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Abstract

We evaluate the impact of credit conditions on firms’ emissions of toxic pollutants. There are
differing influences: tighter credit might (a) stifle firm production, reducing toxic emissions,
(b) induce firms to economize on non-core business functions, such as pollution abatement,
increasing pollution; (c) have no effect on pollution if environmental regulations bind. Using
four identification strategies, we find that shocks that tighten a firm’s credit conditions
increase its emissions of toxic pollutants, and those that ease a firm’s access to credit reduce
its toxic emissions. The estimates suggest that finance exerts a large impact on firms’
emissions of toxic pollutants.
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1. Introduction

Pollution increases the incidence of cancer, cardiovascular and respiratory diseases,
reproductive and neurodevelopmental disorders, and premature death (e.g., Chay and
Greenstone 2003; Ebenstein et al. 2015; Currie and Neidell 2005; Knittel, Miller and Sanders
2016; Schlenker and Walker 2016; IIsen, Rossin-Slater, and Walker 2017).! Research
indicates that about 16% of all deaths in the world in 2015 were attributable to pollution, with
two-thirds of those premature deaths caused by air pollution and the remainder caused by
water, soil, and occupational pollution (Lancet 2017). In the United States, the State of the
Air 2017 report by the American Lung Association shows that more than 40% of the U.S.
public live in counties that have unhealthful levels of air pollution, and the U.S.
Environmental Protection Agency (EPA) (2013) reports that more than half of the country’s
rivers, streams, and waterways are so polluted that they cannot support healthy aquatic life
and that tens of millions of people in the U.S. drink tap water with chemicals linked to cancer
and other diseases, even though the water satisfies the conditions of the Clean Water Act
(Duhigg 2009). Furthermore, firms release much of this pollution. For example, studies by
the U.S. EPA (2014, 2015, 2016, 2018) indicate that industry accounts for about 22% of
greenhouse gas emissions, 30% of total toxic air pollutants, and the bulk of toxic pollutants
released into the land and water.

Given pollution’s health effects, an extensive body of research explores the impact of
environmental regulations. For example, an influential set of papers evaluates the U.S. Clean
Act of 1970 (e.g., Greenstone 2002; Walker 2013; IIsen, Rossin-Slater, and Walker 2017).
Shapiro and Walker (2018) examine the impact of environmental regulations on pollution
from manufacturing firms, and several literature reviews summarize research on how
environmental policies influence pollution by firms (e.g., Bohm 2003; Helfand, Berck, and
Maull 2003; Kolstad and Toman 2005; Sterner and Robinson 2018).

Rather than focusing on environmental regulations, we evaluate the impact of credit

conditions on firms’ emissions of toxic pollutants. Research suggests how credit conditions

!'In addition to harming public health, pollution reduces housing prices (e.g., Currie, Davis, Greenstone and
Walker 2015), lowers labor productivity (e.g., Zivin and Neidell 2012), and influences industrial production
(e.g., Greenstone 2002).



can influence firms’ decisions to pollute. Decreasing pollution has long-run benefits for a
firm, such as reducing expected fines from violating regulatory limits on toxic emissions,
augmenting the health and productivity of workers (e.g. Zivin and Neidell 2012), and
enhancing the firm’s reputation. At the same time, reducing pollution requires large upfront
expenditures (e.g., Walker 2013).2 Accordingly, firms facing tighter credit conditions might
choose to economize on non-core business functions, such as pollution abatement, to cushion
the effects of tighter credit on profits. In this way, a tightening of credit will tend to increase
toxic emissions. There may, however, be countervailing influences. Effective regulatory
systems might prevent firms from increasing pollution, and tighter credit might stifle
investment and production, reducing toxic emissions. In this paper, we evaluate the impact of
credit conditions on toxic emissions.

We employ four empirical strategies for identifying the impact of credit conditions on
pollution. The first two strategies are based on a shock that eased firm credit conditions, and
the second two strategies exploit shocks that tightened credit. We first describe the methods
and results based on the credit-easing shock and then explain the analyses based on the
credit-tightening shock.

Our first two empirical strategies start by exploiting shale-induced liquidity shocks to
individual banks. Gilje, Loutskina, and Strahan (2016) show that (1) unexpected
technological breakthroughs in fracking made shale gas production economically viable; (2)
following these technological breakthroughs, the energy industry began rapidly purchasing
shale mineral leases from landowners in promising areas, i.e., in “shale counties;” (3) the
landowners then deposited a portion of these mineral-lease payments in local banks, boosting
bank liquidity; and (4) banks receiving shale liquidity shocks from their branch networks in
shale counties increased their residential mortgage lending in non-shale counties, i.e.,
counties that did not have shale development activities. Thus, we first confirm for our sample
that (1) shale discoveries increased local bank deposits in shale counties, and (2) these banks

increased their supply of credit to corporate clients in non-shale counties.

2 The EPA (a) estimates that companies spent more than $13.7 billion in 2016 to control pollution
(https://www.epa.gov/enforcement/enforcement-annual-results-fiscal-year-2016) and (b) reports that fees/
penalties from for violating environmental laws reached $6 billion in 2016.




Our first identification strategy uses these shale liquidity shocks to individual banks to
construct measures of shocks to the credit conditions facing firms in non-shale counties.
Specifically, after constructing measures of the degree to which banks in non-shale counties
receive liquidity shocks through their branch networks in shale counties, we evaluate how
these shocks influence pollution in those non-shale counties. For the dependent variable in
these county-level analyses, we use county-year measures of air pollution, which are
collected from EPA monitoring stations across the country. Importantly, we focus on changes
in credit conditions and environmental outcomes in counties without any shale discoveries or
drilling activities. This mitigates concerns that our results are driven by changes in local
economic conditions or environmental quality resulting from shale development
(Muehlenbachs, Spiller, and Timmins 2015; Hill and Ma 2017). Moreover, we control for
county and year fixed effects, as well as time-varying county traits. Conceptually, therefore,
our first strategy compares the environmental outcomes in two otherwise similar non-shale
counties, except that banks in one county receive greater liquidity shocks through their
branch networks in shale counties than banks in the other county.

We discover that a positive shock to the supply of bank credit in a county lowers toxic
pollution in the county. That is, when a non-shale county’s banks are more exposed to
positive liquidity shocks through their branches in counties experiencing shale discoveries,
we observe sharp reductions in pollution in those treated, non-shale counties. These results
hold when (a) controlling for time-varying county traits along with county and year fixed
effects, (b) analyzing different toxic pollutants, and (c) employing different measures of the
intensity of air pollution. In terms of magnitudes, consider Benzene, the most monitored
hazardous air pollutant by the EPA in our sample. We find that in counties where banks
received a shale-liquidity shock equal to one standard deviation of the cross-county
distribution of such shocks, Benzene concentration levels fell by 24% of the standard
deviation of Benzene concentration across counties. It is worth mentioning that we show that
the pollution-reducing effects of positive county liquidity shocks cannot be explained by

differential pre-trends in pollution.



Our second strategy uses the shale liquidity shocks to individual banks to construct
measures of shocks to the credit conditions facing individual firms. To construct firm-
specific credit shock indicators, we measure the degree to which banks in the county where a
firm has its headquarters receive shale liquidity shocks. Specifically, we limit the analyses to
firms with headquarters in non-shale counties and construct measures of the degree to which
banks in those non-shale counties receive liquidity shocks through their branch networks in
shale counties. We then evaluate the impact of those firm-specific credit shocks on toxic
emissions by the firm’s plants, where we also limit the analyses to plants in non-shale
counties. This second identification strategy relies on the assumption that a firm’s credit
conditions are influenced by credit conditions in the county in which the firm has its
headquarters, which is where the firms’ investment decisions are made (Giroud 2013).
Extensive research provides empirical support for this assumption, e.g., Petersen and Rajan
(2002), Berger et al. (2005), Agarwal and Hauswald (2010), and Berger, Bouwman, and Kim
(2017).

These plant-level analyses have advantages over the county-level strategy. First, the
county-level analyses use air pollution data collected from EPA monitors, not measures of
toxic emissions by plants. For the plant-level analyses, we use data from the EPA’s Toxic
Release Inventory (TRI) program on toxic emissions from each plant in each year. Second,
the county-level analyses measure credit shocks and pollution in the same non-shale county.
In the plant-level analyses, we examine credit shocks to the plant’s headquarters and examine
toxic releases by its plants. Critically, we omit all plants and headquarters located in shale
counties—and in robustness checks, we also omit plants and headquarters located in counties
neighboring shale counties. Third, we include county-year fixed effects throughout the plant-
level analysis, which distinguishes treatment effects—the easing of firm credit conditions—
from local economic conditions that might affect plant behavior. We can include county-year
effects because not all plants located in a county have their headquarters in the same county.
Conceptually, therefore, our plant-level analyses compare the toxic releases by two otherwise

similar plants operating in the same non-shale county, except that one plant has its



headquarters in a county with banks that receive greater liquidity windfalls than the other
plant.

We find that positive shocks to the credit conditions facing firms reduce emissions of
toxic pollutants by their plants. Our sample contains 94,304 plant-year observations
involving 12,296 plants affiliated with 4,035 private and public firms over the period from
2000 through 2013. The results are robust to controlling for plant, county-year, industry-year,
and (headquarters)state-year fixed effects, as well as time-varying plant characteristics. The
estimated economic magnitudes are material. For example, consider two otherwise similar
plants, except that one receives a positive, sample mean liquidity shock due to its
headquarters in a county with banks exposed to shale liquidity windfalls, while the other does
not. The coefficient estimates indicate that toxic emissions from the “shocked” plant would
fall by 6%.

In an extension, we evaluate whether—and confirm that—the pollution-attenuating
effects vary in a theoretically predictable manner across firms. Specifically, we differentiate
plants by whether they are affiliated with privately-held or publicly-listed firms. Since public
firms tend to have greater access to finance beyond the credit provided by banks operating in
the firms’ headquarters-county, we expect shocks to local credit conditions to have a smaller
impact on public firms. Consistent with this view, we discover that the pollution-reducing
effects from bank liquidity shocks in a firm’s headquarters-county are much stronger among
private firms.

In a second extension, we conduct two-stage least squares (2SLS) regressions. In the
first stage, we use shale discoveries as an instrument for changes in bank deposits, and in the
second stage, we evaluate the impact of shocks to bank deposits in firms’ headquarters
county on toxic emissions by their plants. As in all of the analyses, we limit the analyses to
firms with headquarters in non-shale counties and measure the degree to which banks in
those non-shale counties receive liquidity shocks through their branch networks in shale
counties. The 2SLS extension allows us to assess the economic magnitude of a positive
liquidity shock—now measured as the percentage change in deposits—on pollution. The

2SLS results both confirm that easing firms’ credit constraints tends to reduce toxic



emissions by their plants and indicate that the effects are large: A 1 percentage point increase
in bank deposits in a firm’s headquarters-county reduces toxic emissions by its plants by
about 8%.

The third identification strategy exploits a shock that tightened credit—the global
financial crisis—and develops a firm-level proxy for the credit-tightening impact of the crisis
on each firm. Following Almeida et al. (2012), and Cohn and Wardlaw (2016), we use
heterogeneity in the degree to which firms have debt maturing in the year before the crisis to
proxy for the credit-tightening impact of the crisis on firms. Since (a) the financial crisis
made it difficult for firms to roll over maturing debts (Acharya and Mora 2015) and (b) firms
were unlikely to have anticipated the crisis when taking on those debts before the crisis, we
use the interaction between firms’ pre-determined debt structure and the onset of the crisis as
an exogenous source of variation in the severity of the credit crunch shocking individual
firms. We then examine the impact of this credit tightening on toxic emissions by the firms’
plants.

Our fourth identification also begins with the global financial crisis but we now
exploit cross-bank differences in their pre-crisis holdings of private-label mortgage-backed
securities (MBS). Compared to agency-backed MBSs, research suggests that private-label
MBSs exposed banks to substantial losses and risks during the financial crisis, which was
triggered by the collapse of the housing market (Ellul and Yerramilli 2013). Erel, Nadauld,
and Stulz (2013) show that banks that held more securitized products before the crisis
performed significantly worse during the crisis. Thus, we first develop a bank-specific
measure of exposure to private-label MBSs before the crisis and show that this measure is
strongly, positively associated with bank losses and the contraction of credit during the crisis.
We then develop a measure of the degree to which banks in each firm’s headquarters county
are exposed to these MBS-induced negative shocks and use this firm-specific measure of
credit tightening to evaluate the impact of credit conditions on toxic emissions by firms’
plants.

Consistent with the findings based on shale-discovery shocks, we find that credit

tightening triggered by the global financial crisis increased toxic emissions. First, when using



heterogeneity in firms’ debt structures to proxy for the severity of credit tightening caused by
the crisis, we discover that firms that experienced greater credit tightening increased toxic
emissions through their affiliated plants. These results are robust to including plant, county-
year, industry-year, (headquarters)state-year fixed effects, and an assortment of time-varying
firm-level traits. Second, when banks in a firm’s headquarters county are more exposed to
private-label MBSs, the financial crisis triggered a greater increase in toxic emissions by the
firm’s plants. Thus, both the third and fourth identification strategies indicate that adverse
shocks to firms’ credit conditions increase pollution by the firm’s plants. These results further
emphasize that when credit conditions tighten, firms tend to economize on non-core business
activities such as pollution abatement, leading to an increase in pollution emissions.

Our key contribution in this paper is assessing how shocks to a firm’s credit
conditions influence its emissions of toxic pollutants. Although researchers have shown that
credit conditions shape a range of economy-wide features, such as economic growth (e.g.,
King and Levine 1993, Jayaratne and Strahan 1996, Levine and Zervos 1998, Rajan and
Zingales 1998), business cycle fluctuations (e.g., Bernanke and Gertler 1989), and the
distribution of income (e.g., Beck, Levine, and Levkov 2010), we are unaware of previous
research that evaluates the impact of credit conditions on the environment. Given the
enormous costs associated with pollution, our research highlights the broader ramifications of
financial frictions on the economy and society. Our research is also broadly related to the
growing literature on environment and finance, which focuses on the impact of pollutant
emissions on financial markets (e.g., Andersson, Bolton, and Samama 2016; Bolton and
Kacperczyk 2020a; 2020b). We complement this line of research by showing that an
exogenous variation in corporates’ financial conditions shapes emissions.

The paper proceeds as follows. Section 2 describes the data and variables. Section 3
describes the technological breakthroughs in fracking and shale discoveries, and the shocks
to credit conditions. Section 4 presents the county-level results and Section 5 provides the
plant-level analyses. Section 6 employs two additional identification strategies and assesses

how adverse shocks to credit conditions affect toxic emissions by plants. Section 7 concludes.



2. Data and Variables
2.1 Toxic air pollutants concentration from EPA monitoring stations

To evaluate the impact of an increase in the supply of bank credit on the local
environment, we start our analysis by using EPA data on the concentration of hazardous
airborne pollutants collected at outdoor monitors across the nation. The EPA (2017) defines
hazardous airborne pollutants as “those pollutants that are known or suspected to cause
cancer or other serious health effects (including reproductive effects or birth defects), or
adverse environmental effects.” For each monitor, the EPA annual summary files contain
pollutant-by-pollutant statistics on the arithmetic mean, 50®, 75", and 90 percentiles of the
readings from each monitor over each year. This provides annual measures of pollutant
concentrations across geographic locations. We focus on (1) the five toxic pollutants with the
most comprehensive data (Benzene, Toluene, Ethylbenzene, o-Xylene, and m/p Xylene) and
(2) the standardized index of the top-10 most covered toxic pollutants (the five just
mentioned and Styrene, Dichloromethane, Carbon tetrachloride, Tetrachloroethylene, and
Chloroform), which we call Top-10 Toxins. We construct this index by (a) standardizing each
of the top-10 toxic pollutants into a variable that falls between zero and one and (b) taking
the average across those ten standardized values for each monitor in each year.?

To calculate the concentration of each hazardous air pollutant at the county-year level,
we compute the average of each summary statistic—mean, median, 75" percentile, etc.—
across monitors within the county and year. The average number of monitoring sites in a
county equals 1.76, and the median value equals one. In the main text, we provide results
using the mean values of these toxic pollutant concentrations. The results hold when using
the median, 75%, and 90" percentiles, as reported in the Online Appendix. Table 1 Panel A
presents cross-county summary statistics on the annual mean values of Top-10 Toxins, and
each of the five hazardous pollutant concentrations in our sample. Online Appendix Table Al

provides detailed variable definitions.

3 We standardize the variable X into a [0, 1] range using (X— MIN(X)) / (MAX(X) — MIN(X)).



2.2 Plant-specific toxic emissions from Toxic Release Inventory

We also conduct analyses at the plant-level by obtaining pollutant emissions
information on each individual plant from the Toxic Release Inventory (TRI) basic dataset,
which is maintained by the U.S. Environmental Protection Agency (EPA). TRI collects
information on the release of toxic chemicals from over 40,000 plants in the U.S. Starting in
1987, the TRI program tracks the release of toxic chemicals that cause significant adverse
effects on human health or the environment. Industrial plants that (a) are involved in
manufacturing, metal mining, electric power generation, chemical manufacturing and
hazardous waste treatment, (b) have more than 10 full-time employees, and (c) use or
produce more than threshold levels of TRI-listed toxic substances must report their releases
of toxins to the TRI. The TRI provides self-reported toxic emissions data at the plant-level,
along with information on the plant’s physical location, and its parent company’s name and
firm ID.

For each plant in a year, we measure its emissions of pollutants as the total amount of
toxic chemicals released by the plant. Specifically, Total Toxic Releases is the logarithm total
amount of toxic chemicals released (including air emissions, water discharges, underground
injection, etc.) from each plant.* To address the concern that our analyses might be driven by
changes in local economic conditions resulting from the shale development activities, we
exclude TRI plants located in counties where there has been shale development since 2003
(i.e., shale counties), and plants affiliated with firms headquartered in shale counties. Our
final TRI pollutant emission sample includes 94,304 plant-year observations over the 2000 —
2013 sample period, involving toxic release records from 12,296 plants affiliated with 4,035
private and public parent companies that are successfully matched with additional plant-year

data that we describe next.

4 We also conducted these analyses at the firm-level, rather than the plant-level. For each firm in each year, we
measure its emissions of pollutants by summing up pollution emissions by its plants in non-shale counties. As
shown in the Online Appendix, all of the results hold.
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2.3 National Establishment Time-Series (NETS) database

We match the TRI data with detailed data on each plant and its firm using the
National Establishment Time-Series (NETS) database, offered by Dun and Bradstreet. NETS
follows over 58.8 million establishments as of January each year from 1990 to 2014,
covering essentially the universe of businesses in the U.S. These data allow us to examine the
pollution outcomes for both publicly listed and private firms and their plants. For each
establishment, NETS contains dynamic information on its ultimate parent company and the
geographic location of firm’s headquarters and all of its plants. We determine the
headquarters-county for each plant by linking the plant’s parent firm in TRI with firms in

NETS using the common Dun & Bradstreet Number provided in both datasets.

2.4 Shale wells data and bank liquidity shocks

To create bank-specific measures of their exposure to shale discoveries, we begin
with [HS Markit Energy, which is a comprehensive database that provides detailed
information on the date, location, and well orientation for more than 100,000 shale wells
drilled across the U.S over the period of 2003 — 2013. For each county in each year, we
calculate the number of shale wells drilled since 2003, which is when technological
innovations made “fracking” commercially viable.’ Wells;: denotes the number of shale wells
drilled in county j as of year .

To measure a bank’s liquidity gains from shale discoveries, we combine U.S. counties’
shale drilling activities with the bank’s local branch networks. We retrieve information on
each bank’s branch structure, location of its branches, and deposit balances in those branches
from the Federal Deposit Insurance Corporation’s (FDIC) Summary of Deposits database.

Based on (a) the geographic distribution of a bank’s branches and (b) the number of
shale wells drilled in each county, we construct two measures of each bank’s exposure to
shale-induced liquidity shocks in each year. The first measure, Bank liquidity gainl, equals

the logarithm of one plus the number of shale wells drilled across counties in which a bank

5 Following existing research, we treat horizontal wells as the measure of shale-related activities. According to
Gilje, Loutskina, and Strahan (2016), almost all horizontal wells in the U.S. are drilled to extract shale or other
unconventional resources after 2002.
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has at least one branch, where the number of wells in each county is weighted by the bank’s
market share in each county, divided by the total number of branches owned by the bank.

Formally:

Bank liquidity gainl,, =

Ln[l + Z]-(Wellsjt * 1(Branchesbjt > 0) * MktShrb}-t) / Branchesbt], (1a)

where b represents bank, j denotes county, and ¢ denotes year. Wells;, denotes the number of
shale wells drilled in county j from 2003 as of year ¢, 1(Branches,;. > 0) denotes an
indicator that equals one if bank b has branches in county j at year ¢ and zero otherwise;
MktShryj; equals the proportion of all deposits held within county j in year ¢ that are held at
bank b’s branches within county j; Branches,, equals the total number of branches owned
by bank b in year ¢. By weighting the number of wells in a county by a bank’s market share
in that county, this measure assumes that a bank’s liquidity inflows in a shale-development
county are proportional to its market share in that county. Note that Bank liquidity gainl
equals zero for (a) banks without branches in shale development counties, and (b) all banks
before 2003, which is before the technological breakthrough that fostered fracking. As shown
in Table 1 Panel C, Bank liquidity gainl has a sample average of 0.08, with a higher value
indicating greater liquidity shocks. And, among banks that are exposed to shale liquidity
shocks, the sample average of Bank liquidity gainl equals 0.6.

Second, Bank liquidity gain2, takes the first measure and further weights by whether
each branch is in a shale-boom county or not. We define a shale-boom county as one in
which the number of wells drilled in a year is in the top quartile for all shale-county-years in
our sample. Following Gilje, Loutskina, and Strahan (2016), once categorized as a shale-
boom county, it retains that categorization in all subsequent years. Formally:

Bank liquidity gain2,, = Ln[1 +
X (Wellsjt * 1(Branchesbjt > 0) * MktShry e * 1(Boomjt))/Branchesbt], (1b)

where b represents bank, j denotes county, and ¢ denotes year, and the other

components, Wells;, , 1(Branchesb jt > O), MktShryj:, and Branchesy, are defined the

same as above. Boom;; is a dummy variable that equals one if the number of shale wells
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drilled in county j during year ¢ is above the top quartile of county-years with shale
development activities, and zero otherwise. Thus, this second measure captures each bank’s
exposure to the shale liquidity shock through its branch networks across shale-boom counties

only.

3. Shale Discoveries and Bank Liquidity Gains

In this section, we (1) describe shale development during the 2000s, (2) show that
banks exposed to shale discoveries through their branches in areas with shale discoveries
experience sharp increases in bank liquidity (i.e., deposits), and (3) develop measures of the
degree to which counties and firms are exposed to these liquidity shocks. In Sections 4 and 5,

we use these measures to evaluate the impact of credit conditions on toxic emissions.

3.1 “Fracking” and shale discoveries

In late 2002, a technological breakthrough, known as “fracking,” combined horizontal
drilling with hydraulic fracturing to make shale gas production economically viable.
Therefore, we use 2003 as the first year when the oil and gas industry started large-scale
investment in shale development. Fracking had an enormous impact on the energy market.
According to Annual Energy Outlook (AEO 2016), shale gas went from accounting for less
than 1% of U.S. natural gas production in the late 1990s to nearly 50% of total U.S. natural

gas production by the end of 2015.

3.2 Shale development and bank liquidity windfalls

Given the technological improvements in fracking, oil and gas companies increased
their purchase of mineral leases from landowners in promising areas. With mineral leases,
local property owners typically receive payments, including a large upfront bonus, based on
the number of leased acres, plus a royalty percentage on the extracted resources from the

lease.



13

These purchases significantly boosted deposits in local banks. As described in Plosser
(2015), leasing contracts typically involve a bonus that varies between $10 and $30,000 per
acre, and a royalty percentage ranging from 10% to 25%. Accordingly, if a family owns one
square mile of land (equivalent to 640 acres) and leases this out at an average value of
$15,005 per acre, they would receive an upfront payment of $9.6 million plus future royalties.
Gilje, Loutskina, and Strahan (2016) show that deposits grow faster among banks exposed to
shale boom counties compared to unexposed banks.

We reassess and confirm this finding in our sample using the following regression:
Deposit growthy, ; = @,Bank liquidity gain,; + @, My +ap + ar + &5, (2)

where b and ¢ denote bank and time, respectively. Deposit growthy; is the growth rate of
domestic deposits for bank b during year t. Bank liquidity gainy: represents one of the two
measures on a bank’s exposure to shale drilling activities described above (i.e., Bank liquidity
gainl or Bank liquidity gain2). The coefficient of interest is ¢4, which captures the extent to
which a bank’s deposits grow in response to the shale development activities in its branch
network. If shale-well drilling indeed brings a large liquidity windfall to local branch offices,
we expect ¢, to be positive and statistically significant. We also control for an array of time-
varying, bank-specific characteristics measured at the beginning of each period (II, ),
namely Total asset, Capital asset ratio, Deposit/Total assets, Liquid assets/Total assets,
Mortgages/Total assets, C&I loans/Total assets, Loan commitments/Total assets, and Letters
of credits/Total assets. We construct firm-specific controls using data from Reports of
Condition and Income (“Call Reports™). We include bank and year fixed effects, a;, and a;,
throughout the analyses. Standard errors are clustered at the bank level.

The results reported in Table 2 indicate that shale-well drilling activities within a
banking institution’s branch networks lead to a significant increase in that bank’s deposit
growth. As shown in columns 1 and 2, both measures on bank liquidity gains enter the
regressions positively and significantly. The economic magnitudes are meaningful. The
coefficient estimates from column 1 indicate that deposits in banks that are exposed to the

shale development activities with an average value of Bank liquidity gainl (= 0.6) would
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grow 1.8 percentage points (=0.6*0.031) faster than banks without such exposure. This is
equivalent to about 22% of the sample mean of deposit growth.

We also show that bank liquidity gains induce a material increase in the supply of
credit. As reported in Table 2, we discover a strong, positive association between a bank’s
exposure to shale liquidity shocks and the growth rate of its commercial and industrial (C&I)
loans. The coefficient estimates reported in column 3 suggest that when a bank receives an
average shale liquidity shock, i.e., Bank liquidity gainl = 0.6, the bank’s C&I loans grow 2.4
percentage points (=0.6*0.04) faster than banks that are not exposed to shale development.
This is large, as the estimated accelerate in growth is equivalent to 34% of the sample mean
of C&I Loan growth.

Several factors suggest treating shale-drilling activities as exogenous liquidity
windfalls for local bank branches. First, the technological breakthroughs in fracking were
unexpected. Second, the economic viability of shale wells is often driven by broader
macroeconomic factors, such as demand for natural gas and prices of natural gas (Lake et al.,
2013), that are unlikely to be correlated with local economic conditions (Gilje, Loutskina,
and Strahan 2016). Third, at least two facts suggest that banks cannot strategically adjust
branch networks to gain greater exposure to shale windfalls: (a) the discoveries of shale
formations in different geographies are uncertain, as it is difficult for the oil and gas
companies to predict how many wells an area needs to drill before producing shale gas; and
(b) mineral leasing by the oil and gas companies usually occurs at a very rapid pace. As
reported by Times-Picayune in 2008, several years after the technological breakthroughs, the
signing bonuses for buying mineral rights in Louisiana’s Haynesville Shale area increased

from about $100 per acre to between $10,000 and $30,000 per acre within one year.

3.3 County- and firm-level liquidity shocks

Having established that shale oil discoveries influence bank liquidity through their
branches in areas exposed to these discoveries, we construct county-specific measures of the
degree to which banks in non-shale counties—counties in which shale was not discovered—

receive liquidity shocks through their branch networks in shale counties.
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For each non-shale county in each year, we compute two county-level liquidity shock
measures based on the two bank-specific shale liquidity shock measures defined above and
weight them by the share of the county’s deposits held by each bank. From Bank liquidity

gainl, we construct:
County liquidity gainl;, = Y.k ;. * Bank liquidity gainl,,, (3)

where County liquidity gainl;, represents the extent to which banks in non-shale county j at
time ¢ received shale liquidity shocks via their branch networks in shale counties, Bank
liquidity gainl, denotes the bank-specific shale liquidity shock measure for bank b in year ¢
(Equation 1a), and K, ; ; is the share of county ;’s total deposits in year # that are held in bank
b’s branches located in county j. County liquidity gain2, is computed similarly based on Bank
liquidity gain2y,.

We also construct measures of shocks to each firm’s credit conditions by gauging the
extent to which banks in the firm’s headquarters-county receive shale liquidity shocks.
Specifically, for each plant, we identify the firm’s headquarters-county using the NETS
database and compute the two corresponding county liquidity gain measures for that
headquarters-county. Thus, for each plant, we assign the shale liquidity shock values
associated with banks in the county in which its parent firm is headquartered. We refer to

these measures as Firm-county liquidity gainl and Firm-county liquidity gain?.

4. County-Level Liquidity Shocks and Environmental Quality
4.1 County liquidity shocks and county pollution
To evaluate the impact of county-level liquidity shocks on air pollution in these

counties, we use the following regression specification.
Poll;; = B, County liquidity gain;. + B,Il; + aj + ay + . (4)

The dependent variable, Poll;;, is based on either Top-10 Toxins or one of the pollution
concentration measures. For Top-10 Toxins and each of the five pollutants (Benzene, Toluene,
Ethylbenzene, o-Xylene, and m/p Xylene), we conduct regression analyses on the mean, 50,

70, and 90" percentile readings at the monitors within county j during year . The
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explanatory variable of interest, County liquidity gain; represents one of the two county-level
liquidity shock measures defined by Equation (3), where we focus on County liquidity gainl;,
and County liquidity gain2;;. We include a set of county characteristics, I1; ., namely Ln(Per
capita personal income), Ln(Population), Labor market participation, and Unemployment to
account for time-varying economic conditions, and county and year fixed effects, a; and a,
to condition out time-invariant factors across counties and time specific effects.

In this way, we are comparing toxic pollutant concentrations between otherwise
similar non-shale counties in which banks receive different liquidity shocks through their
branch networks in shale counties. It is worth emphasizing that we reduce the possibility that
the results will be affected by changes in the demand side emanating from shale discoveries
by examining only counties in which there are no shale discoveries. Banks in these non-shale
counties, however, may receive liquidity shocks through their branch networks in shale
counties. We estimate Equation (4) using OLS, with standard errors clustered at the county
level, and report the results in Tables 3 and 4.

We find that county-level liquidity shocks materially reduce pollution. Table 3 reports
the results for Top-10 Toxins and each of the five toxic air pollutants on the two measures of
county-specific liquidity shocks. We provide the results on the mean values of each of the
pollutants collected by EPA monitoring stations during each year in Table 3. As shown, the
two county-level liquidity shock measures, County liquidity gainl in columns 1 — 6 and
County liquidity gain2 in columns 7 — 12, enter negatively and significantly across all of the
regressions reported in Table 3. Positive liquidity shocks are associated with sharp decreases
in average toxic air pollution concentrations. The estimated economic magnitudes are large.
For example, the coefficient estimates from column 2 indicate that the annual mean level of
Benzene fell by 0.34 (= 3.155*0.108) in non-shale counties in which banks received a one
standard deviation (0.108) boost in liquidity from shale oil discoveries via their branches in
shale counties. This is equivalent to 24% (= 0.34/1.404) of the standard deviation of Benzene,
mean in our sample. As reported in Online Appendix Table A2, these results are robust to
examining extreme toxic pollutant concentrations. In particular, rather than focusing on the

mean or median pollutant readings at monitors, we examine pollution levels at the 75" and
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90" percentiles of readings at each monitor during each year—and confirm the Table 3
findings.

Next, we use two strategies to address concerns that the results are driven by pre-
existing differences in the level or trends of toxic pollutants across. First, we redo our
baseline county-level analysis while adding to the explanatory variables county-level time
trends prior to the shale discovery period. Specifically, County trends correspond to a full set
of interactions between county dummies and a time trend variable, so that County trends
equals County dummy, X Trends, where County dummy, represents a vector of 300
county dummy variables, and Trends equals one in 2000, two in 2001, three for 2002, and
zero for years over the post-shale-discovery period. As shown in Table 4 columns 1 and 2,
both county liquidity gain measures remain negative and statistically significant when
controlling for a full set of county pre-trends, which condition out any differences in pre-
trends across counties.

Our second strategy directly tests whether the level of pollution prior to shale
developments varies systematically with the degree to which a county is exposed to

subsequent bank liquidity shocks. We run the following regressions:
Pollj yrez003 = A1County liquidity gain; postz003 + A2Xj prezo03 + €, (5)

where Poll; ;2003 €quals the Top-10 Toxins readings in county j averaged over the pre-shale
discovery period 2000 — 2002. County liquidity gain; ,,s2003 is the average exposure of
county ;j to bank liquidity gains during the post-2003 period, and X; ,;-¢2003 includes the same
set of county specific controls as above (Ln(Per capita personal income), Ln(Population),
Labor market participation, and Unemployment), averaged over the 2000 — 2002 period.

As shown in Table 4, we find no relation between pollution during the 2000-2002
period and bank liquidity shocks in the post-2003 period: County liquidity gainl, post2003
and County liquidity gain2, post2003 enter insignificantly when examining toxic emissions
before shale discovery. Overall, the results in Table 4 suggest that the pollution-reducing
effects of positive county liquidity shocks cannot be explained by differential pre-trends in

pollution.



18

4.2 County liquidity shocks and county pollution: heterogeneous effects

To provide additional evidence on whether county-level liquidity shocks affect
pollution, we assess whether the drop in pollution associated with a given bank liquidity
shock is greater in counties in which firms have paid more EPA fines. Specifically, we
conjecture that (1) when firms believe that they face more intense monitoring by the EPA
regarding regulatory limits on toxic emissions, this increases the expected value of making
pollution abatement investments and (2) when there are more EPA fines in a county, this
tends to increase firms’ assessments of EPA monitoring intensity.® Thus, we evaluate
whether easing access to credit has an especially pronounced effect on pollution abatement in
counties in which there have been more substantial EPA fines.

To conduct this evaluation, we use a county-level indicator of penalties for violating
the Clean Air Act (CAA) based on EPA’s compliance and enforcement data. For each county
in each year, we calculate the total dollar amount of CAA penalties over the past five years
across plants located in the county. We define EPA Penalties as equal to one if the total
penalty amount in a county is above the median value of county-years in the EPA’s
compliance and enforcement dataset, and zero otherwise. To test our conjecture above, we
interact EPA Penalties with the county-specific liquidity shock measure, include that
interaction term in Equation (4), and report the regression results in Table 5.

We find that the pollution-reducing effects of liquidity shocks are greater in counties
with a more intense regulatory focus, as measured by EPA Penalties. Table 5 provides the
results on the mean values for Top-10 Toxins and each of the five toxic air pollutants. As can
be seen from columns 1 — 6, the interaction of county-specific liquidity shocks and penalties
for violating CAA, County liquidity gainl *EPA Penalties, enters negatively and significantly
across the annual mean values for Top-10 Toxins and four out of the five toxic parameters.

Columns 7 — 12 show that the results remain highly robust when using the other county-level

® For example, with more fines, firms’ perceptions of the likelihood of being fined might increase because of
increases in the actual intensity with which regulators examine and penalize pollution in that county or because
of increases in the degree to which firms are aware that regulators are monitoring their emissions, i.e., the
salience of the environmental regulatory regime to the firms.
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liquidity shock measure, County liquidity gain2, which further differentiates shale counties
by whether they experience a shale boom or not. The estimated economic magnitudes are
large: the coefficients from column 1 in Table 5, for example, suggest that the Top-10-
Toxins-reducing effects of credit supply in counties with a higher amount of penalties for
violating the CAA are about four times as large as those in counties with a relatively lower

amount.

5. Firm-Level Liquidity Shocks and Plant-Level Toxic Emissions

We now assess the relationship between a firm’s credit conditions and its plants’
emissions of toxic pollutants. There are two key differences with the county-level analyses.
First, the county-level analyses use data from EPA monitors. We now examine plant-level
toxic emissions, using TRI data. In particular, Total Toxic Releases equals the logarithm of
the total amount of toxic chemicals released (including air emissions, water discharges,
underground injection, etc.) from each plant in a year. Second, the county-level analyses
measure credit shocks and pollution in the same county, i.e., Poll and County liquidity gain
are measured in the same non-shale county, where County liquidity gain measures the degree
to which banks in the non-shale county receive liquidity shocks through their branch
networks in shale counties. In our plant-level analyses, we examine credit shocks to the
plant’s headquarters, which is typically located in a different county from the plant.” That is,
we compute the degree to which banks in the county where the plant’s headquarters is
located receive liquidity shocks through branch networks in other counties. We omit all
plants and headquarters located in shale counties—and in robustness checks, we also omit

plants and headquarters located in counties neighboring shale counties.

" In particular, 77,951 observations are in a different county from the plant’s headquarters, and 16,353
observations are in the same county as its headquarters.
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5.1 Shale liquidity shocks and plant emissions: Core analyses
We first evaluate how plants adjust their toxic emissions when banks operating in the
plants’ headquarters counties—Headquarters(county)—receive shale liquidity shocks in their

branches in other counties. We estimate the following regressions at the plant-year level.
Total toxic releases, ;+ = By Firm_county liquidity gain; nagenty,e + Ballp ¢
+ ap + acnty,t + aind,t + ahdqst,t + gp,i,t, (6)

where the dependent variable, Total toxic releasesy; ., is the log amount of toxic chemical

releases (measured in pounds) by plant p located in county cnty, affiliated with firm i in
industry ind, headquartered in county hdgcnty and state hdgst in year t.
Firm_county liquidity gain; pagenty,: 1S one of the two measures of the extent to which the
banks operating in county hdgcnty receive positive liquidity shocks through their branch
networks in other counties, and is defined above in Section 3. Plant-specific traits (Il ;)
include Total sales and Sales growth. We include plant, county-year, industry (2-digit SIC)-
year, and headquarters (state)-year fixed effects, ap,, @enty ¢s Xina,e» aNd Apggse,e> to condition
out any time-invariant differences across plants and time-varying differences across (plants’)
counties, industries and (headquarters’) states. We estimate the model using OLS, with
standard errors clustered at the firm level. To the extent that companies effectively devote
more resources to limiting toxic emissions when they receive better credit conditions, we
expect 5; < 0.

We interpret these shale liquidity shocks to banks in the firm’s headquarters-county as
changes in the credit conditions facing the firm based on the assumption that firms tend to
obtain loans from geographically close banks. Extensive research support this assumption,
e.g., Petersen and Rajan (2002), Berger et al. (2005), Agarwal and Hauswald (2010), and
Berger, Bouwman, and Kim (2017). For example, Petersen and Rajan (2002) find that the
median distance between bank and borrower is 4 miles.

It is worth noting that we include county-year fixed effects throughout the analysis.
This addresses concerns that our results are driven by economic or regulatory variations

across counties, such as local credit demand shocks, local environmental regulations, and
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other omitted variables that might affect pollution emissions. We can include county-year
effects because not all plants located in a county have their headquarters in the same county,
which enables us to distinguish the treatment effects from local economic conditions.

We discover that plants pollute less after banks in the county in which their parents
firms are headquartered receive positive liquidity shocks. As shown in columns 1 — 4 of
Table 6, the key explanatory variable—the degree to which banks in the county in which a
firm is headquartered receive positive liquidity shocks (i.e., Firm-county liquidity gainl, or
Firm-county liquidity gain2)—enters negatively and significantly in all specifications. These
results suggest that improvements in firms’ access to finance lead the firm’s plants to emit
less toxic pollutants. These results are unlikely to be driven by (a) changes in local economic
conditions triggered by shale development because we exclude both plants in shale counties
and firms headquartered in shale counties, and (b) changes in local economic conditions due
to other omitted factors because we include a full set of county-year fixed effects.

To interpret the economic magnitudes of the estimated coefficients, consider two
otherwise similar plants, except that one plant has its parent firm headquartered in a county
that receives a positive liquidity shock equal to the sample median shock (i.e., Firm-county
liquidity gainl = 0.05 as shown in Table 1 Panel B), while the other is headquartered in a
county that does not receive the shock (i.e., Firm-county liquidity gainl = 0). The coefficient
estimates from column 1 of Table 6 indicate that toxic emissions from the “shocked” plant
would be 6% (= 0.05*1.19) lower than those of the other plant.

We were concerned that activities in counties that neighbor (are geographically
adjacent to) shale counties could drive our results and lead to spurious results. Thus, we
repeat the analyses, but exclude plants and firms headquartered in counties adjacent to shale

counties. As shown in columns 5 — 8, all of the results hold.

5.2 Liquidity shocks and plant pollution: differentiating by bank dependence
We extend this examination by assessing whether the pollution-reducing effects of
liquidity shocks to banks in a plant’s headquarters-county vary across firms in a predictable

manner. If liquidity shocks to banks in the headquarters-county affect firms by easing credit
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constraints, then the impact should be stronger among firms that rely more heavily on local
banks. To measure the extent to which firms rely on local banks for credit, we differentiate
between privately-held or publicly-listed firms. Based on a considerable body of research
(e.g., Pagano, Panetta, and Zingales 1998; Saunders and Steffen 2011; Borisov, Ellul, and
Sevilir 2017), we assume that publicly-listed firms have, on average, greater access to credit
beyond banks operating in their headquarters-county than privately-held firms. We test
whether the impact of liquidity shocks on plants’ toxic emissions is larger among plants
affiliated with privately-held firms than among plants affiliated with publicly-listed firms.
Consistent with this view, we find larger pollution-reducing effects from positive
bank liquidity shocks among plants affiliated with privately-held firms. As shown in Table 7,
the key explanatory variable, which is either Firm-county liquidity gainl or Firm-county
liquidity gain2, enters negatively and significantly among plants affiliated with privately-held

firms but enters insignificantly when examining publicly-listed firms.

5.3 Instrumental variable estimation

In this subsection, we conduct 2SLS regressions where the intermediating variable is
the change in deposits. This allows us to (a) examine whether a firm’s headquarters-county
exposure to shale discoveries influences its plant pollutant emissions by boosting the liquidity
of banks operating in that county, and (b) further assess the economic magnitude of the
impact of liquidity shocks—measured as the percentage change of bank deposits—on
pollution.

To do this, we calculate a county-specific measure of deposit growth. Specifically, for
each county in each year, County-bank deposit growth equals the weighted average of deposit
growth across banks in the county, where we weight each bank by its market share in the
county. We then instrument County-bank deposit growth with measures of county exposure
to shale development, i.e., County liquidity gains I and County liquidity gains 2. We first
note that both county liquidity gains measures are strongly, positively correlated with
County-bank deposit growth. As shown in Table 8 Panel B, both County liquidity gains I and

County liquidity gains 2 enter the first-stage regressions positively and statistically
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significantly. In addition, the F-statistics of the weak instrument test range from 50 — 61,
further rejecting the null hypothesis that our instrument is irrelevant to the instrumented
variable.

The second-stage results reported in Table 8 Panel A suggest that positive shocks to
bank liquidity in a county ease credit conditions facing firms headquartered in the county,
and this easing of firm credit constraints reduces toxic emissions by the firm’s plants. The IV
estimates suggest an economically large effect. For example, the estimated coefficients from
column 1 of Panel A indicate that if bank deposits in a county grow by 1 percentage point,

the plant toxic pollution emissions would drop by about 8%.%

6. Toxic Emissions and Adverse Liquidity Shocks

In this section, we employ our third and fourth identification strategies and assess the
impact of adverse liquidity shocks on pollution. While the earlier sections focused on positive
liquidity shocks triggered by shale discoveries, this section uses two strategies for analyzing
the impact of the negative liquidity shocks triggered by the global financial crisis on toxic

emissions.

6.1 Adverse liquidity shocks: Differentiating by firms’ debt maturity structure

To obtain firm-specific adverse liquidity shocks, we examine the tightening of credit
conditions associated with the onset of the global financial crisis, while differentiating firms
by their debt maturity structures. Intuitively, to the extent that firms with more debt maturing
in 2008 faced greater liquidity constraints when the financial crisis hit—as found by Acharya
and Mora (2015), we can use the maturing debt ratio at the onset of the crisis as a proxy for
the impact of the financial crisis on firms’ credit constraint.’ Thus, we follow Almeida et al.
(2012), and Cohn and Wardlaw (2016) and exploit heterogeneity in the maturity structure of

firms’ debt at the onset of the financial crisis in late 2007. In particular, we differentiate firms

8 Online Appendix Table A6 reports 2SLS regressions results at the firm-level, which yield similar results to the
plant-level results discussed above.

°In a different setting that illustrates the importance of leverage and firms’ network of plants, Giroud and
Mueller (2016, 2019) show that plants of highly levered firms respond more strongly to declines in local
consumer demands, which spill over to geographically distant regions through firms’ internal networks.
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by the amount of debt due in one year, measured at the end of the 2007 fiscal year as a
proportion of firm assets (Maturing debt as of 2007). Since firms were unlikely to have
anticipated the advent of the crisis when scheduling their debt maturity before the crisis, we
exploit firms’ pre-determined debt structure as an exogenous source of variation in the
severity of the credit crunch following the onset of the crisis and examine the impact of this
credit tightening on plants’ emissions of toxic pollutants.

We employ the following model specification.

Total toxic releases, ;+ = 6;Maturing debt as of 2007; * Crisis; + 0;K;

+ ap + acnty,t + aind,t + ahdqst,t + Sp,i,t: (7)

where the dependent variable, Total toxic releasesy; ., is the log amount of toxic chemical
releases by plant p located in county cnty, affiliated with firm 7 in industry ind, headquartered
in state hdgst in year t. Maturing debt as of 2007, is the amount of debt due in one year,
measured at the end of fiscal year 2007 as a proportion of firm i’s assets. Crisis equals one
from 2008 onward and zero otherwise. Firm-specific traits (k;.) include Total sales, Sales
growth, and one-year-lagged Profitability. Similar to Equation (6) above, we include plant,
county-year, industry (2-digit SIC)-year, and headquarters (state)-year fixed effects, a,,,
Aenty,es Xind,e» aNd Apggse > to condition out any time-invariant differences across plants and
time-varying differences across (plants’) counties, industries and (headquarters’) states. We
estimate the model using OLS, with standard errors clustered at the firm level. Our variable
of interest, the interaction term—~Maturing debt as of 2007*Crisis—represents an exogenous
change to the liquidity conditions facing each firm, and 8, captures the impact of these shock
to liquidity conditions on associated plant emissions of toxic pollutants. We conduct the
analyses over the 2006-2008 period and the 2006-2009 period, as the crisis might have had
enduring effects on the liquidity conditions and hence the toxic emissions of firms and plants.

As shown in Table 9, when firms receive an adverse liquidity shock, their associated
plants tend to increase toxic emissions. Whether examining the 2006-2008 or 2006-2009
period, Maturing debt as of 2007*Crisis enters positively and significantly. The estimates

suggest an economically large effect. The column 1 estimates indicate that a one standard
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deviation increase in a firm’s maturing debt ratio would boost toxic pollution emissions by
about 9%. Furthermore, neither the estimated coefficient nor its statistical significance on the
interaction term varies much when including or excluding the control for firm sales, sales
growth, and lagged profitability. Thus, the positive impact of the adverse liquidity shock on
toxic emissions does not simply reflect firm performance. Furthermore, the results hold when
including plant, county-year, industry-year and (headquarters) state-year fixed effects. These
findings are consistent with the view that a tightening of credit conditions induces firms to
devote fewer resources toward pollution abatement, boosting plant emissions of toxic

pollutants.

6.2 Bank holdings of private MBS

For our fourth identification strategy, we examine the tightening of credit conditions
associated with the global financial crisis, while differentiating banks by their holdings of
private-label MBSs. Research suggests that banks holding more private-label MBSs were
subject to greater losses and risks during the financial crisis, which was triggered by the
collapse of the housing market (e.g., Agarwal et al. 2012; Ellul and Yerramilli 2013; Nadauld,
and Stulz 2013). Thus, we use the interaction between MBS exposure and the crisis as a
bank-specific measure of a banks’ adverse liquidity shock. After first showing that banks
with greater exposure to private-label MBSs contracted their supply of credit more than other
banks, we (1) construct measures of each county’s exposure to this negative bank liquidity
shocks based on the banks operating in the county, and (2) use these measures to evaluate the
impact of tightening credit conditions in a firm’s headquarters-county on toxic emissions by
the firm’s plants.

We use the following specification to examine whether pre-crisis exposure to private-

label MBSs influences bank profits and supply of credit.
AY} 2007-2010 = p1Private MBSy, 2007 + p2'Xp 2007 + €b, (8)

where the dependent variable, AY}, 5007-2010, €quals changes in C&I Loan growth (or Return

on assets) for bank b from 2007 to 2010. Private MBSy, 5007 1s the total value of private-
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label mortgage-backed securities held by bank b, scaled by the book value of total assets,
measured as of 2007. X}, 5007 denotes a set of bank-specific controls as above (Total asset,
Deposit/Total assets, Liquid assets/Total assets, Mortgages/Total assets, C&I loans/Total
assets, Loan commitments/Total assets, and Letters of credits/Total assets), measured as of
2007. We report the estimation results in Table 10.

As shown in Table 10 Panel B, banks that held a larger ratio of private-label MBSs to
total assets at the onset of the financial crisis experienced a greater contraction of profits and
C&I loan growth. Private MBS>p97 enters the regressions of AROA and AC&I Loan Growth
negatively and significantly, suggesting that larger holdings of private MBSs lead banks to
suffer more profits losses and credit supply reductions. The results hold whether using
periods over 2007 — 2010 (columns 1 — 4) or 2007 — 2009 (columns 5 — 8). The economic
impact is large. The coefficient estimates from column 2 of Panel B indicate that banks with
an average ratio of MBSs to total assets (i.e., Private MBS>007 = 0.023) would reduce C&I
loans by 3 percentage points more than banks that do not hold any private MBSs. This is
large given that the median value of the C&I loan growth rate as of 2007 was 8 percentage
points.

After confirming that holdings of MBS have a material negative impact on bank
credit supply, we next construct a measure of county-specific (and thus firms’ headquarters-
county) exposure to this negative bank liquidity shock based on banks operating in the county.
We then use this measure to evaluate the impact of tightening credit conditions in a firm’s
headquarters-county on toxic emissions by the firm’s plants. We construct the county-
specific measure using a similar strategy to our earlier analyses. For each county, we
compute county exposure to MBS-induced liquidity shocks as the weighted average of bank-
specific Private MBS2007 across banks operating in the county as of 2007, where we weight
each bank by its market share in the county. Similar to our strategy earlier, for each plant, we
assign the values of MBS exposure associated with banks in the county in which its parent
firm is headquartered. We refer to this measure as Firm-county exposure to private MBS>0o;.
We estimate the following cross-section model to assess the impact of tightening credit

conditions on toxic emissions.
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ATotal toxic releasesy ; 50072010 = 01 Firm_county private MBS; haqcnty 2007
+ 92 ,Hp,2007 + acnty + Aing + ahdqst + ep,i, (9)
where ATotal toxic releasesy ;0072010 1 the change of the log amount of toxic chemical

releases by plant p located in county cnty, affiliated with firm 7 in industry ind, headquartered

in county hdgcnty and state hdgst over the period 2007 —  2010.

Firm_county private MBS, paqcnty,2007 measures the extent to which banks operating in
county idgcnty were exposed to private-label MBS as of 2007. Plant-specific traits (1, 2997)
include Total sales and Sales growth, measured as of 2007. We include county, industry, and
headquarters (state) fixed effects to condition out any differences across (plants’) counties,
industries, and (headquarters’) states. We estimate the model using OLS, with standard errors
clustered at the firm level.

Consistent with previous findings, the results in Table 11 suggest that when firms
receive a negative shock to their credit conditions, their plants tend to emit more toxic
pollutants. Firm-county exposure to private MBS:207 enters positively and significantly in all
columns. The coefficient estimates from column 1 indicate that if the pre-crisis MBS
holdings of banks operating in a firm’s headquarters-county increase by one standard
deviation, toxic emissions by the firm’s plants would increase by about 13%. The results hold
whether including or excluding the control for firm sales, sales growth, and whether using
bank MBS holdings as of 2007 or 2006. Furthermore, the results hold when including county,
industry, and (headquarters) state fixed effects. These findings confirm the view that an
adverse shock to firms’ credit conditions induces them to devote fewer resources toward

pollution abatement, leading to an increase in plant toxic emissions.

7. Conclusion

In this study, we evaluate the impact of changes in the credit conditions facing firms
on their plants’ emissions of toxic pollutants. To make this assessment, we use four empirical
strategies to identify shocks to the credit conditions facing firms. The first two strategies
begin with the technological breakthroughs that triggered shale development in several

counties across the U.S. and corresponding liquidity windfalls at bank branches in those
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counties. We construct measures of the degree to which banks in non-shale counties receive
liquidity shocks through their branch networks in shale counties and implement the first two
empirical strategies. We evaluate (1) how these shocks to county credit conditions influence
the emissions of toxic pollutants in those counties, and (2) how these shocks to a firm’s
headquarters county influence its plants’ emissions of toxic pollutants.

The next two identification strategies focus on adverse credit shocks triggered by the
global financial crisis. First, we differentiate firms by the ratio of maturing debt at the onset
of the crisis to total assets and use this as a proxy for the adverse impact of the financial crisis
on firms’ credit constraints. We then evaluate whether firms with higher debt maturity ratios
emitted more toxic pollutants during and after the crisis. Second, we differentiate banks by
their holdings of private-label MBSs right before the crisis and use MBS exposure as a proxy
for the adverse impact of the financial crisis on banks’ supply of credit. This provides a
measure of the degree to which the financial crisis tightens credit offered by banks in each
county. We then evaluate the impact of tightening credit conditions in a firm’s headquarters
county on toxic emissions by the firm’s plants.

Across all four empirical strategies, we find that finance exerts a strong influence on
pollution. Shocks that ease firms’ credit constraints induce a sharp reduction in toxic
emissions and shocks that tighten credit constraints trigger material increases in toxic
pollutants. This work highlights that credit conditions shape firms’ decisions regarding the

release of toxic pollutants.
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Table 1 Summary Statistics

Panel A: County Sample
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Variable N Mean SD P25 P50 P75
County-Specific Liquidity Shock
County liquidity gainl 2225 0.067 0.108  0.000 0.014 0.093
County liquidity gain2 2225 0.060 0.099 0.000 0.010 0.078
Hazardous Pollutant Concentration
Top-10 Toxins, mean 2225 0.027 0.018 0.016 0.024 0.033
Benzene, mean 2209 1.846 1.404 1.026 1.505 2.187
Toluene, mean 2149 4.434 4.054 1926 3.257 5.480
Ethylbenzene, mean 2123 0.680 0.661 0276 0.504  0.883
o0-Xylene, mean 2098 0.782 0.791  0.284 0.570 1.003
m/p Xylene, mean 2037 2.038 2132 0.726 1.445  2.585
County Characteristics
Ln(Per capita personal income) 2225 10.484  0.291 10.298 10.463 10.650
Ln(Population) 2225 12.625 1.280 11.867 12.748 13.581
Labor market participation 2225 0.506 0.049 0.481 0.511  0.537
Unemployment 2225 0.064 0.027  0.045 0.057 0.078
EPA Penalties, in thousand dollar 2225  1305.773 3833.652 15.625 139.620 758.174
Panel B: Toxic Emission Plants
N Mean SD P25 P50 P75
Positive Shock
Firm-county liquidity gainl 94304 0.050 0.089  0.000 0.009 0.058
Firm-county liquidity gain2 94304 0.045 0.083 0.000 0.006 0.050
Total toxic releases 94304 7.897 3.994  5.583 8.603 10.664
Sales 62380 16979 1.681 16.042 17.120 18.064
Sales growth 62380 0.003 0.263 -0.035 0.001  0.055
Negative Shock, Maturing Debt as of 2007
Debt maturing in one year as of 2007 10577 0.042 0.056 0.005 0.023  0.053
Crisis 10577 0.484  0.500 0 0 1
Total toxic releases 10577  7.111 4492 3367 7.842 10.456
Sales 10560 8.845 1.509  7.814 8.931  9.948
Sales growth 10560 0.008 0.183 -0.070 0.051 0.114
Profitability 10560 0.060 0.073  0.033  0.062 0.091




Panel C: Banks

33

N Mean SD P25 P50 P75

Bank liquidity gainl 105579  0.080  0.367 0 0 0

Bank liquidity gain2 105579  0.049  0.313 0 0 0

Bank liquidity gainl, exposed only 14202 0.593 0.834 0.024 0.153 0.834
Bank liquidity gain2, exposed only 14202 0.362 0.785  0.000 0.000 0.068
Deposit growth 105579  0.085  0.172  0.000 0.051 0.118
C&I Loan growth 102555  0.069 0332 -0.096  0.048 0.203
Total assets 105579 11776  1.284 10908 11.647 12471
Capital asset ratio 105579  0.111  0.051  0.084 0.098 0.121
Deposit/Total assets 105579  0.824  0.093  0.796 0.847 0.883
Liquid assets/Total assets 105579  0.061  0.058  0.028 0.042 0.070
Mortgages/Total assets 105579  0.422  0.181  0.295 0.428 0.555
C&lI loans/Total assets 105579  0.094  0.071  0.044 0.078 0.125
Loan commitments/Total assets 105579  0.101  0.083  0.045 0.083 0.135
Letters of credits/Total assets 105579  0.004 0.007  0.000 0.002 0.005
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Table 2 Positive Liquidity Shocks and Bank Deposit & Loan Growth

This table presents the bank-year regressions of bank deposit growth on liquidity shock from the shale-drilling
activities from 2000 — 2013. The dependent variable is deposit growth in columns 1 and 2, and C&I loan growth
in columns 3 and 4. For each bank in a year, we construct two measures of shale liquidity shocks, Bank liquidity
gainl and Bank liquidity gain2. Both measures capture the extent to which each bank receives liquidity gains
resulting from shale development through its branch networks across counties. Appendix Table Al provides
detailed variable definitions. Bank specific controls include Total asset, Capital asset ratio, Deposit/Total assets,
Liquid assets/Total assets, Mortgages/Total assets, C&I loans/Total assets, Loan commitments/Total assets, and
Letters of credits/Total assets, all measured at the beginning of each year. We include Bank and Year fixed
effects throughout the table. P-values are calculated using heteroscedasticity robust standard errors clustered at
the bank level, and reported in parentheses. *,** and *** indicate significance at 10%, 5%, and 1%.

Deposit Growth C&I Loan Growth
(D 2 3) 4
Bank liquidity gainl 0.031*** 0.040%**
(0.000) (0.000)
Bank liquidity gain2 0.028*** 0.034***
(0.000) (0.000)
Total assets (lag) -0.160%*** -0.161*** -0.170%** -0.170%**
(0.000) (0.000) (0.000) (0.000)
Capital asset ratio (lag) 0.983*** 0.984*** 1.407%** 1.409%**
(0.000) (0.000) (0.000) (0.000)
Deposit/Total assets (lag) -0.626%** -0.626%**  -0.128%**  (0.127***
(0.000) (0.000) (0.001) (0.001)
Liquid assets/Total assets (lag) -0.079%** -0.080%** 0.012 0.011
(0.000) (0.000) (0.742) (0.745)
Mortgages/Total assets (lag) 0.084*** 0.084*** -0.176%*** -0.176%**
(0.000) (0.000) (0.000) (0.000)
C&lI loans/Total assets (lag) 0.241%** 0.243%** -2.505%** -2.502%%*
(0.000) (0.000) (0.000) (0.000)
Loan commitments/Total assets (lag) 0.451*** 0.451%** 0.675%** 0.676%**
(0.000) (0.000) (0.000) (0.000)
Letters of credits/Total assets (lag) 0.336** 0.338** 1.142%%* 1.145%%*
(0.019) (0.019) (0.000) (0.000)
BHC Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Observations 105,579 105,579 102,555 102,555
R-squared 0.547 0.546 0.290 0.290

# of banks 10617 10617 10217 10217
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Table 3 Positive Liquidity Shocks and Hazardous Air Pollution, County-Level Analyses Using Data from EPA Pollution Monitoring
Stations

This table reports the regression results of the effects of county-level liquidity shocks on the concentration of hazardous airborne pollutants based on EPA monitoring stations.
Our county-year sample includes only non-shale counties, i.e., those counties with no local shale development. The dependent variable is the arithmetic mean of each of the
air pollutants collected by EPA monitoring stations during each year. We report the results on the average standardized density of top 10 most monitored pollutants, and each
of the five most monitored hazardous pollutants, namely, Benzene, Toluene, Ethylbenzene, o-Xylene, and m/p Xylene. The key explanatory variable is one of the county-
specific, time-varying measures on the extent to which banks in a county are exposed to shale development via its branch located in shale-boom counties, i.e., County
liquidity gainl or County liquidity gain2. For each county in a year, we calculate its banks’ shale liquidity shock by taking the average of bank-specific shale liquidity shock
(i.e., Bank liquidity gainl or Bank liquidity gain2), weighted each bank by its local market share in that particular county. We provide detailed variable definitions in
Appendix Table Al. County controls include Ln(Per capita personal income), Ln(Population), Labor market participation, and Unemployment. We include county and year
fixed effects across columns. P-values are calculated using heteroscedasticity robust standard errors clustered at the county level, and reported in parentheses. *,**, and ***
indicate significance at 10%, 5%, and 1%.

Top-10 m/p Top-10 m/p
Toxins Xylene  Toxins Xylene

(1) 2 3) “4) ©) (6) (M ®) (€) (10) (11) (12)

Benzene Toluene Ethzllllt;enz o-Xylene Benzene Toluene Ethzllllt;enz 0-Xylene

County liquidity gainl -0.020%* -3.155%*% _5425%%% _(595%* _( 690%* 2 476%**
(0.015)  (0.000)  (0.000)  (0.048)  (0.044)  (0.008)

County liquidity gain2 -0.021** -3.313*** -5660*** -0.583* -0.635* -2.434%**
(0.010)  (0.000)  (0.000) (0.071) (0.083) (0.015)
County Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 2,225 2,209 2,149 2,123 2,098 2,037 2,225 2,209 2,149 2,123 2,098 2,037
R-squared 0.661 0.672 0.681 0.669 0.689 0.702 0.661 0.671 0.681 0.669 0.688 0.702

# of counties 300 300 288 287 285 274 300 300 288 287 285 274




36

Table 4 Positive Liquidity Shocks and County-Level Hazardous Air Pollution, Pre-
Trends

This table reports the regression results of the effects of county-level liquidity shocks on the concentration of
hazardous airborne pollutants based on EPA monitoring stations, while controlling for differential trends within
counties. In columns 1 & 2, County trends correspond to a full set of interactions between county dummy and
the time trends variable, County dummy, X Trends, where County dummy, represents a vector of 300
county dummy variables, and Trends is a time trend indicator that equals one in 2000, two in 2001, three for
2002, and zero for years over the post-shale-discovery period. The dependent variable in columns 1 & 2 is the
average standardized values of the top 10 pollutants collected by EPA monitoring stations during each year. The
key explanatory variable is one of the county-specific, time-varying measures on the extent to which banks in a
county are exposed to shale development via its branch located in shale-boom counties, i.e., County liquidity
gainl or County liquidity gain2. County controls in columns 1 & 2 include Ln(Per capita personal income),
Ln(Population), Labor market participation, and Unemployment. In columns 3 & 4, we regress county-level
pollutants over the pre-shale discovery period, 2000-2002, on county exposure to bank liquidity shocks since
2003. The dependent variable is the average standardized values of the top 10 pollutants collected by EPA
monitoring stations during the pre-shale period, 2000 — 2002. The key explanatory variable is County liquidity
gainl (or County liquidity gain2) averaged over the post-shale period, 2003 — 2013. County controls in columns
3 & 4 include Ln(Per capita personal income), Ln(Population), Labor market participation, and Unemployment
averaged over the pre-shale period. We provide detailed variable definitions in Appendix Table Al. We include
county and year fixed effects across columns. P-values are calculated using heteroscedasticity robust standard
errors clustered at the county level, and reported in parentheses. *,**, and *** indicate significance at 10%, 5%,
and 1%.

Top-10 Toxins Top-10 Toxins, pre2003

Controlling for Pre-trends Pre-shale Pollution and Post-

shale Liquidity Shocks
@) 2) 3) 4
County liquidity gainl -0.018**
(0.029)
County liquidity gain2 -0.018**
(0.028)
County liquidity gainl, post2003 0.007
(0.773)
County liquidity gain2, post2003 0.007
(0.776)
County Controls Yes Yes Yes Yes
County Trends Yes Yes No No
County FE Yes Yes No No
Year FE Yes Yes No No
Observations 2,225 2,225 157 150

R-squared 0.728 0.728 0.289 0.283
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Table S Heterogeneity Effects of Positive Liquidity Shocks on County-Level Hazardous Air Pollution, by EPA Penalties

This table reports the heterogeneous effects of county-level liquidity shocks on hazardous air pollutants concentration from EPA monitoring stations, while differentiating
counties by the intensity of EPA penalties. Consistent with the previous tables, our county-year sample includes only non-shale counties, i.e., counties with no local shale
development. EPA Penalties is an indicator that equals one if the dollar amount of penalties imposed on a county’s establishments for violating Clean Air Act over the past
five years are greater than the sample median value, and zero otherwise. The dependent variable is the mean values of each of the air pollutants concentration collected by
EPA monitoring stations during each year. We report the results on the average standardized density of top 10 most monitored pollutants, and each of the five most monitored
hazardous pollutants, namely, Benzene, Toluene, Ethylbenzene, o-Xylene, and m/p Xylene. The key explanatory variable is one of the county-specific, time-varying
measures on the extent to which banks in a county are exposed to shale development via its branch located in shale-boom counties, i.e., County liquidity gainl or County
liquidity gain2. We provide detailed variable definition in Appendix Table Al. County controls include Ln(Per capita personal income), Ln(Population), Labor market
participation, and Unemployment. We include county and year fixed effects across columns. P-values are calculated using heteroscedasticity robust standard errors clustered
at the county level, and reported in parentheses. *,**, and *** indicate significance at 10%, 5%, and 1%.

:{,Op'. 10 Benzene  Toluene Ethylbenz 0-Xylene m/p Top-. 10 Benzene  Toluene Ethylbenz 0-Xylene m/p
oxins ene Xylene Toxins ene Xylene
M (@) A “) (6) Q) ) ® ® (10) an (12)
County liquidity gainl
¥ EPA Ponaltios - 0.019%%% 11675 2364 -0.777F% -0.709%% -2.655%%*
(0.006) (0.032) (0.171) (0.005) (0.042) (0.003)
County liquidity gainl ~ -0.006 ~ -2.321*** -3.782**  -0.023 -0.183 -0.583
(0.419) (0.000) (0.032) (0.931) (0.544) (0.458)
County liquidity gain2
¥ BPA Ponaltic 20.020%%% -1 202%% 2584  -0.850%** -0753% -2.865%**
(0.007) (0.047) (0.180) (0.007) (0.052) (0.004)
County liquidity gain2 -0.006  -2.446%** -3 .881** 0.048 -0.097 -0.392
(0.445) (0.000) (0.045) (0.865) (0.767) (0.648)
EPA Penalties Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
County Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 2,225 2,209 2,149 2,123 2,098 2,037 2,225 2,209 2,149 2,123 2,098 2,037
R-squared 0.663 0.673 0.683 0.671 0.690 0.705 0.663 0.672 0.682 0.671 0.690 0.704

# of counties 300 300 288 287 285 274 300 300 288 287 285 274




Table 6 Positive Liquidity Shocks and Plant Toxic Releases, Plant-Level Analyses
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This table reports the plant-year regressions of a plant’s releases of toxic pollutants on its headquartered county liquidity shocks. Columns 1 — 4 exclude plants and firms in
counties with shale development activities (i.e., shale counties), and columns 5 — 8 further exclude plants and firms in counties adjacent to a shale county. The dependent
variable is the logarithm of the total volume of toxic chemical releases in all columns. The key explanatory variable is one of the firm-county measures on the extent to which
banks in a plant’s headquarters county are exposed to shale development via their branch located in shale counties, i.e., Firm-county liquidity gainl or Firm-county liquidity
gain2. Plant controls include Sales and Sales growth. We provide detailed definitions in Appendix Table Al. We include Plant, County-year, Industry-year, and Headquarters
(State)-year fixed effects in all specifications. P-values are calculated using heteroscedasticity robust standard errors clustered at the firm level, and reported in parentheses.
* % and *** indicate significance at 10%, 5%, and 1%.

Excl. firms & plants located in

shale counties

Total Toxic Releases

Excl. firms & plants located in
shale & neighboring counties

6] ) 3) “4) O] (6) (7 ®)
Firm-county liquidity gainl -1.192%* -1.745%* -1.409%** -2 455%%*
(0.038) (0.017) (0.049) (0.007)
Firm-county liquidity gain2 -1.193** -1.699** -1.534%* -2.568***
(0.045) (0.025) (0.042) (0.008)
Sales 0.029 0.029 0.016 0.017
(0.227) (0.223) (0.515) (0.508)
Sales growth 0.005 0.005 -0.007 -0.007
(0.885) (0.892) (0.853) (0.845)
Plant fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
County-year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Industry-year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Headquarters(State)-year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 94,304 62,380 94,304 62,380 75,972 51,022 75,972 51,022
R-squared 0.909 0.919 0.909 0.919 0.914 0.924 0.914 0.924
# of plants 12296 8636 12296 8636 11349 7956 11349 7956
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Table 7 Positive Liquidity Shocks and Plant Toxic Releases, Heterogeneity by Bank Dependence

This table reports the regressions of a plant’s releases of toxic pollutants on its headquartered county liquidity shocks, while differentiating plants by the extent to which their
parent firms have access to outside sources of financing, and thus their reliance on banks within the headquarters-county. We exclude plants and firms in shale counties. We
use the status of private or publicly traded to proxy for a firm’s dependence on bank credit within the headquarters-county. Columns with the odd number use a sample of
plants owned by private firms, and columns with the even number focus on plants affiliated with publicly listed firms. The dependent variable is the logarithm of the total
volume of toxic chemical releases in all columns. The key explanatory variable is one of the firm-county measures on the extent to which banks in a firm’s headquarters
county are exposed to shale development via their branch located in shale counties, i.e., Firm-county liquidity gainl or Firm-county liquidity gain2. Plant controls include
Sales and Sales growth. We provide detailed definitions in Appendix Table Al. We include Plant, County-year, Industry-year, and Headquarters (State)-year fixed effects in
all specifications. P-values are calculated using heteroscedasticity robust standard errors clustered at the firm level, and reported in parentheses. *,**, and *** indicate
significance at 10%, 5%, and 1%.

Total Toxic Releases

Private Public Private Public Private Public Private Public
(@) 2 A3) “) ) (6) () (®)
Firm-county liquidity gainl -2.869%** 0.051 -3.722%%* -0.987
(0.000) (0.960) (0.000) (0.453)
Firm-county liquidity gain2 -2.874%%* 0.014 -3.797*** -0.846
(0.000) (0.990) (0.000) (0.549)
Plant controls No No Yes Yes No No Yes Yes
Plant fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
County-year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Industry-year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Headquarters(State)-year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 37,781 48,463 23,913 31,609 37,781 48,463 23,913 31,609
R-squared 0914 0.921 0.920 0.935 0.914 0.921 0.920 0.935

# of plants 5133 6347 3405 4460 5133 6347 3405 4460
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Table 8 Positive Liquidity Shocks, Deposit Growth, and Plant Toxic Releases, 2SLS
Results

This table reports the 2SLS regressions of a plant’s releases of toxic pollutants on its headquartered county-
specific liquidity shocks. We exclude plants and firms in shale counties. The dependent variable is the logarithm
of the total volume of toxic chemical releases across all columns for each plant in a given year. The explanatory
variable, County-bank deposit growth, equals the weighted average of bank deposit growth, where each bank is
weighted by its local market share in a particular county. Our instruments are one of the county-specific, time-
varying measures on the extent to which banks in a county are exposed to shale development via its branch
located in shale-boom counties, i.e., Firm-county liquidity gainl or Firm-county liquidity gain2. Plant controls
include Sales and Sales growth. We provide detailed definitions in Appendix Table Al. We include Plant,
County-year, Industry-year, and Headquarters (State)-year fixed effects in all specifications. P-values are
calculated using heteroscedasticity robust standard errors clustered at the firm level, and reported in parentheses.
* % and *** indicate significance at 10%, 5%, and 1%.

Panel A: Second-Stage Results

Total Toxic Releases

) 2) A3) “4)

County-bank deposit growth -8.062%* -10.451**  -7.387*  -9397**

(0.046) (0.029) (0.051) (0.037)
Plant controls No Yes No Yes
Plant fixed effects Yes Yes Yes Yes
County-year fixed effects Yes Yes Yes Yes
Industry-year fixed effects Yes Yes Yes Yes
Headquarters(State)-year fixed effects Yes Yes Yes Yes
Observations 94,169 62,280 94,169 62,280
R-squared 0.902 0.909 0.903 0.911
Weak ID FTest 57.40 49.82 61.62 53.52
# of plants 12291 8633 12291 8633

Panel B: First-Stage Results

County-bank deposit growth

(€)) 2 (©) “

Firm-county liquidity gainl 0.149%**  (.168***

(0.020) (0.024)
Firm-county liquidity gain2 0.163***  (.183***

(0.021) (0.025)

Plant controls No Yes No Yes
Plant fixed effects Yes Yes Yes Yes
County-year fixed effects Yes Yes Yes Yes
Industry-year fixed effects Yes Yes Yes Yes
Headquarters(State)-year fixed effects Yes Yes Yes Yes
Observations 94,169 62,280 94,169 62,280

R-squared 0.796 0.803 0.796 0.803
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Table 9 Negative Liquidity Shocks and Plant Toxic Releases, Maturing Debt

This table reports the estimates of the effects of a firm’s maturing debt at the onset of the 2007-2008 financial
crisis on its plants’ releases of toxic pollutants. The analysis uses plants affiliated with public firms for which we
observe a firm’s debt maturity structure as of the end of fiscal year 2007. In this experiment, we restrict the
sample period to the 2006 — 2008 in columns 1 and 2, and 2006 — 2009 in columns 3 and 4. Crisis is defined as
an indicator that equals one in year 2008 (and 2009), and zero in 2006 and 2007. We measure a firm’s exposure
to maturing debt at the onset of the crisis as follows: Maturing debt as of 2007 equals the amount of debt
maturing within one year as a proportion of the total assets as of fiscal year-end 2007. The dependent variable is
the logarithm of the total volume of toxic chemical releases in all columns. Firm controls include Sales, Sales
growth, and one-year-lagged Profitability. We provide detailed definitions in Appendix Table Al. We include
Plant, County-year, Industry-year, and Headquarters (State)-year fixed effects in all specifications. P-values are
calculated using heteroscedasticity robust standard errors clustered at the firm level, and reported in parentheses.
* % and *** indicate significance at 10%, 5%, and 1%.

Total Toxic Releases

2006 - 2008 2006 - 2009
(1) @) (3) @)
Maturing debt as of 2007 * Crisis 1.702%**  1,708%** 1, 775%*%*  1.680%**
(0.003) (0.003) (0.007) (0.009)
Sales 0.587** 0.689%**
(0.026) (0.010)
Sales growth -0.456%* -0.302
(0.053) (0.144)
Profitability, lag 0.397 0.725
(0.427) (0.101)
Plant fixed effects Yes Yes Yes Yes
County-year fixed effects Yes Yes Yes Yes
Industry-year fixed effects Yes Yes Yes Yes
Headquarters(State)-year fixed effects Yes Yes Yes Yes
Observations 7,995 7,994 10,577 10,560
R-squared 0.971 0.971 0.963 0.963

# of plants 2820 2820 2930 2930
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Table 10 Holdings of Private MBS and Bank Loan Growth

This table presents the cross-section regressions of changes in bank profits and loan growth on their pre-crisis holding of private-label mortgage-backed securities (MBS).
Panel A provides the summary statistics for the bank sample. Panel B reports the regression results. The dependent variable in columns 1 — 4 is changes in return on assets
from 2007 to 2010, AROAz007-2010, and the change in the commercial and industrial loan growth from 2007 to 2010, AC&I Loan Growth:zeo7-2010. The dependent variable in
columns 5 — 8 is changes in return on assets from 2007 to 2009, AROA2007-2009, and the change in the commercial and industrial loan growth from 2007 to 2009, AC&I Loan
Growthzo07-2009. The key explanatory variable, Private MBS, equals the total value of private-label mortgage-backed securities held in both trading and investment portfolios,
scaled by book value of total assets, measured at the end of 2007. Bank characteristics include Total asset, Deposit/Total assets, Liquid assets/Total assets, Mortgages/Total
assets, C&I loans/Total assets, Loan commitments/Total assets, and Letters of credits/Total assets, all measured at the year of 2007. P-values are calculated using
heteroscedasticity robust standard errors, and reported in parentheses. *,**, and *** indicate significance at 10%, 5%, and 1%.

Panel A: Summary Statistics for the Bank Sample

N Mean SD P25 P50 P75
AROA007-2010 6678 -0.005 0.014 -0.008 -0.002 0.001
AC&I Loan Growthago7-2010 6231 -0.127 0.363 -0.327 -0.123 0.075
AROA2007-2009 7013 -0.008 0.016 -0.010 -0.004 0.000
AC&I Loan Growthzgo7-2000 6523 -0.133 0.363 -0.338 -0.128 0.067
Private MBS2007 7724 0.003 0.016 0.000 0.000 0.000
Private MBS»07, exposed banks 1001 0.023 0.039 0.003 0.010 0.027
Total assets,2007 8082 11.927 1.430 10.988 11.785 12.668
Deposit/Total asset,2007 8033 0.959 0.254 0.877 0.997 1.110
Liquid assets/Total assets,2007 8073 0.047 0.055 0.022 0.032 0.050
C&l loans/Total assets,2007 8021 0.100 0.081 0.046 0.083 0.133
Mortgages/Total assets,2007 8021 0.444 0.205 0.308 0.462 0.600
Loan commitments/Total assets,207 8021 0.124 0.114 0.054 0.101 0.161

Letters of credits/Total assets,2007 8071 0.007 0.016 0.000 0.002 0.007




Panel B: Regression Results
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2007 — 2010 2007 — 2009
AROA2007.2010 AC&I Loan GrOWthzom.zom AROA2007.2009 AC&I Loan GrOWthzom.zoog
€)) (2 3) “) (5) (6) @) ()
Private MBS2007 -0.026** -0.033%** -1.264%** -1 115%** -0.040%** -0.038%** -1.279%** -1.097%**
(0.017) (0.003) (0.000) (0.000) (0.008) (0.007) (0.001) (0.003)
Bank characteristics, 2007 No Yes No Yes No Yes No Yes
Observations 6,596 6,596 6,052 6,052 6,927 6,927 6,333 6,333
R-squared 0.001 0.079 0.002 0.056 0.001 0.094 0.002 0.066
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Table 11 MBS-Induced Negative Liquidity Shocks and Plant Toxic Releases

This table presents the effects of MBS-induced liquidity shocks to a firms’ headquartered county on its plants’
releases of toxic chemicals. The unit of analyses is the cross-section at the plant level. The dependent variable is
the log change of total amount of toxic emissions by a plant from 2007 to 2010. The key explanatory variable,
Firm-county exposure to private MBS2007 (or 2006), equals the weighted average of banks’ holding of private MBS
across banks operating in a firm’s headquarters county as of 2007 (or 2006), where we weight each bank by its
market share in the county. Plant controls include Sales and Sales growth as of 2007. We include County,
Industry-year, and Headquarters (State) fixed effects in all specifications. P-values are calculated using
heteroscedasticity robust standard errors clustered at the firm level, and reported in parentheses. *,**, and ***
indicate significance at 10%, 5%, and 1%.

A Total Toxic Releasesoo7-2010

0 2 3) 4

Firm-county exposure to private MBS207 22.035%**  3(.455%**
(0.001) (0.000)
Firm-county exposure to private MBSzoos 15.323%**  17.508%**
(0.004) (0.006)

Plant controls No Yes No Yes
County FE Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Headquarters(State) FE Yes Yes Yes Yes
Observations 7,876 5,086 7,876 5,086

R-squared 0.178 0.241 0.178 0.241




