the definition in Section 3.3. In particular, since eAkt, which equals E(yAkt|α, κt)−E(yAkt|β, κt) by

(3), captures the output return to high ability, this estimated return tends to increase at Levels 2 and 3 with tenure.

Second, human capital acquired at Level 3 is task-specific and so implies that demotions to lower levels are costly

for the firm, which helps explain why demotions are rare. To see why, recall from Section 3.3 that the more task-general

the human capital accumulated at Level k is, the larger the difference dAk′t(k)−dAkt(k), k′ 6=k, is. Given that dA3t(L3)

is estimated to be large and positive in 4≤ t≤ 7 and, as explained in footnote 33, dA1t(L3) and dA2t(L3) equal zero,

managers at Level 3 in t−1 and t in intermediate to high tenures produce more in t than they would if they were demoted

in t from Level 3 to Level 1, as dA3t(L3)>dA1t(L3) and, for t>3, eA3t>eA1t, or to Level 2, as dA3t(L3)>dA2t(L3);

that is, human capital acquired at Level 3 is highly task-specific. Moreover, as argued in footnote 33, dA3t(L1) and

dA3t(L2) equal zero. Thus, managers at Level 3 in t−1 and t, 4≤ t≤ 7, produce more in t than they would if they were

promoted in t to Level 3 from Level 1, as dA3t(L3)>dA3t(L1), or from Level 2, as dA3t(L3)>dA3t(L2).

36To measure the speed of learning, I compute the number of consecutive years of high performance that is necessary to infer with a 90 percent
chance that a manager is of high ability. This speed varies across levels: starting at the average prior, it takes 20 years to reach this level of certainty
at Level 1, whereas this process takes 23 years at Levels 2 or 3. That this speed also varies across skill types is apparent from the fact that, for
example, this level of certainty for managers of the fourth skill type is reached just after 15, 18, and 17 years, respectively, at Levels 1, 2, and
3. This finding that learning is gradual is consistent with those in Nagypál (2007). From her Figure 7, the convergence of beliefs, reflected in the
tenure profiles of match quality and output, occurs past the tenth year of tenure. This estimated graduality is also in line with the large degree of
uncertainty about ability at entry in the firm that I estimate, even for managers with several years of labor market experience.

37See below the estimates of (ω1k, ω2k, ω3k, {ωym}) for the estimates of {bk(h1)}. Note that dA11(·) and eA11 are not estimated and set,
respectively, to 1,000 and zero, since all managers in the sample are first observed employed at Level 1.
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Third, relative to low-ability workers, high-ability workers have not only an absolute advantage at all job levels, as

the constraint eAkt > 0, which I did not impose in estimation, is satisfied, but also a comparative advantage at Level 2

over 1, as eA2t>eA1t, and, in intermediate to high tenures, at Level 3 over 1, as eA3t>eA1t.38

These estimates imply that expected output is higher at Levels 2 and 3 than at Level 1 (dAkt(k), and in nearly all

tenures, eAkt, k= 2, 3, are higher than at Level 1); tends to increase at Levels 2 and 3 over time; and tends to be more

sensitive to ability at higher levels (eAkt≥eA1t) in mid to high tenures. Thus, higher ability and acquired human capital

tend to make managers more productive at higher levels, which contribute more to output than lower levels.

Wages. The estimates in Tables 5A to 5C are similar to those in the literature in terms of the returns to education and

age, the size of wage increases at promotion, the curvature of wages in job levels and tenure, and the implied magnitude

of wage growth on the job. Along these dimensions, then, the firm I study is comparable to those in other work.

The estimates reveal key features of the wage process at the firm. By Table 5B, human capital acquired before entry

in the firm, as captured by age and education at entry, has a significant impact on wages. For example, at Levels 1 and

2, the effect of an additional year of age, evaluated at the average age at entry of 29.71 years, is a 1.0 percent increase

in annual (log) wages, since ω1+2ω2(29.71) = 0.0102, where ω1k = ω1, ω2k = ω2, and ω3k = ω3 are common across

Levels 1 and 2; see (18) and Appendix B.7 for details. The effect of an additional year of schooling, ω3, is a 2.2 percent

increase in wages. At Level 3, the corresponding figures are 0.4 percent (ω13+2ω23(29.71) = 0.0041) and 2.1 percent

(ω33=0.021). These estimated effects are comparable to those in the literature over the same period. For instance, Belzil

and Bognanno (2008, Table 1) estimate coefficients of 0.0127 and 0.0494 for the impact of age and education on (log)

wages from a large multi-firm sample of U.S. executives between 1981 and 1988. Perhaps not surprisingly, since I focus

on highly educated workers, my estimate of the marginal effect of education on wages is smaller than theirs.

The estimates of {ω0ik} in Table 5A imply that promotions lead to sizable permanent wage increases, which are

higher at higher levels: a promotion from Level 1 to 2 entails an increase in annual wages between $590 (fourth skill

type) and$1,188 (first skill type), whereas a promotion from Level 2 to 3 entails an increase between$4,638 (fourth skill

type) and $6,667 (second skill type).39 Overall, average wages are convex in job levels, and so in tenure, since higher

levels are reached only over time—see the first three entries in the first column of Table 6 for the model and the note to

Table 3 for the data. This result mirrors the higher average output of managers with higher ability and human capital at

higher levels. All these findings are in line with the literature on internal labor markets (Gibbons and Waldman (1999a,b),

Belzil and Bognanno (2008), and Waldman (2013)).

As for the human capital acquired at the firm, the coefficient on tenure in Table 5B is quite small, which implies that

the deterministic component of the human capital acquired at the firm, in contrast to that acquired before entry in the

firm, has a limited direct effect on wages—acquired human capital still has an important indirect effect on wages through
38Comparative advantage at Level k′ over k can be expressed as efk′t(i)/efkt(i)≥ [bk′(h1)+dfk′t(kt−1, i)]/[bk(h1)+dfkt(kt−1, i)] by the

definition after (3) and (17). As bk(h1)+dAkt(kt−1) does not increase fast with the job level, a sufficient condition is effectively eAk′t>eAkt.
39 These increases are calculated by differencing across k the estimates of {ω0ik} once converted from logs to levels; say, $590=eω042−eω041 .

The estimated year-of-entry effects in Table A.6 are consistent with the 1973–1982 recessions, which depressed the wages of entrants in the firm
in those years. I set ωym=0 for 0≤ m≤ 3, the reference years, and ωy4=ωy5 in accordance with the severity of those recession years.
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its impact on promotions, as illustrated in Section 5.40 In terms of ability, since the coefficients{ω5i}on the prior in Table

5C are positive and significant, average wages increase with the prior so high-ability managers are indeed valued more

than low-ability managers—recall that ω5kt in (18) is estimated as part of the robustness exercise in Appendix B.11.41

Decomposing Wage Growth. The model implies an increase of 19.4 percent in average wages over the first seven years

at the firm (18.5 percent in the unbalanced panel that includes separating managers) for an average yearly growth rate

of 3.2 percent; see Table 6. Such growth is consistent with that in Topel (1991, Table 2) and the lower end of the range

estimated by Buchinsky et al. (2010, Figure 2) from the Panel Study of Income Dynamics. It is also consistent with the

estimates in Song et al. (2019) from U.S. social security data.42 Note that by (18), the average wage of a manager of skill

type i at Level k can be decomposed into four terms: i) ω(i, h1, k), which captures the effect of unobserved skills, i,

human capital at entry, h1, and job assignment, k; ii) ω4kt×(t−1), which captures the direct effect of the deterministic

component of the human capital acquired at the firm; iii) ω5ipit, which captures the direct effect of learning about the

systematic stochastic component of human capital, {ajfkt}, by (1); and iv) the (log) conditional assignment probability to

Level k.43 Over these first seven years, the term ω(i, h1, k) accounts for more than 98 percent of the increase in wages. It

would then seem that learning accounts for only a trivial percentage of wage growth, as is consistent with the literature.

But this inference is incorrect: the term ω(i, h1, k) depends on the assigned job, k, which changes as information and

human capital accumulate.In simple notation that suppresses{εjfkt}, measuring the average cumulative effect of learning

on wages requires accounting for how a change in pit affects the current job kt=k(pit, κt) and wage wt=w(pit, κt, kt),

which determine beliefs pit+1 = p(pit, kt), (expected) human capital κt+1 = κ(pit, κt, kt), and the assigned job kt+1 =

k(pit+1, κt+1) next period. In turn, beliefs, human capital, and the assigned job next period influence the next-period

wage wt+1 =w(pit+1, κt+1, kt+1) as well as beliefs, human capital, and the assigned job in the subsequent period, and

so on. Since wages greatly differ across levels through ω(i, h1, k), the belief process can have a large effect on wage

growth through its indirect effect on the path of promotions, although its direct effect through ω5i is small. As Section 5

shows, learning leads managers progressively revealed to be of high ability to advance to higher levels, at which they are

paid higher wages. This previously neglected effect accounts for almost all of the impact of learning on wage growth.

Instrumental-Variable Approach: A Discussion. The result that the direct or marginal contemporaneous effect of

learning on wages, captured here byω5i+ω5kt, is small is consistent with the findings of Gibbons et al. (2005), Lluis

(2005), and Hunnes(2012), who focus only on it and find it to be small or insignificant.44 As I show next, their approach,

though, relies critically on the assumption that jobs are equally informative about ability. Without it, their methods
40I specify ω41t = ω412I(t < 4)+ω414I(t≥ 4) with ω414 =−ω412 to conserve on parameters, given the much smaller fraction of managers

assigned to Level 1 after the third year of tenure. Since the parameters {ω4kt} proved to be negligible at Levels 2 and 3 and impossible to estimate
with any precision, they are omitted from the baseline specification but estimated as part of the robustness exercise presented in Appendix B.11.

41The standard deviation of the wage shock σAik does not increase with the job level, k. Yet, the model implies that the standard deviation of
wages is higher at higher levels, as in the data: $6,936 at Level 1, $7,077 at Level 2, and $8,046 at Level 3; see the first column of Table 6 for
the model and the note to Table 3 for the data counterparts. Thus, the predicted increase in wage dispersion with the job level is generated by the
endogenous mechanisms of the model of learning, human capital acquisition, and job assignment, rather than by idiosyncratic unexplained factors.

42Song et al. (2019) estimate wage growth both for a year comparable to my sample, 1982, and for a more recent year. They find that in 1982,
the median wages of employees with two to four years of tenure and with five or more years are, respectively, $29,763 and $45,010. Since my
sample consists of managers, the corresponding median wages, $42,493 and $49,544, are naturally higher but are broadly consistent with theirs.

43The estimate ofω5kt, part of the robustness exercise in Appendix B.11, is relatively small. The role of the last term of (18) is also negligible.
44Replicating the analysis of Lluis (2005) and Hunnes (2012) on my data, I also found the impact of learning on wages to be insignificant.
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cannot be applied. To see why, consider Lluis (2005), which is based on GW and is the paper closest in spirit to mine,

in which workers can be of high or low ability with initial beliefs about it and performance normally distributed. Using

the “rank dummy”Dikt for worker i’s rank (job, occupation, or sector) k in t, worker i’s wage in rank k in t equals

expected output up to measurement error, wit=
∑K

k=1Dikt[dk+Xitβk+ckθ
e
itf(xit)]+µit, where Xit captures observable

characteristics, θeit is the mean of the posterior beliefs about ability, f(·) is the human capital function, xit is labor

market experience, and µit is the error with E(µit|Xi1, . . . , XiT , Dik1, . . . , DikT , θi) = 0. Firms are assumed to be

identical but an analogous expression for wit is obtained if, for instance, expected output at each job differed across

firms by a constant or all parameters differed across firms by a multiplicative factor common across jobs. Note that since

the assigned rank depends on θeit, θ
e
it is correlated with{Dikt}. But wages in t and t−1 yield expressions for θeit and θeit−1

that, once substituted into the martingale condition θeit=θeit−1+uit, where uit is an i.i.d. shock, give

wit∑
kDiktckf(xit)

=

∑
kDikt(dk+Xitβk)∑
kDiktckf(xit)

+
wit−1−

∑
kDikt−1(dk+Xit−1βk)∑

kDikt−1ckf(xit−1)
+ eit︸︷︷︸

uit+
µit∑

kDiktckf(xit)
− µit−1∑

kDikt−1ckf(xit−1)

. (19)

In the complete information case (θeit = θeit−1 = θi), an expression similar to (19) can be obtained, just without the term

uit. Note that (19) is a random-coefficient panel-data model with unobserved individual time-varying effects, in which

Dikt is endogenous, as it depends on θeit and so is correlated with eit through uit, and wit−1 is correlated with µit−1.

Yet, (19) can be estimated by nonlinear instrumental-variable methods using interactions between Dikt−1 and Dikt−2

as instruments for Dikt—and analogous interactions as instruments for wit−1.45 Lluis (2005, p. 751) finds that relative

to the complete information case, the parameters of (19) are imprecisely estimated and their estimates are difficult to

reconcile with economic intuition when the wage equation is estimated assuming that learning is present.

Now, when jobs are differentially informative, beliefs are updated differently depending on the assigned rank Dikt,

so the martingale condition becomes θeit = θeit−1 +
∑

kDiktuikt and the first component of the error term in (19) is∑
kDiktuikt rather than uit. Past rank dummies are still valid instruments for Dikt in (19) if the jobs of different firms

are equally informative.46 However, when the speed of learning differs even by a constant amount across firms’ jobs, the

wage equation is no longer as in (19). In analogy to (9)—see the term ln Pr(kCt = kAt|·)—an additional term for any

difference in information across the jobs of different firms would be part of the error. Such a term depends on beliefs and

so is correlated with past rank dummies. The same issue arises when the speed of learning varies across jobs, but not

across firms, and firms differ in their rank productivity. In all these instances, the approach described is invalid.

5 The Role of Learning, Human Capital Acquisition, and Uncertainty

Here I assess counterfactually the role of learning, human capital acquisition, the differential informativeness of jobs,

and persistent uncertainty about ability for the profiles of jobs and wages at the firm.
45To see why, observe thatDikt−1 andDikt−2 are uncorrelated with both uit—as they are functions of uit−1 and uit−2, which are independent

of uit by assumption—and µit, since µit is pure noise. I am grateful to Thomas Lemieux for helpful discussions.
46For instance,Dikt−1 is uncorrelated with eit asE[

∑
kDiktuikt|Dikt−1] = 0 by the martingale condition, althoughDikt−1 is now dependent

on the error term eit, since
∑
kDiktuikt is one of its components and Dikt and Dikt−1 are correlated as they both depend on a worker’s ability.
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Learning. To evaluate the impact of learning on the dynamics of jobs and wages,I compare the implications of the base-

line model with those of a no learning version of it, in which learning is absent as jobs are assumed to be uninformative

about ability; namely, βk = αk in (4) for all k so beliefs are not updated. Table 6 shows that learning generates faster

wage growth and greater wage dispersion. Over the first seven years at the firm, the additional wage growth due to learn-

ing is a large portion of the wage growth without learning, 26 percent—that is, an increase from 15.4 to 19.4 relative to

15.4. The additional wage dispersion due to learning is 23 percent at Level 3—that is, an increase from $6,534 to $8,046

relative to $6,534—with somewhat lower percentages at lower levels.47 Job assignment is the key channel through which

learning affects wages. Table A.7 displays the distribution of managers across levels by tenure in the baseline and no

learning models. In the baseline model, by the third year of tenure, about 9 percent of managers have been promoted to

Level 3, whereas in the no learning model, fewer than 1 percent have. By the fifth year, the fraction of managers at Level

3 is about 31 percent in the baseline model and about 16 percent in the no learning model. These results are consistent

with the impact of learning on turnover documented by Nagypál(2007) and its effect on occupational mobility found by

Papageorgiou(2014). Overall, learning implies more rapid promotions for managers progressively revealed to be of high

ability and thus leads to higher wage growth and dispersion, since wages are higher and more variable at higher levels.

So, the effect of learning on wages is sizable through its indirect impact on job assignment.

Human Capital Acquisition. Human capital has a sizable impact on wages. For instance, in the previous experiment,

the progression of managers across levels is due only to the human capital they acquire at the firm. Acquired human

capital improves managers’ expected output, in particular at Levels 2 and 3, and so makes it profitable for the firm to

eventually assign managers to these levels, at which they are paid higher and more dispersed wages. Over time, acquired

human capital is also important to preventing demotions and thus reducing the wage loss that managers experience after

low performance. These findings on the role of human capital are mirrored by the results of the experiment in which

I simulate the model assuming that human capital acquisition does not take place at the firm. In this case, almost no

promotion occurs, when promotions do occur, they are followed by demotions, virtually no wage growth accrues, and

wages in any tenure are nearly as dispersed as at entry in the firm. Since accumulated human capital has a limited direct

effect on wages, as implied by the small estimated wage coefficients on tenure{ω4kt}, these results imply that, much

like learning, human capital affects wages primarily indirectly, through its impact on managers’ job paths at the firm.

Learning by Experimentation. Here I focus on an exercise, referred to as no experimentation, in which all jobs are

assumed to be equally informative about ability in that Levels 2 and 3 are made as informative as Level 1 by setting αk

and βk, k≥2, equal to their estimated values at Level 1 in the belief-updating rules in (4), whereas all other parameters

are unchanged. Results for the analogous experiments of equal informativeness as Levels 2 and 3 are reported in the S.A.

(Tables A.11-A.13). Table A.8 shows that without experimentation, nearly all managers who do not separate from the

firm are quickly promoted to Level 3. In particular, after the first two years of tenure, the proportion of managers assigned
47When βk = αk, I simulate the model assuming that the initial prior is never updated but managers of each ability experience high and low

performance with the same probabilities as in the baseline model. I follow the same approach for the remaining experiments that involve {αk, βk}.
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to Level 1 is very small, although learning takes place slowly over time. Experimentation proves to be quantitatively

important not just for job mobility but also for wage growth. Indeed, fast promotions are accompanied by rapid wage

growth, as Table 6 shows. Without experimentation, by the third year of tenure, wage growth is 17.6 percent, nearly twice

as large as in the baseline model. By the fourth year, managers experience a higher wage growth (20.5 percent) than

over the first seven years in the baseline model (19.4 percent). After that, wage growth is fairly flat. Overall, cumulative

wage growth during the first seven years at the firm would be 20 percent higher—that is, an increase from 19.4 to 23.3

relative to 19.4. Wages at each level are only slightly less dispersed than in the baseline model. Thus, the differential

informativeness of jobs is critical to accounting for the convexity of wages in job levels and tenure, as it leads to a much

more gradual wage growth in early tenures than if jobs were equally informative.

Persistent Uncertainty. Since I estimate learning to be a gradual process, I conduct two experiments to assess the role

of the persistence of uncertainty about ability. In the fast learning at Level 1 case, jobs at Level 1 are made to be nearly

perfectly informative about ability, with α1=0.99 and β1=0.01, so that ability is (almost) fully learned after one period,

whereas the other parameters are fixed at their baseline values (see Crawford and Shum (2005) for a similar approach).

Table 6 shows the implications for wages and Table A.7 for job assignments. During the first seven years at the firm,

faster learning at Level 1 leads wages to grow more than 60 percent, compared with approximately 20 percent in the

baseline model. Indeed, if managers could sort to the best jobs given their ability and human capital after just one year

at the firm, wage growth over the first two years (39.3 percent) would be more than twice as large as the cumulative

wage growth over the first seven years in the baseline model (19.4). Wage dispersion at each level also increases: the

standard deviation of wages at Level 3 is over five times larger than in the baseline model. Moreover, as Table A.7

illustrates, promotions to Level 3 occur more rapidly. By the third year of tenure, 20 percent of managers are already

at Level 3. Hence, persistent uncertainty about ability, like learning through experimentation, substantially compresses

wage growth especially in early years, thus helping account for the curvature of wages in job levels and tenure, and

reduces wage dispersion. The case of fast learning at Level 2 is similar; see Appendix B.12 for details.

6 Conclusion

This paper estimates a model of learning about ability, human capital acquisition with experience, and job assignment to

account for rich patterns of careers in firms. Most of the literature has argued that the impact of learning on wages is small

but has investigated only the direct effect of learning due to the impact of current beliefs about ability on current wages.

By explicitly estimating the joint dynamics of beliefs, human capital, jobs, and wages, I can evaluate the total effect of

learning on wages, which consists of both a direct and an indirect effect. Intuitively, learning also affects wages indirectly

by influencing the dynamic selection process that leads managers who are progressively revealed to be of higher ability

to be promoted to higher levels of a firm’s job hierarchy. Since wages at higher job levels are higher and more variable,

by stimulating promotions, learning critically contributes to wage growth and dispersion. I estimate that this indirect

effect is large and accounts for almost all of the impact of learning on wages. However, as these results are based on data
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on one firm, they should be subject to further investigation to assess their validity.These findings nonetheless attest to

the potential of learning and human capital models to account for salient features of careers in firms.
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Table 1: Percentage Distribution of Managers across Levels by Tenure
Separation Level 1 Level 2 Level 3

Tenure Data Model Data Model Data Model Data Model
1 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0
2 14.5 14.5 45.6 45.7 39.9 39.8 0.0 0.0
3 27.7 26.5 16.8 17.2 46.8 47.3 8.7 8.9
4 37.9 37.1 7.6 8.1 29.2 29.2 25.3 25.6
5 46.1 45.3 4.6 5.3 18.1 18.3 31.1 31.2
6 52.0 51.5 2.9 3.4 12.3 12.6 32.8 32.5
7 57.6 56.9 2.1 2.7 7.7 8.3 32.6 32.1

Table 2: Percentage of High Ratings at Levels 1 and 2
Level 1 Level 2

Tenure Data Model Data Model
1 52.7 51.7 - -
2 34.8 34.9 58.4 56.1
3 19.6 21.2 43.9 42.7
4 11.8 11.9 26.2 30.4
5 2.4 6.2 18.7 20.4
6 3.7 3.2 12.5 13.0
7 0.0 1.6 13.0 8.0

Table 3: Percentage Wage Distribution by Level and Tenure*
Between Between Between

$20K and $40K $40K and $60K $60K and $80K

Level Tenure Data Model Data Model Data Model
Level 1 1 59.1 57.5 40.5 42.0 0.4 0.5

2 54.4 57.4 44.8 41.7 0.8 0.8
3 55.6 56.6 44.4 42.2 0.0 1.2
4 53.8 56.7 46.2 41.9 0.0 1.4
5 64.1 68.1 35.9 31.1 0.0 0.7
6 69.2 69.5 30.8 29.8 0.0 0.7
7 75.0 70.6 25.0 28.5 0.0 0.8

Level 2 2 35.1 34.3 63.3 63.8 1.6 1.8
3 31.3 36.1 65.7 61.7 2.9 2.2
4 36.3 36.9 60.3 60.5 3.4 2.5
5 37.1 37.5 59.6 59.8 3.3 2.7
6 42.4 38.1 53.3 59.0 4.2 2.9
7 41.3 38.8 55.8 58.2 2.9 3.0

Level 3 3 2.8 8.2 84.9 82.4 12.3 9.3
4 4.5 10.3 85.3 80.5 10.1 9.2
5 5.3 11.3 84.2 79.1 10.5 9.5
6 6.1 12.4 84.4 77.6 9.5 9.9
7 4.5 13.4 81.1 76.4 14.4 10

*Mean of wages across tenures: $39,584 at Level 1, $43,179 at Level 2, and $48,963 at Level 3. Standard deviation of wages across tenures:
$6,924 at Level 1, $7,377 at Level 2, and $7,270 at Level 3.

Table 4A: Estimates of Prior Distribution*
Parameters Type 1 (i = 1) Type 2 (i = 2) Type 3 (i = 3) Type 4 (i = 4)
Prior: φi1 -0.672 -0.484 -0.141 0.435

(0.022) (0.021) (0.017) (0.022)
Mass: qi 0.155 0.211 0.313 0.321

(0.017) (0.030) (0.076) (NA)
*I estimate φi1=ln[pi1/(1−pi1)], which ranges over the real line and implies that p11=0.338, p21=0.381, p31=0.465, and p41=0.607

with an average initial prior 0.473 and standard deviation 0.102. Asymptotic standard errors in parentheses.



Table 4B: Estimates of Probability of High Output*
Parameters Level 1 (k = 1) Level 2 (k = 2) Level 3 (k = 3)
High Ability: αk 0.514 0.5437 0.5435

(0.062) (0.006) (0.007)
Low Ability: βk 0.456 0.491 0.490

(0.014) (0.013) (0.010)
*Asymptotic standard errors in parentheses.

Table 5A: Estimates of Type-Specific Intercept in the Wage Equation*
Parameters Type 1 (i = 1) Type 2 (i = 2) Type 3 (i = 3) Type 4 (i = 4)
Level 1: ω0i1 8.805 9.288 9.213 8.865

(0.005) (0.005) (0.011) (0.013)
Level 2: ω0i2 8.969 9.359 9.281 8.945

(0.004) (0.004) (0.009) (0.012)
Level 3: ω0i3 9.534 9.813 9.738 9.418

(0.008) (0.004) (0.007) (0.011)
*Asymptotic standard errors in parentheses.

Table 5B: Estimates of Coefficients on Age, Education, and Tenure in the Wage Equation
Parameters Value St. Error
Levels 1-2: ω1 (age) 0.028 0.0001
Levels 1-2: ω2 (age2) -0.0003 0.000002
Levels 1-2: ω3 (education) 0.022 0.0004
Level 1: ω412 (tenure) 0.007 0.0003
Level 3: ω13 (age) 0.010 0.001
Level 3: ω23 (age2) -0.0001 0.00001
Level 3: ω33 (education) 0.021 0.001

Table 5C: Estimates of Coefficients on Prior and Standard Deviations in the Wage Equation*
Parameters Type 1 (i = 1) Type 2 (i = 2) Type 3 (i = 3) Type 4 (i = 4)
Prior: ω5i 2.371 1.833 1.316 1.364

(0.045) (0.027) (0.015) (0.010)
Level 1: σAi1 0.076 0.070 0.057 0.044

(0.001) (0.001) (0.001) (0.001)
Level 2: σAi2 0.063 0.047 0.0302 0.0302

(0.001) (0.001) (0.0004) (0.0004)
Level 3: σAi3 0.047 (as i=1) (as i=1) (as i=1)

(0.0004) (NA) (NA) (NA)
*Asymptotic standard errors in parentheses.

Table 6: Counterfactual Experiments on Importance of Learning for Wages
Statistic Wages

Baseline No No Fast Learning at
Learning Experimentation Level 1 Level 2

Means by Level
Level 1 $39,584 $39,706 $39,763 $58,271 $37,847
Level 2 43,179 43,070 42,600 61,451 77,503
Level 3 48,963 48,454 48,818 44,623 24,360

St. Dev. by Level
Level 1 $6,936 $6,791 $6,902 $35,961 $8,668
Level 2 7,077 6,464 6,831 51,466 45,057
Level 3 8,046 6,534 7,971 45,784 4,281

Cumulative Growth
Tenure 2 4.60% 3.30% 0.90% 39.30% 8.80%
Tenure 3 8.9 6.8 17.6 48.5 51.5
Tenure 4 13.8 9.8 20.5 52.8 50.1
Tenure 5 15.9 11.1 21.6 55.4 50.3
Tenure 6 17.5 12.9 22.1 58.1 50.1
Tenure 7 18.5 14.6 22.2 60.6 49.8

Tenure 7 (Balanced Panel) 19.4 15.4 23.3 62.5 51.2
*No Learning: βk= âk , k=1, 2, 3. Fast Learning at Level k: αk=0.99 and βk=0.01, k=1, 2.



A Omitted Proofs and Derivations
Proof of Proposition 1: There are two immediate implications of equilibrium. First, the worker chooses the firm, f ,
offering the highest value of wages; that is, W (st, εt|f)≥W (st, εt|f ′). Second, the employing firm, f , offers wages
just sufficient to attract the worker; that is, it achieves the value Πf (st, εt|f), subject to W (st, εt|f)≥W (st, εt|f ′), with

W (st, εt|f) = W (st, εt|f ′) (20)

by profit maximization. Thus, the worker is indifferent between working at firm f and working at firm f ′. I refer to (20)
as the worker’s equilibrium indifference between the offers of firms A and C or, simply, worker indifference.

I first show that a firm’s employment and job assignment problem in equilibrium reduces to an autarky-type problem—
that is, the problem of choosing the assignment for the worker that maximizes the firm’s value of output, V f

(st, εt),
f = A,C. The argument is as follows. By (20), it is immediate that maximizing profits for a firm is equivalent to
maximizing the sum of its own value and the worker’s value: the job that maximizes Πf (st, εt) clearly also maximizes
Πf (st, εt)+W (st, εt|f ′), f ′ 6=f , since firm f takes as given the value of wages implied by the offer of firm f ′. Combining
(6), this result, and optimality for firm A implies that V A(st, εt), defined as ΠA(st, εt) +W (st, εt), can be expressed as

V A(st, εt) = max{V A(st, εt|A), V A(st, εt|C)} = max {maxk∈KA {yA(st, k) + εAkt

+δηAk(κt)
∫
εt+1

EV A(st+1, εt+1|st, k)dG
}
, wC(st, εt)+δηCkCt(κt)

∫
εt+1

EV A(st+1, εt+1|st, kCt)dG
}
, (21)

since firmA’s current profits are zero and the worker’s wage iswC(st, εt) if firmC employs the worker at state (st, εt), in
which case the state is updated conditional on the job the worker performs at firmC. Now consider states at which firmA
employs the worker. At these states, firmAmust prefer employing to not employing the worker—that is, ΠA(st, εt|A)≥
ΠA(st, εt|C)—and must also pay a wage sufficiently low to make the worker just indifferent between working forA and
working for C; that is, W (st, εt|A)=W (st, εt|C). Otherwise, A could lower its wage offer and still attract the worker.
These two facts imply that when A employs the worker, ΠA(st, εt|A)+W (st, εt|A)≥ΠA(st, εt|C)+W (st, εt|C); that
is, V A(st, εt|A)≥V A(st, εt|C) by the definition of match surplus value.

Next, consider states at which firm C employs the worker. Condition (7) requires that firm A be indifferent between
employing and not employing the worker; that is, ΠA(st, εt|A)=ΠA(st, εt|C). By the same argument as before, firm C
must pay a wage that makes the worker just indifferent between working for A and working for C. These observations
imply that V A(st, εt|A)=V A(st, εt|C).

Since V A(st, εt)=max{V A(st, εt|A), V A(st, εt|C)}, this argument implies that at all states,

V A(st, εt) = V A(st, εt|A) = maxk∈KA

{
yA(st, k) + εAkt+δηAk(κt)

∫
εt+1

EV A(st+1, εt+1|st, k)dG
}
. (22)

Thus, V A(st, εt) reduces to the value of firm A’s problem of choosing the job that maximizes the value of its output,
V
A

(st, εt), defined recursively as

V
A

(st, εt) = maxk∈KA

{
yA(st, k) + εAkt+δηAk(κt)

∫
εt+1

EV
A

(st+1, εt+1|st, k)dG
}
.

A similar argument applies to firm C, so that V C(st, εt) also reduces to V C
(st, εt). Hence,

V f (st, εt) = V f (st, εt|f) = V
f
(st, εt), f=A,C. (23)

I now turn to deriving (8). As just proved, when firm A employs the worker at state (st, εt),

V A(st, εt|A) = ΠA(st, εt|A) +W (st, εt|A) ≥ V A(st, εt|C) = ΠA(st, εt|C) +W (st, εt|C).

Since ΠC(st, εt|A) = ΠC(st, εt|C) by (7), it follows that V A(st, εt|A) ≥ V A(st, εt|C) further implies

ΠA(st, εt|A) +W (st, εt|A) + ΠC(st, εt|A) ≥ ΠA(st, εt|C) +W (st, εt|C) + ΠC(st, εt|C). (24)
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Similarly, as just argued, when firm C employs the worker at state (st, εt),

V A(st, εt|C) = ΠA(st, εt|C) +W (st, εt|C) = ΠA(st, εt|A) +W (st, εt|A) = V A(st, εt|A), (25)

whereas it must be that ΠC(st, εt|C) ≥ ΠC(st, εt|A) for firm C, since it is the employing firm. Thus, (25) implies

ΠA(st, εt|C) +W (st, εt|C) + ΠC(st, εt|C) ≥ ΠA(st, εt|A) +W (st, εt|A) + ΠC(st, εt|A). (26)

Then, (24) and (26) prove that the employing firm is selected in equilibrium to maximize the sum of the values of the
two firms and the worker, conditional on the two firms’ job offers, since by definition, Πf (·) and W (·) are the values
of profits and wages, respectively, at the equilibrium job offers kft =kf (st, εt), f =A,C. Equivalently, the employing
firm is determined by the policy of the program with value (8), where S(·)=ΠA(·)+W (·)+ΠC(·).
Proof of Proposition 2: Note that the indifference condition in (20) can be rewritten as

wA(st, εt) = W (st, εt|C)− δηAkAt(κt)
∫
εt+1

EW (·|st, kAt)dG. (27)

Suppose, without loss, that A employs the worker. Then, (7) can be expressed as

W (st, εt|C) = V C(st, εt|C)− δηAkAt(κt)
∫
εt+1

EΠC(·|st, kAt)dG

=maxk∈KC

{
yC(st, k)+εCkt+δηCk(κt)

∫
εt+1

EV C(·|st, k)dG
}
− δηAkAt(κt)

∫
εt+1

EΠC(·|st, kAt)dG,

where the second equality follows from (23). By substituting this expression into (27), using that EV C(·|st, kAt) =
EΠ(·|st, kAt)+EWC(·|st, kAt) by definition of V (·), and combining terms, (27) can be rewritten as

wA(st, εt)=maxk∈KC

{
yC(st, k)+εCkt+δηCk(κt)

∫
εt+1

EV C(·|st, k)dG
}
− δηAkAt(κt)

∫
εt+1

EV C(·|st, kAt)dG.

By the properties of Gumbel distributions, the first term in this latter expression can be expressed as

maxk∈KC

{
yC(st, k)+εCkt+δηCk(κt)

∫
εt+1
EV C(·)dG

}
=maxk∈KC{vC(st, k)+εCkt}=ln

∑
k∈KC exp{vC(st, k)}+εCt,

where εCt is a zero-mean Gumbel-distributed productivity shock and vC(st, k) is given by48

vC(st, k) = yC(st, k) + δηCk(κt)E
(
ln
∑

k′∈KC exp{vC(st+1, k
′)}|st, k

)
.

By these observations, I can then rewrite wA(st, εt)as

wA(st, εt)=ln

(
exp{vC(st, kAt)}

∑
k∈KC exp{vC(st, k)}

exp{vC(st, kAt)}

)
−δηAkAt(κt)E

(
ln
∑

k′∈KCexp{vC(st+1, k
′)}|st, kAt

)
+εCt=vC(st, kAt)−ln Pr(kCt=kAt|ft=C, st)−δηAkAt(κt)E

(
ln
∑

k′∈KCexp{vC(st+1, k
′)}|st, kAt

)
+εCt, (28)

where the second equality uses that Pr(kCt = kAt|ft = C, st) = exp{vC(st, kAt)}/
∑

k exp{vC(st, k)}. If the law of
motion of the state is the same across the two firms at each job and ηCk(κt) = ηAk(κt) for each k, it follows that

δηCkAt(κt)E
(
ln
∑

k′∈KCexp{vC(st+1, k
′)}|st, kAt

)
=δηAkAt(κt)E

(
ln
∑

k′∈KCexp{vC(st+1, k
′)}|st, kAt

)
, (29)

where the left side of (29) is the continuation value portion of vC(st, kAt). The claim follows since wA(st, εt) in (28)
reduces to yC(st, kAt)−ln Pr(kCt=kAt|ft=C,st)+εCt. An analogous argument applies if C employs the worker.
Proof of Lemma 1: Assume without loss that σA1k > σA2k > σA3k > σA4k for each k ≥ 1. Here I show that the
weights and component distributions of the mixture distributions of wages at firm A of managers of each possible skill
type, conditional on their histories at the firm, are identified at each level and tenure up to their labeling with respect to

48In general, if ε1 and ε2 are independent Gumbel distributed with parameters (0, µ), then ymax=max{y1+ε1, y2+ε2} is Gumbel distributed
with parameters (ln(eµy1 +eµy2)/µ, µ), mean ln(eµy1 +eµy2)/µ+γ/µ, and variance π2/6µ2. Thus, ymax can be expressed as ymax=y

∗+ε∗,
where y∗=ln(eµy1 + eµy2)/µ and ε∗ is Gumbel distributed with parameters (0, µ).
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RA1, . . . ,RAt−1. To start, note that f(wA2|LA1=1, LA2, h1) can be expressed as

f(wA2|LA1=1, LA2, h1) =
∑

RA1,i
f(wA2|LA1=1, RA1, LA2, h1, i) Pr(RA1, i|LA1=1, LA2, h1),

which is a mixture density with weights {Pr(RA1, i|LA1 = 1, LA2, h1)}. By Proposition 1 in Al-Hussaini and Ahmad
(1981) and Theorem 1 in Shi et al. (2014), referred to as the logistic mixture results, {f(wA2|LA1=1, RA1, LA2, h1, i)}
are identified for each RA1, LA2, h1, and i, and {Pr(RA1, i|LA1 =1, LA2, h1)} are identified for each LA2 and h1. For
later, it is useful to express these mixture weights as

Pr(RA1, i|LA1=1, LA2, h1) =
Pr(LA2|LA1=1, RA1, h1, i) Pr(RA1|LA1=1, h1, i) Pr(i|LA1=1)

Pr(LA2|LA1=1, h1)
, (30)

using that Pr(i|LA1 = 1, h1) = Pr(i|LA1 = 1), which is identified by the argument in the main text preceding the
statement of the lemma. Once the probabilities {Pr(RA1, i|LA1 = 1, LA2, h1)} are identified, they can be labeled by i
as follows. Since the standard deviations of the component densities satisfy σA1k>σA2k>σA3k>σA4k for each k, by
comparing their standard deviations, it is possible to determine the skill type i to which each density in {f(wA2|LA1 =
1, RA1, LA2, h1, i)} corresponds. Specifically, for any given LA2 and h1, there exist eight such densities, given the two
possible values of RA1 and the four possible values of i, but all of these densities have only four possible standard
deviations—that is, one for each i. Then, each pair of probabilities in {Pr(RA1 = 1, i|LA1 = 1, LA2, h1),Pr(RA1 =
0, i|LA1 = 1, LA2, h1)}, for given LA2, h1, and i, is associated with only two component densities that have the same
standard deviations, so that determining the value of i in these probabilities is immediate based on their associated
component densities. Further, summing each pair of probabilities in {Pr(RA1 = 1, i|LA1 = 1, LA2, h1),Pr(RA1 =
0, i|LA1 = 1, LA2, h1)} for given LA2, h1, and i yields the probabilities {Pr(i|LA1 = 1, LA2, h1)}, which, in turn, can
be associated with the probabilities in {Pr(i|LA1 = 1)}, i by i, through the standard deviations of the corresponding
component densities. This result will prove useful in the proof of Proposition 4, which rests on linking the probabilities
{Pr(i|LA1=1, . . . , LAt=1, h1)} across tenures by type.

By a similar logic, I now prove that f(wA2|LA1 = 1, RoA1, LA2, h1) is an identified mixture and derive additional
results about the form of its weights that will prove useful for the propositions that follow. Namely, the wage density at
Level LA2 for managers with initial human capital h1 and recorded performance RoA1 is

f(wA2|LA1=1, RoA1, LA2, h1)=
∑

RA1,i
f(wA2|LA1=1, RoA1, RA1, LA2, h1, i) Pr(RA1, i|LA1=1, RoA1, LA2, h1).

By the logistic mixture results above, the densities {f(wA2|LA1=1,RoA1,RA1,LA2,h1,i)}, whose elements are indepen-
dent of RoA1, are identified for each RA1, LA2, h1, and i, and the mixture weights {Pr(RA1, i|LA1 = 1, RoA1, LA2, h1)}
are identified for each RoA1, LA2, and h1. Note that these mixture weights can be expressed as

Pr(RA1, i|LA1=1, RoA1, LA2, h1)=
Pr(LA2|LA1=1, RoA1, RA1, h1, i) Pr(RoA1, RA1|LA1=1, h1, i) Pr(i|LA1=1)

Pr(RoA1, LA2|LA1=1, h1)
,

(31)
where Pr(LA2|LA1 = 1, RoA1, RA1, h1, i) is independent of RoA1. Thus, the same component densities {f(wA2|LA1 =
1, RA1, LA2, h1, i)} can be recovered from both f(wA2|LA1=1, LA2, h1) and f(wA2|LA1=1, RoA1, LA2, h1).

An analogous argument applies to t = 3. Note that the wage density at Level LA3 for managers with initial human
capital h1 assigned to Level LA2 in t = 2 is

f(wA3|LA1=1,LA2,LA3,h1)=
∑

RA1,RA2,i
f(wA3|·,RA1,LA2,RA2,LA3,h1,i)Pr(RA1,RA2,i|·,LA2,LA3,h1). (32)

By the logistic mixture results above, the densities {f(wA3|LA1 = 1,RA1,LA2,RA2,LA3,h1,i)} are identified for each
RA1, LA2, RA2, LA3, h1, and i, and the mixture weights {Pr(RA1, RA2, i|LA1 = 1, LA2, LA3, h1)} are identified for
each LA2, LA3, and h1. Observe that these latter mixture weights can be expressed as

Pr(RA1, RA2, i|LA1=1, LA2, LA3, h1) =

Pr(LA3|LA1=1,RA1,LA2,RA2,h1,i) Pr(RA2|LA1=1,RA1,LA2,h1,i)
·Pr(LA2|LA1=1,RA1,h1,i) Pr(RA1|LA1=1,h1,i) Pr(i|LA1=1)

Pr(LA2,LA3|LA1=1,h1)
.

(33)
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As before, by comparing the standard deviations of the component densities {f(wA3|·, h1, i)} of this mixture, it is
possible to determine the skill type i to which each component density corresponds. Note also that summing the
four probabilities in {Pr(RA1, RA2, i|LA1 = 1, LA2, LA3, h1)} for given LA2, LA3, h1, and i yields the probabilities
{Pr(i|LA1 = 1, LA2, LA3, h1)}, which can then be uniquely paired with the probabilities in {Pr(i|LA1 = 1)} and
{Pr(i|LA1=1, LA2, h1)} through the standard deviations of the corresponding component densities.

Proceeding analogously, note that the wage density at Level LA3 in t = 3 for managers with initial human capital
h1 assigned to Level LA2 in t = 2 and with recorded performance RoA2 at that level is

f(wA3|LA1=1, LA2, R
o
A2, LA3, h1) =

∑
RA1,RA2,i

f(wA3|LA1=1, RA1, LA2, R
o
A2, RA2, LA3, h1, i)

· Pr(RA1, RA2, i|LA1=1, LA2, R
o
A2, LA3, h1),

with f(wA3|LA1=1,RA1,LA2,R
o
A2,RA2,LA3,h1,i) independent of RoA2, Pr(RA1,RA2, i|·,h1) given by

Pr(RA1, RA2, i|·, h1) =

Pr(LA3|LA1=1,RA1,LA2,R
o
A2,RA2,h1,i) Pr(RoA2,RA2|LA1=1,RA1,LA2,h1,i)

·Pr(LA2|LA1=1,RA1,h1,i) Pr(RA1|LA1=1,h1,i) Pr(i|LA1=1)

Pr(LA2,RoA2,LA3|LA1=1,h1)
, (34)

and Pr(LA3|LA1 =1,RA1,LA2,R
o
A2,RA2,h1,i) independent of RoA2. By the logistic mixture results above, the densities

{f(wA3|·,h1,i)} are identified for eachRA1, LA2,RA2, LA3, h1, and i, and the mixture weights {Pr(RA1, RA2, i|·, h1)}
are identified for eachLA2,RoA2,LA3, and h1.Then, the same set of densities {f(wA3|LA1=1,RA1,LA2,RA2,LA3,h1,i)}
can be recovered from f(wA3|LA1=1, LA2, LA3, h1) and f(wA3|LA1=1, LA2, R

o
A2, LA3, h1).

This argument can easily be extended to the remaining tenure years to complete the proof of the lemma.
Proof of Proposition 3: The proof consists of two parts. In Part I, I show that the parameters of the distribution of
classification error in recorded performance are identified from the weights of the mixture distributions of wages of
managers of each possible skill type, which are identified by Lemma 1. In Part II, I show that once the distribution
of classification error is identified, the probability masses of the distribution of performance at each Level k ≥ 1 for
each manager ability, {αk, βk}, are identified from repeated observations on performance ratings at each level; see
Observation 2 in the proof of Proposition 4 for an alternative argument.

Part I: Identification of classification error parameters. Consider identifying ρ0, ρ1, and ρ2(1) in (11). Fix RoA1,
LA2, and h1. Note first that the conditional probability of recorded performance given true performance in t = 1,
Pr(RoA1|LA1 =1, RA1, h1, i), is independent of h1 and i by (11). Recall that Pr(LA2|LA1 =1, RoA1, RA1, h1, i) is inde-
pendent of RoA1 and express Pr(RoA1, RA1|LA1 = 1, h1, i) as the product Pr(RoA1|LA1 = 1, RA1, h1, i) Pr(RA1|LA1 =
1, h1, i). The probability Pr(RoA1|LA1 = 1, RA1) is identified for each RoA1 and RA1 from the ratio of the identified
expression on the right side of (31) multiplied by the associated probability Pr(RoA1, LA2|LA1=1, h1),

Pr(LA2|LA1=1, RA1, h1, i) Pr(RoA1|LA1=1, RA1, h1, i) Pr(RA1|LA1=1, h1, i) Pr(i|LA1=1),

to the identified expression on the right side of (30) multiplied by the associated probability Pr(LA2|LA1=1, h1),

Pr(LA2|LA1=1, RA1, h1, i) Pr(RA1|LA1=1, h1, i) Pr(i|LA1=1). (35)

To compute this ratio, expressions (30) and (31) need to be paired. To see that no ambiguity arises, recall that (30)
and (31) result from simple manipulations of {Pr(RA1, i|LA1 =1, LA2, h1)} and {Pr(RA1, i|LA1 =1, RoA1, LA2, h1)},
which are, respectively, the weights of the mixture distributions f(wA2|LA1 = 1, LA2, h1) and f(wA2|LA1 = 1, RoA1,-
LA2, h1) identified by Lemma 1. As shown in the proof of Lemma 1, the components of these mixtures can be correctly
labeled with respect to i. Recall also from the proof of Lemma 1 that the same component densities {f(wA2|LA1 =
1, RA1, LA2, h1, i)} can be recovered from both f(wA2|LA1 = 1, LA2, h1) and f(wA2|LA1 = 1, RoA1, LA2, h1). Since
mean wages by skill type (and human capital) are injective functions of the prior pit whenever δ or {ηkt} are not too large,
these densities can be ordered by their means.49 Then, each probability in {Pr(RA1, i|LA1=1, LA2, h1)} can be uniquely

49To seeEwAit(k) is an injective function of pit, let, by contradiction, p′it>pit,butEwAit(k)=Ew′Ait(k) so that ln Pr(LCt=k|ft=C, s′it)−
ln Pr(LCt= k|ft=C, sit)=yC(s

′
it, k)−yC(sit, k), sit=(pit,κt,i), or ln

∑
k′exp{v

C(s′it, k
′)}−δηktE(ln

∑
k′exp{v

C(s′it+1, k
′)}|s′it, k) =

ln
∑
k′exp{v

C(sit, k
′)}−δηktE(ln

∑
k′exp{v

C(sit+1, k
′)}|sit, k) with vC(sit, k) defined analogously to vA(sit, k) in (15). But this equality

cannot hold if δ or {ηkt} are small enough, since ln
∑
k′exp{v

C(·, κt, i, k′)} strictly increases with pit.
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paired with the corresponding probability in {Pr(RA1, i|LA1 =1, RoA1, LA2, h1)} given RoA1, LA2, h1, and i, since any
correct pair of probabilities is associated with the same component wage density in {f(wA2|LA1=1, RA1, LA2, h1, i)}.
Thus, the probabilities {Pr(RoA1|LA1=1, RA1)} are identified for any RoA1 and RA1.

Observe now that Pr(RoA1|LA1 = 1, RA1 = 1) can be distinguished from Pr(RoA1|LA1 = 1, RA1 = 0) given RoA1 by
comparing 1−E1(1, t) and E0(1, t) from (11), since ρ1>0 implies

Pr(RoAt=1|LA1=1, . . . , LAt, RAt=1)>Pr(RoAt=1|LA1=1, . . . , LAt, RAt=0) (36)

for the same LAt and years of experience at firm A. In particular, Pr(RoA1|LA1 =1, RA1 =1) can be distinguished from
Pr(RoA1|LA1 = 1, RA1 = 0) by (36), as claimed. Hence, the associated probabilities Pr(RA1 = 1, i|LA1 = 1, LA2, h1)
from (30) and Pr(RA1=1, i|LA1=1, RoA1, LA2, h1) from (31) can be distinguished from the corresponding probabilities
Pr(RA1=0, i|LA1=1, LA2, h1) and Pr(RA1=0, i|LA1=1, RoA1, LA2, h1) for each RoA1, LA2, h1, and i.

Proceeding similarly, the ratio of the identified expression on the right side of (34) multiplied by the associated
probability Pr(LA2, R

o
A2, LA3|LA1 = 1, h1) to the corresponding identified expression on the right side of (33) multi-

plied by the associated probability Pr(LA2, LA3|LA1 = 1, h1) for given RA1, LA2, RoA2, RA2, LA3, h1, and i identifies
Pr(RoA2|LA1 = 1, RA1, LA2, RA2, h1, i) = Pr(RoA2|LA1 = 1, LA2, RA2), since Pr(LA3|LA1 = 1,RA1,LA2,R

o
A2,RA2,-

h1,i) is independent of RoA2. To see how these ratios can be correctly computed, note that the same component densi-
ties {f(wA3|LA1 = 1,RA1,LA2,RA2,LA3,h1,i)} are recovered from both f(wA3|LA1 = 1, LA2, LA3, h1) and f(wA3|-
LA1 = 1, LA2, R

o
A2, LA3, h1). Thus, through these component densities uniquely identified by their means, the mixture

weights {Pr(RA1, RA2, i|LA1 = 1, LA2, R
o
A2, LA3, h1)} can be matched to the corresponding weights {Pr(RA1, RA2,-

i|LA1=1, LA2, LA3, h1)}. By (36), no label ambiguity arises for Pr(RoA2|LA1=1, LA2, RA2) with respect to RA2.
The results that {Pr(RoA1|LA1 = 1, RA1)} and {Pr(RoA2|LA1 = LA2 = 1, RA2)} are identified imply that E0(1, t)

and E1(1, t), t= 1, 2, are identified. By (11), knowledge of E0(1, 1), E1(1, 1), and of E0(1, 2) or E1(1, 2) is sufficient
to identify (ρ0, ρ1, ρ2(1)). In particular, either Pr(RoA1 = 1|LA1 = 1, RA1 = 1) and Pr(RoA1 = 1|LA1 = 1, RA1 = 0) or
Pr(RoA1 = 0|LA1 = 1, RA1 = 1) and Pr(RoA1 = 0|LA1 = 1, RA1 = 0), together with either Pr(RoA2 = 1|LA1 = LA2 =
1, RA2) or Pr(RoA2=0|LA1=LA2=1, RA2) for given RA2, are sufficient to identify (ρ0, ρ1, ρ2(1)).

Now, consider identifying ρ2(2) for Level 2. Proceeding analogously, it is immediate that E0(2, 2) or E1(2, 2) are
also identified from Pr(RoA2|LA1=1, LA2=2, RA2) for given RoA2 and RA2, which implies that ρ2(2) is also identified
from either Pr(RoA2 =1|LA1 =1, LA2 =2, RA2) or Pr(RoA2 =0|LA1 =1, LA2 =2, RA2) for given RA2, once ρ0 and ρ1
are identified. Lastly, consider identifying ρ2(3) for Level 3. By extending this argument in the natural way, it is easy to
show that ρ2(3) is identified from the distribution of wages of managers in the fourth year of tenure assigned to Level 3
in t = 3 with either high or low recorded performance in t = 3.

Part II: Identification of {αk, βk}. Recall that qi3(h1)=Pr(i|LA1 =1, LA2 =1, LA3 =1, h1). The logic of the proof
consists of first showing that the distribution of performance ratings at Level 1 in three consecutive years—namely, the
probabilities Pr(RoA3 = 1|LA1 = 1, LA2 = 1, LA3 = 1, h1), Pr(RoA2 = 1, RoA3 = 1|LA1 = 1, LA2 = 1, LA3 = 1, h1),
and Pr(RoA1 = 1, RoA2 = 1, RoA3 = 1|LA1 = 1, LA2 = 1, LA3 = 1, h1)—identify the three corresponding probabilities
of high performance—namely, ν1(h1) = (α1 − β1)

∑
i qi3(h1)pi1 + β1, ν2(h1) = (α2

1 − β21)
∑

i qi3(h1)pi1 + β21 , and
ν3(h1) = (α3

1 − β31)
∑

i qi3(h1)pi1 + β31—once the distribution of classification error in performance at Level 1 is
identified. The proof then proceeds to recover (α1, β1,

∑
i qi3(h1)pi1) for a given h1 as the unique solution to the system

(α1 − β1)
∑

i qi3(h1)pi1 + β1 = ν1(h1)
(α2

1 − β21)
∑

i qi3(h1)pi1 + β21 = ν2(h1)
(α3

1 − β31)
∑

i qi3(h1)pi1 + β31 = ν3(h1)
. (37)

A similar argument can be used to recover (α2, β2) and (α3, β3). If αk=βk for some k, then two periods of observations
on performance ratings at Level k are sufficient to identify αk. The rest of the proof is articulated in five steps.

Step 1: ν1(h1) is identified for each h1. To start, note that

Pr(RoA3 = 1|LA1 = 1, LA2 = 1, LA3 = 1, h1) =
∑

i Pr(i|LA1 = 1, LA2 = 1, LA3 = 1, h1)

·
∑

RA3
Pr(RoA3 = 1, RA3|LA1 = 1, LA2 = 1, LA3 = 1, h1, i)

=
∑

i qi3(h1){Pr(RoA3=1|LA1=1, LA2=1, LA3=1, RA3=1) Pr(RA3=1|LA1=1, LA2=1, LA3=1, h1, i)

+ Pr(RoA3=1|LA1=1, LA2=1, LA3=1, RA3=0) Pr(RA3=0|LA1=1, LA2=1, LA3=1, h1, i)}, (38)
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using that Pr(RoAt|LA1, . . . , LAt, RAt, h1, i) is independent of h1 and i by (11). Also,

Pr(RA3|LA1=1, LA2=1, LA3=1, h1, i) =
∑

RA1,RA2
Pr(RA1, RA2, RA3|LA1=1, LA2=1, LA3=1, h1, i),

and Pr(RA1, RA2, RA3|LA1 = 1, LA2 = 1, LA3 = 1, h1, i) is independent of h1. Using that
∑

i qi3(h1) = 1 and the
definition of classification error rates, by straightforward algebra, I obtain from (38) that

Pr(RoA3 = 1|LA1 = 1, LA2 = 1, LA3 = 1, h1) = [(α1 − β1)
∑

i qi3(h1)pi1 + β1][1− E1(1, 3)]

+ {1− [(α1 − β1)
∑

i qi3(h1)pi1 + β1]}E0(1, 3). (39)

Since the probability on the left side of (39) is known from the data and E1(1, 3) and E0(1, 3) are identified by Part I, it
follows that ν1(h1) = (α1 − β1)

∑
i qi3(h1)pi1 + β1 is identified by (39) for each h1.

Step 2: ν2(h1) is identified for each h1. To this end, note that

Pr(RoA2 = 1, RoA3 = 1|LA1 = 1, LA2 = 1, LA3 = 1, h1)

=
∑

i Pr(i|LA1 = 1, LA2 = 1, LA3 = 1, h1) Pr(RoA2 = 1, RoA3 = 1|LA1 = 1, LA2 = 1, LA3 = 1, h1, i)

=
∑

i qi3(h1)
∑

RA2,RA3
[Pr(RoA2 = 1, RoA3 = 1|LA1 = 1, LA2 = 1, RA2, LA3 = 1, RA3, h1, i)

· Pr(RA2, RA3|LA1 = 1, LA2 = 1, LA3 = 1, h1, i)]

=
∑

i qi3(h1)
∑

RA2,RA3
[Pr(RoA3 = 1|LA1 = 1, LA2 = 1, RoA2 = 1, RA2, LA3 = 1, RA3, h1, i)

· Pr(RoA2=1|LA1=1, LA2=1, RA2, LA3=1, RA3, h1, i) Pr(RA2, RA3|LA1=1, LA2=1, LA3=1, h1, i)] (40)

with Pr(RA2,RA3|·,h1,i) independent of h1and Pr(RoA2|LA1=1,LA2=1,RA2,LA3,RA3,h1,i) ofLA3,RA3,h1, and i as

Pr(RoA2|LA1 = 1, LA2 = 1, RA2, LA3, RA3, h1, i) =
Pr(LA1 = 1, LA2 = 1, RoA2, RA2, LA3, RA3, h1, i)

Pr(LA1 = 1, LA2 = 1, RA2, LA3, RA3, h1, i)

=

Pr(LA3, RA3|LA1=1, LA2=1, RoA2, RA2, h1, i)
·Pr(RoA2|LA1=1, LA2=1, RA2, h1, i) Pr(LA1=1, LA2=1, RA2, h1, i)

Pr(LA3, RA3|LA1=1,LA2=1,RA2,h1,i)Pr(LA1=1,LA2=1,RA2,h1,i)
=Pr(RoA2|LA1=1,LA2=1,RA2),

where the first two equalities follow by simple manipulations and the last equality follows by canceling terms, since
Pr(LA3, RA3|LA1 = 1, LA2 = 1, RoA2, RA2, h1, i) is independent of RoA2 and Pr(RoA2|LA1 = 1, LA2 = 1, RA2, h1, i)
is independent of h1 and i. Using the fact just established and that Pr(RoA3 = 1|LA1 = 1, LA2 = 1, RoA2, RA2, LA3 =
1, RA3, h1, i) is similarly independent of RoA2, RA2, h1, and i by (11), I obtain

Pr(RoA2=1, RoA3=1|LA1=1,LA2=1,LA3=1,h1,i)=
∑

RA2,RA3
Pr(RoA3=1|LA1=1,LA2=1,LA3=1,RA3)

· Pr(RoA2 = 1|LA1 = 1, LA2 = 1, RA2)[Pr(RA1 = 1, RA2, RA3|LA1 = 1, LA2 = 1, LA3 = 1, i)

+ Pr(RA1 = 0, RA2, RA3|LA1 = 1, LA2 = 1, LA3 = 1, i)],

as Pr(RA1, RA2, RA3|LA1 = 1, LA2 = 1, LA3 = 1, h1, i) is independent of h1. Note also that Pr(RoA2, R
o
A3|LA1 =

1, LA2=1, LA3=1, h1, i) is independent of h1. Using the definition of error rates in (11), it is easy to show that

Pr(RoA2 = 1, RoA3 = 1|LA1 = 1, LA2 = 1, LA3 = 1, i) = [1− E1(1, 3)][1− E1(1, 2)]︸ ︷︷ ︸
B2

[α2
1pi1 + β21(1− pi1)]

+ {E0(1, 3)[1− E1(1, 2)]+[1− E1(1, 3)]E0(1, 2)}︸ ︷︷ ︸
C2

[α1pi1 + β1(1− pi1)− α2
1pi1 − β21(1− pi1)]

+ E0(1, 3)E0(1, 2)︸ ︷︷ ︸
D2

[α2
1pi1 + β21(1− pi1) + 1− 2α1pi1 − 2β1(1− pi1)],

where B2, C2, and D2 are known constants so that

Pr(RoA2=1,RoA3=1|LA1=1,LA2=1,LA3=1,h1)=
∑

iqi3(h1)Pr(RoA2=1,RoA3=1|LA1=1,LA2=1,LA3=1,i)

=B2[(α
2
1 − β21)

∑
i qi3(h1)pi1 + β21 ] + C2{(α1 − β1)

∑
i qi3(h1)pi1 + β1 − [(α2

1 − β21)
∑

i qi3(h1)pi1 + β21 ]}
+D2{(α2

1 − β21)
∑

i qi3(h1)pi1 + β21 + 1− 2[(α1 − β1)
∑

i qi3(h1)pi1 + β1]}. (41)
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Using that the probability on the left side of (41) is known from the data and ν1(h1)=(α1 − β1)
∑

i qi3(h1)pi1 + β1 is
identified by Step 1, it follows that ν2(h1) = (α2

1 − β21)
∑

i qi3(h1)pi1 + β21 is also identified.
Step 3: ν3(h1) is identified for each h1. Observe that

Pr(RoA1=1, RoA2=1, RoA3=1|LA1=1, LA2=1, LA3=1, h1)=
∑

i qi3(h1)
∑

RA1,RA2,RA3
Pr(RoA1=1, RoA2=1,

RoA3=1|LA1=1, RA1, LA2=1, RA2, LA3=1, RA3) Pr(RA1, RA2, RA3|LA1=1, LA2=1, LA3=1, i),

and so there exist known constants, B3, C3, D3, and E3, which are known functions of the classification error rates at
Level 1 in tenures 1, 2, and 3, such that

Pr(RoA1 = 1, RoA2 = 1, RoA3 = 1|LA1 = 1, LA2 = 1, LA3 = 1, h1)

= B3
∑

i qi3(h1)[α
3
1pi1 + β31(1− pi1)] + C3

∑
i qi3(h1)[α

2
1(1− α1)pi1 + β21(1− β1)(1− pi1)]

+D3
∑

i qi3(h1)[α1(1−α1)
2pi1 + β1(1−β1)2(1−pi1)] + E3

∑
i qi3(h1)[(1−α1)

3pi1+ (1−β1)3(1−pi1)],

or equivalently,

Pr(RoA1=1, RoA2=1, RoA3=1|LA1=1, LA2=1, LA3=1, h1) = B3[(α
3
1 − β31)

∑
iqi3(h1)pi1 + β31 ]

+C3

{
[(α2

1 − β21)
∑

iqi3(h1)pi1 + β21 ]− [(α3
1−β31)

∑
iqi3(h1)pi1+β31 ]

}
+D3

{
[(α3

1−β31)
∑

iqi3(h1)pi1 + β31 ] + [(α1−β1)
∑

iqi3(h1)pi1+β1]−2[(α2
1−β21)

∑
iqi3(h1)pi1+β21 ]

}
+E3

{
1−3[(α1−β1)

∑
iqi3(h1)pi1 + β1]+3[(α2

1−β21)
∑

iqi3(h1)pi1+β21 ]−[(α3
1−β31)

∑
iqi3(h1)pi1+β31 ]

}
.

So, ν3(h1) = (α3
1 − β31)

∑
i qi3(h1)pi1 + β31 is identified as Pr(RoA1 = 1, RoA2 = 1, RoA3 = 1|·, h1) is known from the

data, and ν1(h1)=(α1−β1)
∑

i qi3(h1)pi1 +β1 and ν2(h1)=(α2
1−β21)

∑
i qi3(h1)pi1 +β21 are identified by Steps 1-2.

Step 4: (α1, β1,
∑

i qi3(h1)pi1) are identified. Fix h1. I now show that the system of equations in (37) admits
a unique solution for (α1, β1,

∑
i qi3(h1)pi1) if α1 > β1. To start, using that α2

1 − β21 = (α1 + β1)(α1 − β1) and
α3
1 − β31 = (α1 − β1)[(α1 + β1)

2 − α1β1] = (α1 + β1)(α
2
1 − β21)− α1β1(α1 − β1), I can rewrite (37) as

(α1 − β1)
∑

i qi3(h1)pi1 = ν1(h1)− β1
(α1 + β1)[ν1(h1)− β1] = ν2(h1)− β21 ⇔ ν1(h1)(α1 + β1)− α1β1 = ν2(h1)

(α1 + β1)[ν2(h1)− β21 ]− α1β1[ν1(h1)− β1] = ν3(h1)− β31 ⇔
ν2(h1)(α1+β1)

ν1(h1)
− α1β1 = ν3(h1)

ν1(h1)

. (42)

By subtracting the third equation from the second equation in (42), side by side, I obtain

α1 + β1 = [ν1(h1)ν2(h1)− ν3(h1)]/[ν21(h1)− ν2(h1)]. (43)

Substituting this last expression into the second equation in (42) gives

α1β1 = ν1(h1)(α1 + β1)− ν2(h1) = [ν22(h1)− ν1(h1)ν3(h1)]/[ν21(h1)− ν2(h1)]. (44)

Using (43), (44), that α1 − β1 =
√

(α1 − β1)2 =
√

(α1 + β1)2 − 4α1β1, and α1>β1 yields that

α1−β1=
√

(α1+β1)2−4α1β1=

√
1

ν21(h1)−ν2(h1)

{
[ν1(h1)ν2(h1)−ν3(h1)]2

ν21(h1)−ν2(h1)
+4ν1(h1)ν3(h1)−4ν22(h1)

}
. (45)

By summing (43) and (45) side by side, it follows that

α1=
ν1(h1)ν2(h1)−ν3(h1)

2[ν21(h1)−ν2(h1)]
+

1

2

√
1

ν21(h1)− ν2(h1)

{
[ν1(h1)ν2(h1)−ν3(h1)]2

ν21(h1)−ν2(h1)
+4ν1(h1)ν3(h1)−4ν22(h1)

}
,

which, substituted into (43) or (44), provides a similar expression for β1. So, (α1, β1) are identified. Plugging the
expressions for α1 and β1 into the first equation of (42) gives an expression for

∑
i qi3(h1)pi1 that depends only on

ν1(h1), ν2(h1), and ν3(h1).Thus,
∑

i qi3(h1)pi1 is also identified for a given h1 and, by (39), for each h1 from Pr(RoA3=
1|LA1=1,LA2=1,LA3=1,h1) by varying h1, once α1, β1, and the distribution of classification error are identified.
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Step 5: {αk, βk}k>1 are identified. The argument in the previous steps can easily be adapted to show that {αk, βk}k>1

are also identified. In particular, information on the performance ratings of managers promoted to Level 2 in the second
year at the firm and assigned to Level 2 for at least two more years allows one to identify α2 and β2. Information on
the performance ratings of managers promoted to Level 2 in the second year at the firm, then promoted to Level 3 in the
third year and assigned to Level 3 for at least two more years allows one to identify α3 and β3.
Proof of Proposition 4: Here, I prove that the support of the initial prior, {pi1}, is identified from the distribution of
performance ratings at Level 1 between t=3 and t=6. It is easy to show that the probability of high performance in t,
conditional on the assignment to Level 1 up to t, for a manager with initial human capital h1 is

ν1t(h1)=Pr(RAt = 1|LA1 = 1, . . . , LAt = 1, h1)=(α1 − β1)
∑

i Pr(i|LA1 = 1, . . . , LAt = 1, h1)pi1 + β1, (46)

where qit(h1) = Pr(i|LA1 = 1, . . . , LAt = 1, h1). It is immediate to see that ν1t(h1) is identified in each t from
Pr(RoAt= 1|LA1 = 1, . . . , LAt= 1, h1) by an argument analogous to that in Part II of the proof of Proposition 3 used to
derive (39) and argue that ν1(h1)=(α1−β1)

∑
i qi3(h1)pi1+β1 is identified from Pr(RoA3=1|LA1=1, LA2=1, LA3=

1, h1), once error rates at Level 1 are identified.Recall also from Part II of the proof of Proposition 3 that α1, β1, and
{
∑

i qi3(h1)pi1} are identified for each h1. So, {
∑

i qit(h1)pi1} are identified for each h1 also in t ≥ 4 by (46).
By the proof of Lemma 1, each probability in {Pr(i|LA1=1, . . . , LAt, h1)} is identified and can be uniquely paired

with the corresponding probability in {Pr(i|LA1 = 1, h1)} for any t. I can then express
∑

i qit(h1)pi1 = [ν1t(h1)−
β1]/(α1 − β1), which is derived from (46), in matrix form from t=3 to t=6 as

q13(h1) q23(h1) q33(h1) q43(h1)
q14(h1) q24(h1) q34(h1) q44(h1)
q15(h1) q25(h1) q35(h1) q45(h1)
q16(h1) q26(h1) q36(h1) q46(h1)


︸ ︷︷ ︸

Q(h1)


p11
p21
p31
p41

=


[ν13(h1)− β1]/(α1 − β1)
[ν14(h1)− β1]/(α1 − β1)
[ν15(h1)− β1]/(α1 − β1)
[ν16(h1)− β1]/(α1 − β1)

 ,

where qit(h1)=Pr(LA1=1, . . . ,LAt=1,h1,i)/Pr(LA1=1, . . . ,LAt=1,h1), t>1, satisfies

qit(h1)=
Pr(LAt = 1|LA1 = 1, . . . , LAt−1 = 1, h1, i)

Pr(LAt = 1|LA1 = 1, . . . , LAt−1 = 1, h1)︸ ︷︷ ︸
πit(h1)

· Pr(i|LA1=1, . . . ,LAt−1=1,h1)︸ ︷︷ ︸
qit−1(h1)

.

The desired result is obtained if no two rows (or columns) of Q(h1) are linearly dependent. By contradiction, suppose,
for instance, that the first and second rows of Q(h1) are linearly dependent. By definition, this is the case if there exist
two constants ψ1 and ψ2, not both zero, such that

ψ1×(q13(h1), q23(h1), q33(h1), q43(h1))
′+ψ2×(q14(h1), q24(h1), q34(h1), q44(h1))

′=0.

This latter condition, by using the recursion qit(h1)=πit(h1)qit−1(h1), can be expressed in matrix form as

ψ1


q13(h1)
q23(h1)
q33(h1)
q43(h1)

+ψ2


q14(h1)
q24(h1)
q34(h1)
q44(h1)

=ψ1


q13(h1)
q23(h1)
q33(h1)
q43(h1)

+ψ2


π14(h1)q13(h1)
π24(h1)q23(h1)
π34(h1)q33(h1)
π44(h1)q43(h1)

=


[ψ1+ψ2π14(h1)]q13(h1)
[ψ1+ψ2π24(h1)]q23(h1)
[ψ1+ψ2π34(h1)]q33(h1)
[ψ1+ψ2π44(h1)]q43(h1)

=0.

For this condition to be satisfied with qi3(h1)>0 for each i, it must be ψ1=−ψ2πi4(h1) for each i, which can hold only
if ψ1 and ψ2 are zero, as πi4(h1) varies with i as well as with h1. (For instance, the numerator of πi4(h1) is a smooth
function of the prior about manager ability, and the prior varies with i.) Thus, the first and second rows of Q(h1) are
linearly independent. Repeating this argument for all other rows yields that Q(h1) has full rank, so {pi1} are identified.
Observation 1: With {Pr(i|LA1 = 1, . . . , LAt, h1)} identified by Lemma 1 and {αk, βk} and classification error rates
at each level identified by Proposition 3, an analogous argument would apply with four periods of observations on
performance ratings at Levels 2 or 3.
Observation 2: With {Pr(i|LA1 = 1, . . . , LAt, h1)} identified by Lemma 1 and (α1, β1) and classification error rates
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at Level 1 identified by Proposition 3, a similar argument establishes that (α2, β2) and (α3, β3) are identified from the
analogue of (46) for i) managers observed at Levels 2 and 3, respectively, for two periods; or ii) managers with two
different values of h1 observed at Levels 2 and 3, respectively, for one period. For all these managers, average priors∑

i qit(h1)pi1 for any h1 are identified by Proposition 3.
Proof of Proposition 5: The argument consists of two parts. In Part I, I show that assignment probabilities at firm A are
identified for each skill type at each level and tenure, conditional on past assignments and true and recorded performance.
In Part II, I show that exogenous separation rates are identified. The rest of the proof is in the main text.

Part I: Identification of conditional level assignment probabilities at firm A by skill type. Here I show that the
conditional assignment probabilities Pr(LA2|LA1 = 1, RA1, h1, i), Pr(LA3|LA1 = 1, RA1, LA2, RA2, h1, i), and so on
are identified at each level and tenure from i) the weights of the mixture distributions of wages of managers of each skill
type at the corresponding levels and tenures conditional on their histories at the firm, which are identified by Lemma 1;
ii) the probabilities of true performance for each manager ability, {αk, βk}, which are identified by Proposition 3; and
iii) the initial priors {pi1}, which are identified by Proposition 4.

Recall first from the proof of Part I of Proposition 3 that it is immediate to distinguish the probability Pr(RA1 =
1, i|LA1 = 1, LA2, h1) from the probability Pr(RA1 = 0, i|LA1 = 1, LA2, h1), defined in (30), for any given LA2, h1,
and i. Also, the probabilities {Pr(i|LA1 = 1, . . . , LAt, h1)} are identified by Lemma 1 for any t. Since the product
Pr(LA2|LA1 = 1, RA1, h1, i) Pr(RA1|LA1 = 1, h1, i) Pr(i|LA1 = 1) in (35) is identified as argued in the proof of
Proposition 3 for each possible LA2, RA1, h1, and i, and no label ambiguity arises with respect to either RA1 or i, I need
only show that Pr(RA1|LA1=1, h1, i) is identified to establish that Pr(LA2|LA1=1, RA1, h1, i) is identified too.

To this end, note that Pr(RA1 = 1|LA1 = 1, h1, i) = (α1−β1)pi1+β1, Pr(RA2 = 1|LA1 = 1, RA1, LA2, h1, i) =
(αLA2

−βLA2
)pi2 +βLA2

, where pi2 is the updated prior from pi1 after RA1 is realized at Level 1, and so on for the
remaining tenures. Recall that these probabilities are independent of h1. The fact that {αk, βk} and {pi1} are identified
by Propositions 3 and 4, respectively, implies that {pit} are known for any given history of assignments and true perfor-
mance by Bayes’s rule; see (4). Thus, the probabilities {Pr(RA1|LA1 =1, h1, i)}, {Pr(RA2|LA1 =1, RA1, LA2, h1, i)},
and so on are identified. Now fix i and RA1 = 1 in the product Pr(LA2|LA1 = 1, RA1, h1, i) Pr(RA1|LA1 = 1, h1, i)-
Pr(i|LA1 = 1) for given LA2 and h1. Then, the ratio of this product to the product [(α1−β1)pi1 + β1] Pr(i|LA1 = 1)
identifies Pr(LA2|LA1=1, RA1=1, h1, i) for any LA2, h1, and i. A similar argument applies to RA1=0.

By analogous steps, it is possible to show that Pr(LA3|LA1 = 1, RA1, LA2, RA2, h1, i) is identified from the iden-
tified wage mixture weight Pr(RA1, RA2, i|LA1 = 1, LA2, LA3, h1) for each RA1, RA2, and i given LA2, LA3, and
h1 by (33). Specifically, the product of each probability on the right side of (33) and the associated probability
Pr(LA2, LA3|LA1 = 1, h1) gives the identified expression

Pr(LA3|LA1=1, RA1, LA2, RA2, h1, i) Pr(RA2|LA1=1, RA1, LA2, h1, i)

·Pr(LA2|LA1=1, RA1, h1, i) Pr(RA1|LA1=1, h1, i) Pr(i|LA1=1), (47)

whose labeling with respect to i for any given RA1, LA2, RA2, LA3, and h1 follows from the labeling of (33) with
respect to i. Once these probabilities are correctly labeled with respect toRA1 andRA2, taking the ratio of (47) with, say,
RA1=1 and RA2=1 to the product of probabilities [(αLA2

−βLA2
)pi2 + βLA2

] Pr(LA2|LA1=1, RA1 = 1, h1, i)[(α1−
β1)pi1 + β1] Pr(i|LA1 =1) identifies Pr(LA3|LA1 =1, RA1 =1, LA2, RA2 =1, h1, i) for each LA2, LA3, h1, and i. An
analogous argument holds for the remaining values of RA1 and RA2.

Hence, what is left to show is that the probabilities in (47) derived from the mixture weights {Pr(RA1,RA2,i|LA1=
1,LA2,LA3,h1)} of the identified wage mixture density in (32) can be correctly labeled with respect to RA1 and RA2.
To correctly label any such mixture weight and so the probability Pr(LA3|LA1 = 1, RA1, LA2, RA2, h1, i) with respect
to RA2, it is sufficient to proceed as in Part I of the proof of Proposition 3 and infer the value of RA2 by pairing each
mixture weight in {Pr(RA1,RA2,i|LA1=1,LA2,LA3,h1)} as per (33) of the mixture density f(w3|LA1=1,LA2,LA3,h1)
with the corresponding mixture weight in {Pr(RA1,RA2,i|LA1 = 1,LA2,R

o
A2,LA3,h1)} as per (34) of the mixture

density f(w3|LA1 = 1,LA2,R
o
A2,LA3,h1). Such pairings of mixture weights are possible since the wage mixtures

f(w3|LA1 = 1,LA2,LA3,h1) and f(w3|LA1 = 1,LA2,R
o
A2,LA3,h1) have identical component densities, which are or-

dered by their means. From the ratios of these paired mixture weights, I can recover {Pr(RoA2 =1|LA1 =1, LA2, RA2)}
for each LA2 and RA2. Since, as shown in (36), {Pr(RoA2 = 1|LA1 = 1, LA2, RA2)} are unambiguously ordered with
respect to RA2 given LA2 when ρ1> 0 by (11), it is then possible to determine the value of RA2 of each probability in
{Pr(RA1,RA2,i|LA1=1,LA2,LA3,h1)}.

9



To correctly label any such mixture weight and so the probability Pr(LA3|LA1 = 1, RA1, LA2, RA2, h1, i) with
respect to RA1, I proceed similarly. Namely, I infer the value of RA1 from the associated probability of a recorded
high rating in t = 1 conditional on RA1, Pr(RoA1 = 1|LA1 = 1, RA1), which, by (11), is unambiguously ordered
with respect to RA1 when ρ1 > 0. To do so, I first need to associate Pr(RA1, RA2, i|LA1 = 1, LA2, LA3, h1) with
the corresponding probability Pr(RA1, RA2, i|LA1 = 1, RoA1, LA2, LA3, h1) to recover the probability Pr(RoA1|LA1 =
1, RA1) by an argument analogous to that in the proof of Part I of Proposition 3. Specifically, recall from Lemma 1
that the density of wages at Level LA3 in t = 3 for managers with initial human capital h1 assigned to Level LA2 in
t=2, given by f(wA3|LA1=1, LA2, LA3, h1) in (32), is an identified mixture with weights given by (33). Similarly, the
density of wages at Level LA3 in t= 3 for managers with initial human capital h1 assigned to Level LA2 in t= 2 and
with recorded performance RoA1 in t=1 is an identified mixture,

f(wA3|LA1=1,RoA1,LA2,LA3,h1)=
∑

RA1,RA2,i
f(wA3|LA1=1,RoA1, RA1,LA2,RA2,LA3,h1,i)

· Pr(RA1,RA2,i|LA1=1,RoA1, LA2,LA3,h1),

where f(wA3|LA1=1,RoA1, RA1,LA2,RA2,LA3,h1,i) is independent of RoA1 and

Pr(RA1,RA2,i|LA1=1,RoA1, LA2,LA3,h1)=

Pr(LA3|LA1=1,RA1,LA2,RA2,h1,i)Pr(RA2|LA1=1, RA1,LA2,h1,i)
·Pr(LA2|LA1=1,RA1,h1,i)Pr(RoA1, RA1|LA1=1,h1,i)Pr(i|LA1=1)

Pr(RoA1, LA2,LA3|LA1=1,h1)
,

(48)
since Pr(LA3|·,i), Pr(RA2|·,i), and Pr(LA2|·,i) are independent of RoA1. With f(wA3|LA1 = 1,RoA1, RA1,LA2,RA2,-
LA3,h1,i) independent of RoA1, the component densities of the wage mixtures f(wA3|LA1 = 1,LA2,LA3,h1) and
f(wA3|LA1=1,RoA1,LA2,LA3,h1) are identical for anyRoA1—given LA2, LA3, and h1—and are ordered by their means.
Then, the weights in (33) and (48) can be uniquely matched through their corresponding component densities.

Finally, the value of RA1 in the mixture weights in (33) and (48) can be determined as follows. First, compute the
product of the term on the right side of (48) and the corresponding Pr(RoA1, LA2,LA3|LA1 = 1,h1). Next, compute the
product of the term on the right side of (33) and the corresponding Pr(LA2,LA3|LA1 = 1,h1). Then, take the ratio of
these two products—paired by the means of their associated component densities—for given RA1, RA2, i, RoA1, LA2,
LA3, and h1, which gives Pr(RoA1|LA1 = 1, RA1, h1, i) that is independent of h1 and i by (11). Thus, by comparing
Pr(RoA1|LA1 = 1, RA1) for given RoA1 across the two possible values of RA1 and using (36), it is possible to infer
the value of RA1 in Pr(RoA1|LA1 = 1, RA1) and so in Pr(RA1, RA2, i|LA1 = 1, LA2, LA3, h1). This argument can be
extended to the remaining tenures. It also proves that the component densities of the mixture distributions of wages at
firm A of managers of each skill type, conditional on their histories of level assignments (and performance ratings) at
the firm, and their mixture weights can be correctly labeled with respect to RAt, . . . ,RAt−1 at each level and tenure.

Part II: Identification of exogenous separation rates. Observe that ηkt−1t−1, which is the probability that a manager
employed in t − 1 by A at Level kt−1 is still in the market at t, can be recovered as the ratio of the probability of
employment at firms A or C at a state relative to the probability of employment at A in the previous period at Level
kt−1. Since the probabilities of employment and assignments at A, as argued in Part I, are identified, I will proceed by
showing how it is possible to pin down the probability of employment at C at such a state and so recover ηkt−1t−1.

To start, since assignment probabilities atA—namely, Pr(LA2|LA1=1,RA1,h1,i), Pr(LA3|LA1=1,RA1,LA2,RA2,-
h1,i), and so on—are identified by Part I, the probability of retention at A of managers of each skill type is also iden-
tified for any history of level assignments, true performance, and initial level of human capital as Pr(LAt > 0|LA1 =
1, RA1, . . . ,LAt−1,RAt−1,h1,i)=

∑
k≥1Pr(LAt=k|LA1 =1, RA1, . . . ,LAt−1,RAt−1,h1,i). Denote more compactly by

Pr(LAt=k, ft = A|sit) and Pr(ft = A|sit) the probability of employment at Level k of A and of employment at A at
state sit, respectively, conditional on a manager’s survival in the market up to t. By Proposition 1 and the assumption
of Gumbel productivity shocks, I can express S(sit, εt) in Proposition 1 as S(sit, εt) = maxf{ς(sit, kft, f) + εfkftt},
where kft = kf (sit, εt) achieves the value V f

(sit, εt). Hence,

ς(sit, kft, f) = yf (sit, kft) + δηkfttE
(

ln
∑

f ′=A,C exp{ς(sit+1, kf ′t+1, f
′)}|sit, kft

)
,

so that Pr(ft = A|LAt = k, LCt = k′, sit) = exp{ς(sit, k, A)}/[exp{ς(sit, k, A)}+ exp{ς(sit, k′, C)}] conditional on
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a manager’s survival in the market, where {ft = A} is the event that a manager is employed by firm A, and

Pr(LAt = k|ft = A, sit) =

∑
k′≥1 Pr(ft = A|LAt = k, LCt = k′, sit) Pr(LAt = k, LCt = k′|sit)

Pr(ft = A|sit)

=
Pr(LAt = k|sit)

∑
k′≥1 Pr(ft = A|LAt = k, LCt = k′, sit) Pr(LCt = k′|sit)∑

k≥1 Pr(LAt = k|sit)
∑

k′≥1 Pr(ft = A|LAt = k, LCt = k′, sit) Pr(LCt = k′|sit)
,

where the last equality follows from the independence of productivity shocks across firms and the law of total probability.
An implication of Proposition 1 is that Pr(LAt = k|ft = A, sit) = Pr(LAt = k|ft = C, sit), so that

Pr(LAt = k|sit) = Pr(LAt = k, ft = A|sit) + Pr(LAt = k, ft = C|sit)
= Pr(LAt = k|ft = A, sit) [Pr(ft = A|sit) + Pr(ft = C|sit)] = Pr(LAt = k|ft = A, sit).

Thus, Pr(LAt=k|sit)=Pr(LAt=k|ft=f, sit) and Pr(LCt=k|sit)=Pr(LCt=k|ft=f, sit), f = A,C. Observe that

Pr(LAt = k, ft = A|sit) =
∑

k′≥1 Pr(ft = A|LAt = k, LCt = k′, sit) Pr(LAt = k, LCt = k′|sit)
=
∑

k′≥1 Pr(ft = A|LAt = k, LCt = k′, sit) Pr(LAt = k|sit) Pr(LCt = k′|sit)

=
∑

k′≥1
Pr(LAt = k|sit) Pr(LCt = k′|sit)

1 + exp{ς(sit, k′, C)− ς(sit, k, A)}
=
∑

k′≥1
Pr(LAt = k|sit) Pr(LCt = k′|sit)

1 + exp{ς(sit, k′, A)− ς(sit, k, A) + γ(sit, k′)}
, (49)

where γ(sit, k
′) is defined as yC(sit, k

′) − yA(sit, k
′) and the last equality follows from the law of motion of the state

being equal across the two firms by job level. Similarly,

Pr(LCt = k, ft = C|sit)=
∑

k′≥1
Pr(LAt = k′|sit) Pr(LCt = k|sit)

1 + exp{ς(sit, k′, A)− ς(sit, k, A)− γ(sit, k)}
. (50)

Recall by (12) that EwAit(k) = yC(sit, k)−ln Pr(LCt = k|ft =C, sit) holds at all sit.Select a state sit in t and set
yC(sit, k) equal to ỹ(sit), defined as EwAit(k)+ln Pr(LAt =k|ft =A, sit), at such an sit for all k, which implies that
Pr(LAt = k|ft =A, sit) = Pr(LCt = k|ft =C, sit) and so Pr(LAt = k|sit) = Pr(LCt = k|sit) at such an sit for all k.
If, in addition, γ(sit, k) = 0 for all k at such a state, then Pr(ft =A|sit) = Pr(ft =C|sit) at such a state by (49) and
(50). Hence, ηkt−1t−1 can be recovered from the probability of employment at A or C at such sit of managers of skill
type i employed at Level kt−1 of A at a state sit−1, from which the chosen sit can be reached, and the probability of
employment of these managers at Level kt−1 of A at such a state sit−1.
Proof of Proposition 6: That C’s expected match surplus value can be recovered from wages at A follows immedi-
ately by expressing EwAit(k) as EwAit(k)=ln

∑
k′ exp{vC(sit, k

′)}−δηktE(ln
∑

k′exp{vC(sit+1, k
′)}|sit, k) by (12)

and (28). Then, the functional equation ln
∑

k′ exp{vC(sit, k
′)}=EwAit(k) + δηktE(ln

∑
k′exp{vC(sit+1, k

′)}|sit, k)
identifies C’s expected match surplus value ln

∑
k′ exp{vC(sit, k

′)} at each state. The rest of the proof shows how two
level normalizations at each state are sufficient to further recover C’s expected output at each level. I consider here
normalizations in the spirit of those common in dynamic discrete choice models. Specifically, they rely on knowledge
of expected output at one job level of C or of sums or differences of C’s expected output at two levels.

Consider case a). Assume that yC(sit, 2), and so Pr(LCt = 2|ft = C, sit) by (12), and yC(sit, 1) + yC(sit, 3)
are known at two values of pit for each κt and i. (The case in which yC(sit, 2) and either yC(sit, 1) + yC(sit, 2) or
yC(sit, 2) + yC(sit, 3) are known at two values of pit for each κt and i is trivial, since expected output at two job levels
ofC is then identified at these states, and so at all other states, together with the probabilities {Pr(LCt=k|ft=C, sit)}k.
Then, expected output at the remaining level k is identified as yC(sit, k)=EwAit(k)+ln Pr(LCt=k|ft=C, sit).) Since

EwAit(1) + EwAit(3)=yC(sit, 1) + yC(sit, 3)− ln[Pr(LCt=1|ft=C, sit) Pr(LCt=3|ft=C, sit)],

knowledge of yC(sit, 1)+yC(sit, 3) implies that Pr(LCt=1|ft=C, sit) Pr(LCt=3|ft=C, sit) is identified from

ln[Pr(LCt=1|ft=C, sit) Pr(LCt=3|ft=C, sit)] = yC(sit, 1) + yC(sit, 3)− EwAit(1)− EwAit(3)︸ ︷︷ ︸
lnm13(sit)

. (51)

11



Using this condition and that the probabilities {Pr(LCt=k|ft=C, sit)}k sum to one, evaluated at one of the two chosen
values of sit, I obtain a system of two equations in the two unknowns Pr(LCt=1|ft=C, sit) and Pr(LCt=3|ft=C, sit),{

Pr(LCt=1|ft=C, sit) Pr(LCt=3|ft=C, sit) ≡ xz = m13(sit)
Pr(LCt=1|ft=C, sit) + Pr(LCt=3|ft=C, sit) ≡ x+ z = 1− Pr(LCt=2|ft=C, sit) ≡ m2(sit)

,

which admits two solutions,(
x=[m2(sit)−

√
m2

2(sit)− 4m13(sit)]/2, z=[m2(sit) +
√
m2

2(sit)− 4m13(sit)]/2
)

(
x′=[m2(sit) +

√
m2

2(sit)− 4m13(sit)]/2, z
′=[m2(sit)−

√
m2

2(sit)− 4m13(sit)]/2
)
,

and, correspondingly, two (symmetric) solutions for yC(sit, 1) and yC(sit, 3). This multiplicity can be resolved by
checking whether Pr(LCt = 1|ft = C, sit) is smaller or greater than Pr(LCt = 3|ft = C, sit) or, equivalently, by
using (12) and verifying whether the difference 2yC(sit, 1)−EwAit(1) is smaller or greater than the value yC(sit, 1)+
yC(sit, 3)−EwAit(3), which is identified by the assumptions of the case. For instance, if 2yC(sit, 1)−EwAit(1),
computed using the first solution, is smaller than yC(sit, 1)+yC(sit, 3)−EwAit(3), then the first solution is the correct
one; if not, the second solution is. Alternatively, one could check whether 2yC(sit, 1)−EwAit(1), computed using the
second solution, is larger than yC(sit, 1)+yC(sit, 3)−EwAit(3), in which case the second solution is the correct one; if
not, the first solution is. By repeating this argument at the second state s′it at which yC(s′it, 2) and yC(s′it, 1) + yC(s′it, 3)
are known, it follows that yC(sit, k)=dCk(κt, i)+eCk(κt, i)pit and yC(s′it, k)=dCk(κt, i)+eCk(κt, i)p

′
it are identified

for each k, from which dCk(κt, i) and eCk(κt, i) can be recovered. This argument can be repeated for all κt and i. Hence,
{yC(sit, k)}k=1,3 are identified. The remaining case under a) has been considered in the main text.

Consider case b). Suppose first that yC(sit, 1) + yC(sit, 2) and yC(sit, 1) + yC(sit, 3) are known at two states sit
with distinct values of pit and the same values of κt and i. Given that

EwAit(1) + EwAit(2)=yC(sit, 1) + yC(sit, 2)− ln[Pr(LCt=1|ft=C, sit) Pr(LCt=2|ft=C, sit)],

knowledge of yC(sit, 1)+yC(sit, 2) implies that Pr(LCt=1|ft=C, sit) Pr(LCt=2|ft=C, sit) is identified from

ln[Pr(LCt=1|ft=C, sit) Pr(LCt=2|ft=C, sit)] = yC(sit, 1) + yC(sit, 2)− EwAit(1)− EwAit(2)︸ ︷︷ ︸
lnm12(sit)

. (52)

As noted, knowledge of yC(sit, 1)+yC(sit, 3) implies that Pr(LCt= 1|ft=C, sit) Pr(LCt= 3|ft=C, sit) is identified
by (51). Using these conditions and that the probabilities {Pr(LCt=k|ft=C, sit)}k sum to one, evaluated at one of the
two chosen values of sit, I obtain a system of three equations in the three unknowns {Pr(LCt=k|ft=C, sit)}k,

Pr(LCt=1|ft=C, sit) Pr(LCt=2|ft=C, sit) ≡ xy = m12(sit)
Pr(LCt=1|ft=C, sit) Pr(LCt=3|ft=C, sit) ≡ xz = m13(sit)
Pr(LCt=1|ft=C, sit) + Pr(LCt=2|ft=C, sit) + Pr(LCt=3|ft=C, sit) ≡ x+ y + z = 1

,

which admits two solutions,(
x=

1−
√

1−4[m12(sit)+m13(sit)]

2 , y= 2m12(sit)

1−
√

1−4[m12(sit)+m13(sit)]
, z= 2m13(sit)

1−
√

1−4[m12(sit)+m13(sit)]

)
(
x′=

1+
√

1−4[m12(sit)+m13(sit)]

2 , y′= 2m12(sit)

1+
√

1−4[m12(sit)+m13(sit)]
, z′= 2m13(sit)

1+
√

1−4[m12(sit)+m13(sit)]

)
,

the first one with Pr(LCt=1|ft=C, sit) smaller than 1/2 and the second one with Pr(LCt=1|ft=C, sit) greater than
1/2. But this multiplicity can be resolved by using (52) and (51) and checking whether m12(sit) or m13(sit), which are
both identified by the assumptions of the case, is bounded above by y/2 and z/2, respectively, or below by y′/2 and
z′/2, respectively. Specifically, if m12(sit) is smaller than y/2 or m13(sit) is smaller than z/2, then the first solution is
the correct one. If m12(sit) is instead greater than y′/2 or m13(sit) is greater than z′/2, then the second solution is the
correct one. By repeating this argument at the second state s′it at which yC(s′it, 1)+yC(s′it, 2) and yC(s′it, 1)+yC(s′it, 3)
are known, it follows that yC(sit, k)=dCk(κt, i)+eCk(κt, i)pit and yC(s′it, k)=dCk(κt, i)+eCk(κt, i)p

′
it are identified
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for each k, from which dCk(κt, i) and eCk(κt, i) can be recovered. This argument can be repeated for all κt and i. Thus,
{yC(sit, k)} are identified.

Alternatively, suppose that yC(sit, 1)−yC(sit, 2) and yC(sit, 3)−yC(sit, 2) are known at two states sit with distinct
values of pit and the same values of κt and i. Note that vC(sit, 1) − vC(sit, 2) =EwAit(2)−EwAit(1)−[yC(sit, 2)−
yC(sit, 1)] and vC(sit, 3) − vC(sit, 2) = EwAit(2)−EwAit(3)− [yC(sit, 2)−yC(sit, 3)] by (12) and the relationship
between probabilities and values, Pr(Lft=k|ft=f, sit)=ev

f (sit,k)/
∑

k′ e
vf (sit,k

′), already used in (15). From
EwAit(1) = yC(sit, 1) + ln

(
1 + ev

C(sit,2)−vC(sit,1) + ev
C(sit,3)−vC(sit,2)+vC(sit,2)−vC(sit,1)

)
EwAit(2) = yC(sit, 2) + ln

(
ev
C(sit,1)−vC(sit,2) + 1 + ev

C(sit,3)−vC(sit,2)
)

EwAit(3) = yC(sit, 3) + ln
(
ev
C(sit,1)−vC(sit,2)+vC(sit,2)−vC(sit,3) + ev

C(sit,2)−vC(sit,3) + 1
) ,

it then follows that {yC(sit, k)} are identified at the chosen state. By repeating this argument at the second state s′it at
which yC(s′it, 1)−yC(s′it, 2) and yC(s′it, 3)−yC(s′it, 2) are known, it follows that yC(sit, k)=dCk(κt, i)+eCk(κt, i)pit
and yC(s′it, k) = dCk(κt, i) + eCk(κt, i)p

′
it are identified for each k, from which dCk(κt, i) and eCk(κt, i) can be

recovered. By repeating this argument for all κt and i, it follows, as before, that {yC(sit, k)} are identified.
This logic can be extended to any combination of job levels.

B Empirical Appendix
See Section 4 in the S.A. for the likelihood function and other omitted details.
B.1 Human Capital Process. Abstract first from skill types. Here I show that instances of (1) can be derived from
standard laws of motion of human capital in the spirit of Heckman, Lochner, and Taber (1998, equation (I.4)):

Hj
fkt = Cjfkt[(1− σ

j)Hj
fkt−1 + zjfkt−1(H

j
fkt−1)

λj (ijkt−1
)µjkt−1 ] j=G,S, (53)

where Hj
fk1 =Cjfk1, Cjfkt is total factor productivity, σj is the depreciation rate of human capital, and λj ∈{0, 1}. The

instances of (1) derived here amount to special cases of (16).
Case 1: λj = 0. If σj ∈ [0, 1), then (53) becomes Hj

fkt = Cjfkt[(1 − σ
j)Hj

fkt−1 + zjfkt−1(i
j
kt−1

)µjkt−1 ]. Let zjfkt =

CjfktC
j
fkt−1· · ·C

j
fk1with zjfk1=Cjfk1. It follows that

Hj
fk2=Cjfk2[(1−σ

j)Hj
fk1+z

j
fk1(i

j
k1

)µjk1 ]=(1−σj)Cjfk2C
j
fk1+Cjfk2z

j
fk1(i

j
k1

)µjk1 =Cjfk2C
j
fk1[1−σ

j+(ijk1)µjk1 ],

Hj
fk3=Cjfk3[(1−σ

j)Hj
fk2+z

j
fk2(i

j
k2

)µjk2 ]=Cjfk3[C
j
fk2C

j
fk1(1−σ

j)2+Cjfk2C
j
fk1(1−σ

j)(ijk1)µjk1+Cjfk2C
j
fk1(i

j
k2

)µjk2 ],

and so on. Describe the process for Cjfkt as Ajfktε
j
fkt=CjfktC

j
fkt−1· · ·C

j
fk1, which can be expressed as ln(Ajfktε

j
fkt)=

ln(Ajfkt−1ε
j
fkt−1)+lnCjfkt so that

Hj
fkt=Ajfkt[(1−σ

j)t−1+(1−σj)t−2(ijk1)µjk1 +. . .+(ijkt−1
)
µjkt−1 ]εjfkt. (54)

Consider first HG
fkt. Since iGkt−1

= i for managers in the market in t−1, if aGfkt = lnAGfkt, σ
G = 0, µGkτ = µG for

τ≥1, ηG= i
µG , and εGfkt = ln εGfkt, then the law of motion of HG

fkt in (54) can be expressed as a special case of (16):

hGfkt = lnHG
fkt = lnAGfkt + ln[1 + (t− 1)i

µG ] + ln εGfkt ' aGfkt + (t− 1)ηG + εGfkt.

Consider now HS
fkt. As iSkt−1

= ikt−1 for managers at Level kt−1 in t− 1, if σS = 1, then (54) becomes HS
fkt =

ASfkt(ikt−1)µSkt−1 εSfkt.With aSfkt=lnASfkt, ηSkt−1=µSkt−1 ln ikt−1 , and εSfkt=ln εSfkt, I obtain a special case of (16):

hSfkt=lnHS
fkt=lnASfkt + µSkt−1 ln ikt−1 + ln εSfkt=aSfkt + ηSkt−1 + εSfkt. (55)

Case 2: λj =1. If σj ∈ [0, 1), then (53) becomes Hj
fkt=Cjfkt[1− σ

j + zjfkt−1(i
j
kt−1

)µjkt−1 ]Hj
fkt−1. Thus, for instance,

Hj
fk2= Cjfk2[1− σ

j + zjfk1(i
j
k1

)µjk1 ]Hj
fk1= Cjfk2C

j
fk1[1− σ

j + zjfk1(i
j
k1

)µjk1 ] so that

Hj
fkt=Cjfkt · · ·C

j
fk1[1− σ

j+zjfk1(i
j
k1

)µjk1 ] · · · [1− σj+zjfkt−1(i
j
kt−1

)µjkt−1 ].
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As in the previous case, defining Ajfktε
j
fkt=CjfktC

j
fkt−1· · ·C

j
fk1, it follows that

Hj
fkt=Ajfkt[1− σ

j+zjfk1(i
j
k1

)µjk1 ] · · · [1− σj+zjfkt−1(i
j
kt−1

)µjkt−1 ]εjfkt. (56)

Consider first HG
fkt. Since iGkt−1

= i for managers in the market in t−1, if aGfkt = lnAGfkt, σ
G = 0, zGfkt−1 does not

depend on f , k, or t− 1, µGkτ =µG for τ ≥1, ηG is redefined as ηG=ln(1 + zGi
µG), and εGfkt = ln εGfkt, then the law

of motion of HG
fkt can be expressed as in Case 1:

hGfkt=lnHG
fkt=lnAGfkt + (t− 1) ln(1 + zGi

µG) + ln εGfkt=aGfkt + (t− 1)ηG + εGfkt.

Consider now HS
fkt. Recall that iSkt−1

= ikt−1 for managers at Level kt−1 in t−1. Suppose that σS = 1 and zSfkt−1 =

CSfkt−1· · ·CSfk1/HS
fkt−1 so that (53) becomes HS

fkt =CSfkt· · ·CSfk1(ikt−1)µSkt−1 . With ASfktε
S
fkt =CSfkt· · ·CSfk1, then,

hSfkt can be expressed as in (55). Analogous expressions can be obtained once skill types are introduced.

B.2 Derivation of Expected Output. Expression (17) follows from (10), the fact that ye
fkt

(i) = bk(h1)+
∑

j [a
j
fkt+

ajfk(i)+gjk(·)], and the discussion after (16). Specifically,

yf (sit, k) = ye
fkt

(i) + βk[yfkt(i)− yfkt(i)] + (αk − βk)[yfkt(i)− yfkt(i)]pit=bk(h1)+
∑

j [a
j
fkt+a

j
fk(i)+gjk(·)]

+βk
∑

j [a
j
fkt−a

j
fkt+a

j
fk(i)−a

j
fk(i)] +(αk−βk)

∑
j [a

j
fkt−a

j
fkt+a

j
fk(i)−a

j
fk(i)]pit, (57)

where dfkt(kt−1, i) is defined as
∑

j [a
j
fkt+a

j
fk(i)+gjk(·)]+βk

∑
j [a

j
fkt−a

j
fkt+a

j
fk(i)−a

j
fk(i)].

B.3 Market-Wide Assignment Problem. I now specialize the environment considered so far and show that if the entry
of firms in the labor market considered is free in that firms enter until the cost of entry cf equals the expected present
discounted value of profits after entry, then under the assumption of no recall, the solution to the market-wide assignment
problem in Proposition 1 implies a more convenient expression for the surplus value S(sit, εt) derived there. Formally:

Lemma 2. Suppose that entry in the labor market is free and that firms A and C have incurred the cost cf to enter. If
Πf (·|f ′) = 0 for either firm f 6= f ′ after separating from a manager it has previously employed (no recall), then

S(sit, εt) = maxf

{
maxk∈Kf

{
yf (sit, k) + εfkt + δηkt

∫
εt+1

ES(sit+1, εt+1|sit, k)dG
}}

(58)

along the equilibrium sample paths in which a manager is either employed by A or first employed by A and then by C.
When productivity shocks are Gumbel distributed with mean zero and variance π2/6, S(sit, εt) can be expressed as

S(sit, εt) = max
{

maxk∈KA{ςA(sit, k) + εAkt},maxk∈KC{ςC(sit, k) + εCkt}
}
,

where ςf (sit, k) = yf (sit, k) + δηktE[ln(
∑

k′∈KA exp{ςA(sit+1, k
′)}+

∑
k′∈KC exp{ςC(sit+1, k

′)})|sit, k]. Also,

V
f
(sit, εt)=maxk∈Kf {ςf (sit, k)+εfkt}, where ςf (sit, k)=yf (sit, k)+δηktE(ln

∑
k′∈Kf exp{ςf (sit+1, k

′)}|sit, k).

To establish this result, consider first states at which firmA employs a manager. Thus, S(·)=S(·|A), where S(·|A)=
V A(·|A) + ΠC(·|A). Since ΠC(·|A) = cf is independent of kAt by the assumption of free entry and, by definition, kAt
maximizes firm A’s value of profits as well as, by Proposition 1, V A(·|A), it follows that kAt also maximizes S(·|A).
Then, S(·|A) = maxk{yA(sit, k)+εAkt+δηkt

∫
εt+1

ES(·)dG}. Off the equilibrium path, S(·|C) = ΠA(·|C)+V C(·|C)

and, given that ΠA(·|C)= 0 by the assumption of no recall, the choice of kCt by firmC, which, by definition, maximizes
ΠC(·|C) and, by Proposition 1, V C(·|C), also maximizes S(·|C). With ΠA(·|A)≥ΠA(·|C), W (·|A) = W (·|C), and
ΠC(·|A)=ΠC(·|C) at all states at which A employs a manager in equilibrium by Proposition 1, it follows that

S(·|A) = maxk∈KA

{
yA(sit, k) + εAkt+δηkt

∫
εt+1

ES(sit+1, εt+1|sit, k)dG
}

≥ S(·|C)=maxk∈KC

{
yC(sit, k) + εCkt+δηkt

∫
εt+1

ES(sit+1, εt+1|sit, k)dG
}
. (59)

Consider now states at which firm C employs the manager along the continuation game of interest, in which the
manager is employed by firm C for the first time. With S(·) = S(·|C), where S(·|C) = ΠA(·|C) +V C(·|C), and
ΠA(·|C) = 0 by the assumption of no recall, it follows that kCt not only maximizes firm C’s value of profits and, by
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Proposition 1, V C(·|C), but also maximizes S(·|C). Off the equilibrium path, S(·|A) = V A(·|A)+ΠC(·|A), where
ΠC(·|A) = cf by the assumption of free entry so that the choice of kAt by firm A does not affect ΠC(·|A). Given
that ΠA(·|C) = ΠA(·|A), W (·|C) = W (·|A), and ΠC(·|C) ≥ ΠC(·|A) at all states at which C employs a manager in
equilibrium by Proposition 1, it follows that S(·) = S(·|C) ≥ S(·|A) at such states and the opposite inequality to that
in (59) holds. Therefore, S(sit, εt) satisfies (58) at all equilibrium states. Using the properties of Gumbel-distributed
productivity shocks, it is easy to show that

S(sit, εt) = max
{

maxk∈KA{ςA(sit, k) + εAkt},maxk∈KC{ςC(sit, k) + εCkt}
}
, (60)

ςf (sit, k)=yf (sit, k)+δηktE
[
ln
(∑

k′∈KAexp{ςA(sit+1, k
′)}+

∑
k′∈KCexp{ςC(sit+1, k

′)}
)
|sit, k

]
, (61)

V
f
(sit, εt)= maxk∈Kf {ςf (sit, k) + εfkt}, (62)

and ςf (sit, k)=yf (sit, k)+δηktE(ln
∑

k′∈Kf exp{ςf (sit+1, k
′)}|sit, k) by standard arguments (Rust (1994)).

B.4 Assignment Probabilities. Letting γ(sit, k) = yC(sit, k)− yA(sit, k) and using that the law of motion of the state
at each level is the same across firms, I can express ςC(sit, k) in Lemma 2 as

ςC(sit, k) = yA(sit, k)+γ(sit, k)+δηktE {ln [·] |sit, k} = ςA(sit, k)+γ(sit, k). (63)

Note that Pr(LAt=k, ft = A|sit), which is the probability of employment at Level k of A for a manager of skill type i
at state sit conditional on survival in the market, is given by

Pr(LAt= k, ft = A|sit)=exp{ςA(sit, k)}/(
∑

k′exp{ςA(sit, k
′)}+

∑
k′exp{ςC(sit, k

′)}), (64)

k′ ≥ 1. Denote by pf (sit, k) the probability of assignment to Level k conditional on employment at f=A,C,

pf (sit, k)=Pr(Lft=k|ft=f, sit)=exp{ςf (sit, k)}/
∑

k′exp{ςf (sit, k
′)}, (65)

which is identified for each possible sit and k when f=A, since it is equal to the ratio Pr(Lft=k, ft=f |sit)/Pr(ft=
f |sit), identified by Proposition 5. Note that by the assumption of no recall, S(sit, εt) can be expressed as

S(sit, εt) = max
{

maxk∈KA{ςA(sit, k) + εAkt},maxk∈KC{ςC(sit, k) + εCkt}
}
,

where ςC(sit, k)=yC(sit, k)+δηktE(ln
∑

k′∈KCexp{ςC(sit+1, k
′)}|sit, k) by Lemma 2. By (65), it follows that

ln
∑

k′ exp{ςC(sit, k
′)}= ςC(sit, 2)−ln pC(sit, 2)=yC(sit, 2)− ln pC(sit, 2)+δη2tE

[
ln
∑

k′exp{ςC(sit+1, k
′)}|sit, 2

]
is a functional equation with a unique solution. According to Proposition 5, I normalize yC(sit, 2) to ln pC(sit, 2) so that
ln
∑

k′ exp{ςC(sit, k
′)} is zero. The probability in (64) forms the basis of the likelihood function of the model.50

B.5 Human Capital and Output Parameters. As discussed after (17), these parameters to estimate forA are {dA1t(L1),-
eA1t, eA2t}t≥2, {dA2t(L2), eA3t}t≥3, and {dA3t(L3)}t≥4. As noted, the data exhibit high attrition because of the large
number of separations in each tenure, and they contain a number of level transitions with few observations. To conserve
on parameters, for transitions with no or relatively few observations, I did not estimate any of the associated parameters
and normalized their value to zero. Specifically, consider first {dAkt(kt−1)}. I set dA11(·) = dA11 to 1, 000 and eA11
to zero, since all managers are hired at Level 1, and normalize dA2t(L2) = 0, as is consistent with Proposition 5. The
combination of rapid promotions to Level 2 and the high separation rate in each tenure leads the fraction of managers at
Level 1 to sharply decrease in medium and high tenures—it is less than 8 percent from tenure t=4 on. Thus, I estimate
only dA14(L1) and dA15(L1) and maintain that dA1t(L1)=dA15(L1) for t=6, 7. Similarly, I let dA36(L3)=dA35(L3)
at Level 3 and estimate only dA3t(L3) for t=4, 5, 7—no manager is observed at Level 3 before the third year of tenure.

Consider now {eAkt}. At Level 1, I did not estimate any such parameter in t≥ 3 because of the small fraction of

50In estimation, I compute values and probabilities in t ≥ 8 under the assumption that managers no longer acquire human capital after the
seventh year of tenure. For any given vector of parameter values, I calculate “terminal” values in t = 8 for the market-wide employment and
assignment problem derived in Lemma 2 as the solution to the corresponding infinite-horizon problem from t=8 on. Given these terminal values,
I solve by backward induction the market-wide employment and assignment problem between t=1 and t=7 as a finite-horizon one in each such
tenure. Note that the assumption that human capital acquisition eventually tapers off is not implausible: compared with those in earlier tenures,
the employment outcomes of managers in t≥8 in the data display much less variation with tenure, previous assignments, and performance.
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managers observed at Level 1 in those tenures. At Level 2, I estimate the parameters eA22, eA23, eA25, and eA26, and
set eA24 = eA22 and eA27 = eA26. Since no manager is assigned to Level 2 at entry, I did not estimate eA21. At Level
3, I restrict eA31 = eA32 = eA33, since no manager is at this level until the third year of tenure. As the empirical hazard
rates of promotion from Level 1 to 2 and from Level 2 to 3 display very similar features in t ≥ 2, I allow for common
components across the parameters eA2t and eA3t to limit parameter proliferation as follows. First, I specify eA2t=%2+%2t
for 2≤t≤ 4 and eA3t = %22+%3t for 4≤t≤ 6. The choice of %22 as the benchmark parameter is motivated by the high
separation rate from Level 2 and the high promotion rate from Level 2 to 3 in each tenure: expected output parameters
at Level 2 in low tenures can be more precisely estimated. By this logic, this formulation has led to eA35 = eA36 = %22,
since the differences in these parameters proved insignificantly different from zero. Then, I estimate the parameters
eA33=−%34, eA34=%22+%34, eA37, and eA38 at Level 3. In Table A.4, I display the point estimate and standard error of
eA35 for completeness: the parameters eA33 and eA34 are sufficient to pin down eA35.
B.6 Parameters of Exogenous Separation Rates. To conserve on parameters, I only allow for variation in {ηkt} across
levels and tenures that proves statistically significant, whenever setting these parameters equal across levels or tenures
does not affect any other parameter estimate. As a result, the exogenous separation rates I estimate at Levels 1, 2, and
3, respectively, are: η11, η21, and η31 for tenure 1; none for tenure 2, since η12 = η11, η22 = η21, and η32 = η31; η13 for
tenure 3, that is, ξ3, since η13=η14 + ξ3, η23=η22 + ξ3, and η33=η32; η14 and η24 for tenure 4, since η34=η24; η25 for
tenure 5, since η15 =η14 and η35 =η25; η26 for tenure 6, since η16 =η15 and η36 =η26; η27 for tenure 7, since η17 =η16
and η37=η27; and none for tenure 8 onward, since η1t=η17, η2t=η27, and η3t=η2t, t ≥ 8. So, I estimate (η11, η13, η14)
at Level 1, (η21, η24, η25, η26, η27) at Level 2, and η31 at Level 3.
B.7 Estimated Wage Equation. Here, I derive the wage equation in (18) using Lemma 2 to express assignment probabil-
ities atC as simple functions of the corresponding identified probabilities atA under the assumption of free entry of firms
in the labor market, no-recall of previously employed managers, and a suitable normalization for {yA(sit, 2)}. To start,
observe that (60) and (61) imply that Pr(LAt=k, ft=A|sit)/Pr(LCt=k, ft=C|sit)=exp{ςA(sit, k)−ςC(sit, k)}=
exp{yA(sit, k)−yC(sit, k)}, as the law of motion of the state is common across firms by level. Thus, by (64) and (65),

Pr(LAt = k, ft = A|sit) =
eς
A(sit,k)−ςC(sit,k)∑

k′ e
ςA(sit,k′)−ςC(sit,k) +

∑
k′ e

ςC(sit,k′)−ςC(sit,k)

=
eyA(sit,k)−yC(sit,k)∑

k′ e
ςA(sit,k′)−ςA(sit,k)−ςC(sit,k)+ςA(sit,k) + 1

Pr(LCt=k|ft=C,sit)
=

eyA(sit,k)−yC(sit,k)

eyA(sit,k)−yC (sit,k)

Pr(LAt=k|ft=A,sit) + 1
Pr(LCt=k|ft=C,sit)

,

which implies

exp{yA(sit, k)− yC(sit, k)}
Pr(LAt = k|ft = A, sit)

+
1

Pr(LCt = k|ft = C, sit)
=

exp{yA(sit, k)− yC(sit, k)}
Pr(LAt = k, ft = A|sit)

.

Multiplying both sides of this equality by Pr(LAt = k|ft = A, sit) and exploiting the forms of Pr(LAt = k|ft = A, sit)
and Pr(LAt = k, ft = A|sit), I obtain that

Pr(LCt = k|ft = C, sit) =
Pr(ft = A|sit) exp{yC(sit, k)− yA(sit, k)}

1− Pr(ft = A|sit)
Pr(LAt = k|ft = A, sit). (66)

Taking the ratio of (66) to the same expression evaluated when k=2,

Pr(LCt = k|ft = C, sit)

Pr(LCt = 2|ft = C, sit)
= exp{yC(sit, k)− yA(sit, k)− yC(sit, 2) + yA(sit, 2)}Pr(LAt = k|ft = A, sit)

Pr(LAt = 2|ft = A, sit)
.

Hence, Pr(LCt = k|ft = C, sit) can be expressed as a function of Pr(LCt = 2|ft = C, sit) and the corresponding
assignment probabilities at firm A. As a result, by (12),

EwAit(k)=yC(sit,k)−[yC(sit,k)−yA(sit,k)−yC(sit,2)+yA(sit,2)]−ln
[
Pr(LAt=k|ft=A,sit)
Pr(LAt=2|ft=A,sit)

]
−ln Pr(LCt=2|·)

=yA(sit,k)+yC(sit,2)−yA(sit,2)+ln
[

Pr(LAt=2|ft=A,sit)
Pr(LCt=2|ft=C,sit)Pr(LAt=k|ft=A,sit)

]
. (67)

Note that by (16), (17), (57), and the fact that output at A does not vary with i, yC(sit, 2)−yA(sit, 2) is given by
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ye
C2t

(i)−ye
A2t

+β2[yC2t(i)−yC2t
(i)−yA2t+yA2t]+(α2−β2)[yC2t(i)−yC2t

(i)−yA2t+yA2t]pit,
=
∑

j [a
j
C2t(i)−a

j
A2t]+β2

∑
j [a

j
C2t(i)−a

j
C2t(i)−a

j
A2t + ajA2t]+(α2 − β2)

∑
j [a

j
C2t(i)−a

j
C2t(i)−a

j
A2t+a

j
A2t]pit,

which yields that

yA(sit, k)+yC(sit, 2)−yA(sit, 2)=bk(h1)+
∑

j [a
j
Akt +gjk(·)] + βk

∑
j(a

j
Akt − a

j
Akt)+

∑
j [a

j
C2t(i)− a

j
A2t]+β2

·
∑

j [a
j
C2t(i)−a

j
C2t(i)−a

j
A2t+a

j
A2t]+{(α2−β2)

∑
j [a

j
C2t(i)−a

j
C2t(i)−a

j
A2t+a

j
A2t]+(αk−βk)

∑
j(a

j
Akt−a

j
Akt)}pit.

Recalling that ajfkt(i)= ajfkt+a
j
fk(i), ajfkt ∈ {a

j
fkt, a

j
fkt}, a

j
fk(i) ∈ {a

j
fk(i), a

j
fk(i)}, and ajAk(i) = 0, I obtain

yA(sit, k) + yC(sit, 2)− yA(sit, 2) =
∑

j [β2a
j
C2(i)− β2a

j
C2(i) + ajC2(i)] + b0k︸ ︷︷ ︸
ω0ik

+ bk(h1)− b0k︸ ︷︷ ︸
ω1kx1+ω2kx

2
1+ω3ke1+

∑
m ωym1{y1=m}

+
∑

j

[
ajAkt +gjk(·) + βk(a

j
Akt − a

j
Akt) + ajC2t − a

j
A2t + β2(a

j
C2t − a

j
C2t − a

j
A2t + ajA2t)

t− 1

]
︸ ︷︷ ︸

ω4kt

(t− 1)

+{(α2 − β2)
∑

j [a
j
C2(i)− a

j
C2(i)]︸ ︷︷ ︸

ω5i

+
∑

j [(α2 − β2)(ajC2t − a
j
C2t − a

j
A2t + ajA2t) + (αk − βk)(ajAkt − a

j
Akt)]︸ ︷︷ ︸

ω5kt

}pit.

Let ω(i, h1, k)=ω0ik + ω1kx1 + ω2kx
2
1 + ω3ke1+

∑
mωym1{y1=m} and recall wAit=EwAit(k)+εAit by (12). Then,

EwAit(k) = ω(i, h1, k)+ω4kt× (t−1)+(ω5i+ω5kt)pit+ln

[
Pr(LAt=2|ft=A, sit)

Pr(LCt=2|ft=C, sit) Pr(LAt=k|ft=A, sit)

]
(68)

by (67). I impose that yA(sit, 2)−yC(sit, 2) is equal to − ln[1/Pr(ft =A|sit)−1] so that Pr(LCt = 2|ft = C, sit) =
Pr(LAt = 2|ft = A, sit) by (66); see Appendix B.4 for the normalization of yC(sit, 2). Then, the last term in (68)
simplifies to − ln Pr(LAt=k|ft=A, sit), which gives (18).

I set the parameters ω1k, ω2k, and ω3k equal at Levels 1 and 2 and denote their common values by ω1, ω2, and ω3.
As for the parameters {ωym}, I set ωym = 0, 0≤m≤ 3, and ωy4 = ωy5, since the difference between these latter two
parameters proved insignificant. I specify the coefficient on tenure at Level 1 as ω41t =ω4121{t < 4}−ω4121{t ≥ 4},
which helps the model account for the progressively greater proportion of managers at Level 1 who are paid relatively
low wages in high tenures; the coefficients at higher levels proved impossible to estimate with any precision. I restrict
{σAi3} to not vary across skill types, owing to the relatively small number of observations at Level 3 compared with the
number of observations at lower levels, especially in high tenures, and denote their common value by σA3. Thus, the
estimated baseline parameters are {ω0i1, ω0i2, ω0i3},ω1, ω2,ω3, ω13, ω23, ω33, ω412, {ωym}9m=5, {ω5i}, {σAi1, σAi2},
and σA3. See Appendix B.11 for the results of the estimation of a more general version of the model.

When the parameters of interest are modified to evaluate the importance of uncertainty, learning, and human capital
acquisition in Section 5, wages are recomputed for the new sequences of states, equilibrium assignments, and their asso-
ciated probabilities for each manager skill type. Note that the mapping between the wage parameters and the underlying
human capital and expected output parameters is invariant across these experiments. Specifically, in assessing the im-
portance of uncertainty and learning, expected output at each job level is kept at its baseline value for each prior value.
Only {αk} and {βk} are adjusted in the updating of priors to capture that job levels are more or less informative than in
the baseline model, depending on the exercise. In the experiment that evaluates the role of human capital acquisition, the
parameters of expected output at each job level of A are simply assumed to be constant with tenure.
B.8 Estimates of Classification Error. To limit parameter proliferation and based on model diagnostics and fit, I
maintain that ρ1 = ρ0 in (11). As discussed, I estimate classification error parameters only at Levels 1 and 2, because
many performance ratings are missing among managers assigned to Level 3. As a result, the estimated parameters of
the distribution of performance ratings are {αk, βk}, ρ0, and {ρ2(k)}k=1,2. Since the probability of a recorded rating is
not a linear function of the probability of true performance, as apparent from (11), this error structure leads to bias. The
greater in absolute value ρ2(k) is, the greater the persistence in misreporting is. The estimates in Table A.3 imply that
performance is measured with error, and over time, this error is more likely for individuals whose true performance is
high. This result is consistent with the idea that the performance of managers who fail is assessed more thoroughly and
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precisely than the performance of managers who succeed, as is common in many firms, since poor performance may
eventually lead to disciplinary actions.
B.9 Retention and Assignment Policy at My Firm. The policy that emerges by simulating the model at the estimated
values of the parameters of the process of learning, human capital acquisition, and expected output at the firm implies
that, on average, managers at higher levels have higher ability, higher acquired human capital, and higher beliefs that
their ability is high. These results support the intuition of BGH, among others, that a firm acts as an information
acquisition filter in the labor market by producing information about managers’ ability. This information helps improve
the matching of managers to jobs (and firms) over time. Within the firm, this process of information acquisition leads to
the endogenous selection of managers to higher-level jobs through promotions, which is the key channel through which
learning affects wages at the firm. As for separations, the estimated exogenous separation rates in Table A.5 are close
to the observed hazard rates of separation in Table A.1, which implies that most separations are exogenous. Crucial
features of the data that explain this finding are that separations are largely uncorrelated with performance, which is the
primary determinant of learning, and approximately constant with tenure, which is a key determinant of human capital
acquisition; see also the discussion in BGH. In particular, there is no evidence that separations mask a tendency for
managers to be laid off or move to other firms in response to poor evaluations of performance that would otherwise have
led to demotions. That some separations are endogenous is confirmed by the higher wage growth of managers retained
throughout the sample years relative to that of those who separate, as discussed.
B.10 Goodness of Fit. To assess the fit of the model to the data, I simulate 4,000 prior realizations per manager, drawn
from the estimated distribution of initial priors. Table 1 shows that the model tracks remarkably well the profiles of
managers’ assignment to Levels 1, 2, and 3, which are nonlinear and nonmonotone in tenure, as well as the tenure
pattern of managers’ separations. Table A.1 shows that the model also accurately reproduces the feature that outflows
from Levels 1 and 2 come from an essentially constant hazard rate of separation and a hazard of promotion that first
increases then decreases with tenure. As Table 2 further implies, the model successfully fits the tenure distributions of
performance ratings both at Level 1 (with a slight overprediction in the fifth year of tenure) and at Level 2 (except for
some discrepancies in the fourth and seventh years of tenure). Lastly, Table 3 shows that the model reproduces quite
well the distribution of wages at each level and tenure, except for some discrepancies at Level 3 in the highest tenures.
Indeed, the largest such discrepancies are at Level 3 in the sixth and seventh years of tenure. These discrepancies are
partly due to the high rate of attrition in the sample. In fact, the fit of the model to the wage data from the larger sample
that includes entrants in the firm at Levels 1 to 4 is substantially better in this dimension; see the S.A. (Section 5).

One criterion to formally evaluate model fit is the Pearson’s χ2 goodness-of-fit test. I perform it based on the statistic
s
∑R

r=1{[ζ(r) − ˆζ(r)]2/ ˆζ(r)}, where ζ(·) denotes the empirical density function of a given endogenous variable, ˆζ(·)
denotes the maximum-likelihood estimate of the density function of that variable, s indicates the number of observations,
and R indicates the number of categories considered (not taking into account that the parameters of the model are
estimated). I compare the observed and predicted distributions of managers across levels, performance ratings at Levels
1 and 2, and wages at each level in each of the first seven years of tenure. The results of the test are as follows. In terms
of the distribution of managers across levels and their probability of retention at the firm in each tenure, the test does not
reject the model at conventional significance levels in any tenure. As for the hazard rates of separation, retention at a
level, and promotion to the next level in each tenure, the test does not reject the model at conventional significance levels,
apart from the second, third, fourth, and sixth years of tenure at Level 1 and the second and third years of tenure at Level
2. However, for these tenures, the outcome of the test is very much influenced by the small number of observations at
Levels 1 and 2 in high tenures. Regarding the distribution of performance ratings at Levels 1 and 2, the test does not
reject the model at conventional significance levels in any tenure. In terms of the level distribution of wages, the test
does not reject the model at conventional significance levels, apart from the third year of tenure at Level 2 and the fourth,
fifth, sixth, and seventh years of tenure at Level 3. One reason for these results on the distributions of wages is the small
fraction of managers at Level 3 in high tenures, as confirmed by the improved fit of the model to the larger sample of
entrants in the firm, as mentioned.
B.11 Sensitivity Analysis on the Robustness of the Estimates. To examine whether the estimates are robust to the
main assumptions underlying the specification of the wage process, I also estimated a more general version of the wage
equation in (18), which includes the tenure coefficient ω4k for Levels k > 1 (see footnote 40) and the prior coefficient
ω5kt specified as ω5kt = ω5k+(t − 1) × ωg5k+ωx5x1 with additional parameters (ω42, ω43, ω52, ω53, ω

g
51, ω

g
52, ω

g
53, ω

x
5 ).

Note from Tables A.15-A.20 in the S.A. that the estimates of the parameters of this more general version of the model
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that are common to the baseline model are fairly similar to those estimated for the baseline model, except for the output
parameters, which are somewhat larger. Some estimates, though, are less significant, especially α3 and eA38, which
cannot be estimated with any precision. The estimates of the additional wage parameters are fairly small, particularly
the slope coefficients on tenure,{ωg5k}. Thus, allowing the coefficient on pit in the wage equation to vary with the job
level and tenure does not have much of an effect on results.
B.12 The Role of Persistent Uncertainty. Recall the experiment of fast learning at Level 1 discussed in Section 5.
In the case of fast learning at Level 2, jobs at Level 2 are assumed to be nearly perfectly informative about ability
with α2 = 0.99 and β2 = 0.01, whereas the other parameters are fixed at their baseline values. See Tables 6 and A.7,
respectively, for the results on the distribution of wages at each tenure and managers’ job paths at the firm. Similar to
the case of fast learning at Level 1, fast learning at Level 2 yields higher wage growth, much larger wage dispersion at
Level 2, and faster promotions. Perhaps surprisingly, it also leads to a lower percentage of managers assigned to Level
3 in high tenures and much lower wage dispersion at Level 3 relative to the baseline model. Intuitively, the greater
informativeness of Level 2 makes it the firm’s preferred assignment over Level 3 for a larger set of states, including
higher priors, than in the baseline model. Further, since managers reach Level 3 at higher priors than in the baseline
model, the standard deviation of wages at Level 3 is much lower than at Level 2 in this experiment and at Level 3 in the
baseline model.

C A Discussion of Alternative Explanations
The analysis so far has focused on the role of uncertainty, learning, and human capital acquisition in accounting for the
joint dynamics of jobs and wages at the firm in my data. Here I briefly discuss alternative explanations, focusing on the
potential role of asymmetric information, performance incentives provided through performance pay and tournaments,
and complementarities in production.
C.1 Asymmetric Learning. I have assumed that firms and managers share the same information about ability. To
see that this assumption is plausible for my data, note first that the analysis in BGH supports the idea that managers’
performance is public information. Further, the formal test of asymmetric information that Devaro and Waldman (2012)
perform on the BGH data does not find conclusive evidence of asymmetric information. For related work that relaxes the
assumption of symmetric information, see Waldman (1984), Bernhardt and Scoones (1993), Bernhardt (1995), Waldman
(1996), and Ekinci et al. (2019).51

C.2 Performance Incentives through Performance Pay. The model abstracts from the possibility that firms may
induce workers to exert effort on the job by making pay contingent on performance. In the presence of incentive pay,
wages may be linked directly to current performance, not just indirectly to past performance through beliefs. But if so,
then current wages should be more strongly correlated with current performance than with past performance. As Kahn
and Lange (2014) also note, my data do not support the notion that the correlation of wages with current performance
exceeds that with past performance. Frederiksen et al. (2017) analyze information on bonus pay in my data, available
from 1981, and find some evidence that bonuses may be used to set incentives for performance; see also Gibbs(1995).
Bonuses, though, represent a small fraction of total pay: they are paid to 25 percent of managers, mainly at the highest
levels, and do not account for a large portion of pay. The median bonus of managers receiving one at (the original) Levels
1-3 is less than 10 percent of salary; for managers at (the original) Level 4, it is less than 15 percent. Hence, this evidence
does not suggest that performance incentives are a more critical determinant of pay than the sources I focus on.52

C.3 Performance Incentives through Tournaments. Firms may also provide incentives for performance through
the implicit promise of promotion. In tournament models (Lazear and Rosen (1981)), this mechanism links workers’
future promotion and pay to their current effort and performance. Tournament models with homogeneous workers and
no sorting are easily distinguishable from learning models, since they imply that all workers exert the same amount
of effort, and so the winner of the tournament is determined merely by luck. On the contrary, tournament models
with heterogeneous workers and sorting are difficult to empirically distinguish from learning models (Rosen (1986)).
For instance, both tournament and learning models with sorting predict serial correlation in promotion rates and wage

51A general model in which the information flow to other firms is imperfect and possibly affected by an employing firm’s retention and job
assignment decisions is beyond the scope of this paper. Allowing for private information about ability, and so different information sets across
firms, would also render identification prohibitively difficult in light of my data. I consider the formulation proposed here as a first attempt at
measuring the importance of learning for wages under assumptions commonly maintained in the empirical literature on careers.

52Since bonuses are higher at higher levels and learning contributes to wage growth primarily through its impact on promotions, the effect of
learning on wage growth that I estimate excluding bonuses can be conjectured to be a lower bound on the effect of learning on total pay growth.
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increases. Yet, one aspect of my data that is at odds with the idea that tournaments are key to the dynamics of jobs
and wages at the firm is the high frequency of (real) wage decreases. A tournament model does not naturally lead to
such decreases, whereas a model of learning and stochastic human capital accumulation does. Moreover, Baker and
Holmström (1995) document that the wage differential between adjacent job levels at the firm ranges from 18 to 47
percent—wages at each job level are highly dispersed. Yet, the immediate wage premium upon promotion is around only
7 percent. They interpret this finding as evidence against the hypothesis that the wage structure at the firm is governed
by a tournament. A full analysis of the role of learning, human capital acquisition, and performance incentives for wages
in the presence of sorting is left to future work.
C.4 Production Complementarities. I assume that managers are imperfect substitutes in production across job levels,
as captured by the dependence of the parameters dfkt(kt−1, i) of expected output on kt−1 discussed in Section 3.3.
I abstract from explicitly modeling complementarities or capacity constraints for three reasons. First, the goal of my
analysis is to investigate whether a model that integrates learning, human capital acquisition, and job assignment can
account for the main patterns of individual jobs and wages observed in firms. To this end, I formulate assumptions that
make my model comparable to those I integrate into my framework, which ignore these complementarities. Second,
the great variability in the size of job levels over the sample years discussed in Section 1 suggests that the firm is not
subject to too stringent capacity constraints on the employment or assignment of managers to job levels. Moreover, the
correlation of performance or wages across managers in the same cost center, a proxy for production units at the firm,
is low, which supports a low degree of complementarity across managers. Third, work that relaxes the assumption of
separable worker productivity typically addresses questions that are different from those I focus on here—such as the
importance of organizational capital for the growth rate and the size distribution of firms (Prescott and Visscher (1980))—
or, because of its complexity, confines the analysis to essentially static environments (Ferrall (1997) and Ferrall et al.
(2009)) or stylized cases (Davis (1997)). In contrast to the existing literature, I allow for a fully dynamic interaction
between forward-looking firms and workers, which leads firms and workers to face complex intertemporal trade-offs
between the opportunity cost of investing in information and human capital and the future benefits of doing so. Given
the challenges that the estimation of such a model entails, I consider the assumption of imperfect substitutability of
managers in production as a first approximation to developing a tractable yet empirically rich framework for careers
in firms. Since the model I propose closely matches the assignment and wage paths of the managers in my data, this
framework, although stylized, seems to be promising at capturing key features of careers.
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Table A.1: Hazard Rates of Separation, Retention at Level, and Promotion (Percentages)*
Separation Retention Promotion

Level Tenure Data Model Data Model Data Model
Level 1 1 to 2 14.5 14.5 45.6 45.7 39.9 39.8

2 to 3 14.6 14.5 36.8 20.3 48.6 55.2
3 to 4 11.7 8.4 45.6 46.9 42.7 27.8
4 to 5 11.9 5.0 60.6 65.0 27.5 19.9
5 to 6 9.1 5.1 62.1 64.8 28.8 21.6
6 to 7 12.2 5.0 73.2 79.1 14.6 11.4

Level 2 2 to 3 16.3 13.6 61.9 55.5 21.8 10.9
3 to 4 15.6 16.9 47.0 51.7 37.4 31.4
4 to 5 14.7 14.2 54.8 56.9 30.5 28.9
5 to 6 12.8 12.1 60.5 62.6 26.7 25.3
6 to 7 15.4 11.5 59.4 62.9 25.1 25.6

Level 3 3 to 4 10.5 12.2 89.5 87.8 - -
4 to 5 12.2 14.2 87.8 85.8 - -
5 to 6 10.1 12.1 89.9 87.9 - -
6 to 7 10.0 11.5 90.0 88.5 - -

*Promotions are by one level.

Table A.2: Percentage Distribution of Changes in Log Wages by Tenure
Tenure Between Between Between Growth

-0.15 and 0.00 0.00 and 0.15 0.15 and 0.30 Rate
1 to 2 22.9 69.9 7.2 5.2
2 to 3 22.6 70.4 6.6 5.1
3 to 4 24.9 70.3 4.3 3.9
4 to 5 23.6 70.1 5.9 2.2
5 to 6 22.5 70.5 6.9 0.7
6 to 7 21.9 68.5 8.3 1.8

Table A.3: Estimates of Parameters of Classification Error in Performance Ratings*
Parameters Level 1 (k = 1) Level 2 (k = 2)
Base Error: ρ0 0.521 (same as for k = 1)

(0.040) (same as for k = 1)
Persistence: ρ2(k) -0.703 -0.544

(0.040) (0.029)
*Recall that ρ1 = ρ0. Asymptotic standard errors in parentheses.



Table A.4: Estimates of Intercept and Slope Parameters of Expected Output*
Parameters Value St. Error
Level 1
dA14(L1) -14.095 0.072
dA15(L1) -9.592 0.065
dA16(L1) -9.592 (same as dA15(L1))
dA17(L1) -9.592 (same as dA15(L1))
eA12 59.210 0.274

Level 2
eA22 51.269 0.111
eA23 44.202 0.179
eA24 51.269 (same as eA22)
eA25 43.438 0.168
eA26 44.496 0.108
eA27 44.496 (same as eA26)

Level 3
dA34(L3) 17.070 0.119
dA35(L3) 4.056 0.090
dA36(L3) 4.056 (same as dA35(L3))
dA37(L3) 4.561 0.054
eA31 -7.999 (same as eA33)
eA32 -7.999 (same as eA33)
eA33 -7.999 0.193
eA34 45.173 0.233
eA35 37.174 0.040
eA36 37.174 (same as eA35)
eA37 43.814 0.021
eA38 40.067 0.021

*All parameters in the table are expressed in thousands. Parameters whose values are in italics are not estimated.

Table A.5: Estimates of Exogenous Separation Rates*
Parameters (%) Value St. Error
Level 1
η11 14.5 0.004
η13 8.3 0.001
η14 5.0 0.0001

Level 2
η21 13.6 0.002
η24 14.2 0.001
η25 12.1 0.001
η26 11.5 0.0003
η27 11.1 0.0003

Level 3
η31 12.2 0.002

*Exogenous separations occur with probability 1− ηkt. Recall that η12=η11, η13=η14 + ξ3, η1t=η14, t>4; η22=η21, η23=η22 + ξ3,
η2t=η27, t>7; η3t=η31, t=2, 3, η3t=η2t, t>3.

Table A.6: Estimates of Year Dummies in the Wage Equation (Baseline: 1970-1973)*
Parameters 1975 1976 1977 1978 1979

(ωy5) (ωy6) (ωy7) (ωy8) (ωy9)
ωym -0.063 -0.107 -0.140 -0.208 -0.169

(0.003) (0.004) (0.004) (0.003) (0.003)
*Recall that ωy4=ωy5. Asymptotic standard errors in parentheses.
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