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Abstract 

We evaluate the impact of credit conditions on firms’ emissions of toxic pollutants. There are 
differing influences: tighter credit might (a) stifle firm production, reducing toxic emissions, 
(b) induce firms to economize on non-core business functions, such as pollution abatement, 
increasing pollution; (c) have no effect on pollution if environmental regulations bind. Using 
four identification strategies, we find that shocks that tighten a firm’s credit conditions 
increase its emissions of toxic pollutants, and those that ease a firm’s access to credit reduce 
its toxic emissions. The estimates suggest that finance exerts a large impact on firms’ 
emissions of toxic pollutants.   
 
JEL: G21, O16, Q52, Q53, Q40 

 

Keywords: Bank Liquidity Shocks, Network, Pollution, Toxic Emissions, Credit Conditions  

 

† Levine: Haas School of Business at University of California, Berkeley, CA; NBER;  
rosslevine@berkeley.edu. Lin: Faculty of Business and Economics, the University of Hong Kong; 
chenlin1@hku.hk. Wang: Faculty of Business and Economics, the University of Hong Kong; 
wangzg@hku.hk. Xie: Department of Finance, CUHK Business School, Chinese University of Hong 
Kong; wensixie@cuhk.edu.hk. We are grateful to Scott Baker, Lucas Davis, Francesco D’Acunto, 
Andrew Ellul, Stuart Gillan, Andres Liberman, Matthew Plosser, Jay Ritter, Kelly Shue, Sheridan 
Titman, Reed Walker, and seminar participants at the Fixed Income-Financial Institutions conference 
at the University of South Carolina, and PBC School of Finance at Tsinghua University for their 
helpful comments and suggestions. Lin wants to acknowledge the financial support from the Center of 
Financial Innovation and Development and the Seed Funding for Strategic Interdisciplinary Research 
at HKU.  



1 
 

 
 

1. Introduction 

Pollution increases the incidence of cancer, cardiovascular and respiratory diseases, 

reproductive and neurodevelopmental disorders, and premature death (e.g., Chay and 

Greenstone 2003; Ebenstein et al. 2015; Currie and Neidell 2005; Knittel, Miller and Sanders 

2016; Schlenker and Walker 2016; IIsen, Rossin-Slater, and Walker 2017). 1  Research 

indicates that about 16% of all deaths in the world in 2015 were attributable to pollution, with 

two-thirds of those premature deaths caused by air pollution and the remainder caused by 

water, soil, and occupational pollution (Lancet 2017). In the United States, the State of the 

Air 2017 report by the American Lung Association shows that more than 40% of the U.S. 

public live in counties that have unhealthful levels of air pollution, and the U.S. 

Environmental Protection Agency (EPA) (2013) reports that more than half of the country’s 

rivers, streams, and waterways are so polluted that they cannot support healthy aquatic life 

and that tens of millions of people in the U.S. drink tap water with chemicals linked to cancer 

and other diseases, even though the water satisfies the conditions of the Clean Water Act 

(Duhigg 2009). Furthermore, firms release much of this pollution. For example, studies by 

the U.S. EPA (2014, 2015, 2016, 2018) indicate that industry accounts for about 22% of 

greenhouse gas emissions, 30% of total toxic air pollutants, and the bulk of toxic pollutants 

released into the land and water.  

Given pollution’s health effects, an extensive body of research explores the impact of 

environmental regulations. For example, an influential set of papers evaluates the U.S. Clean 

Act of 1970 (e.g., Greenstone 2002; Walker 2013; IIsen, Rossin-Slater, and Walker 2017). 

Shapiro and Walker (2018) examine the impact of environmental regulations on pollution 

from manufacturing firms, and several literature reviews summarize research on how 

environmental policies influence pollution by firms (e.g., Bohm 2003; Helfand, Berck, and 

Maull 2003; Kolstad and Toman 2005; Sterner and Robinson 2018). 

Rather than focusing on environmental regulations, we evaluate the impact of credit 

conditions on firms’ emissions of toxic pollutants. Research suggests how credit conditions 

 
1 In addition to harming public health, pollution reduces housing prices (e.g., Currie, Davis, Greenstone and 
Walker 2015), lowers labor productivity (e.g., Zivin and Neidell 2012), and influences industrial production 
(e.g., Greenstone 2002). 
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can influence firms’ decisions to pollute. Decreasing pollution has long-run benefits for a 

firm, such as reducing expected fines from violating regulatory limits on toxic emissions, 

augmenting the health and productivity of workers (e.g. Zivin and Neidell 2012), and 

enhancing the firm’s reputation. At the same time, reducing pollution requires large upfront 

expenditures (e.g., Walker 2013).2 Accordingly, firms facing tighter credit conditions might 

choose to economize on non-core business functions, such as pollution abatement, to cushion 

the effects of tighter credit on profits. In this way, a tightening of credit will tend to increase 

toxic emissions. There may, however, be countervailing influences. Effective regulatory 

systems might prevent firms from increasing pollution, and tighter credit might stifle 

investment and production, reducing toxic emissions. In this paper, we evaluate the impact of 

credit conditions on toxic emissions.  

We employ four empirical strategies for identifying the impact of credit conditions on 

pollution. The first two strategies are based on a shock that eased firm credit conditions, and 

the second two strategies exploit shocks that tightened credit. We first describe the methods 

and results based on the credit-easing shock and then explain the analyses based on the 

credit-tightening shock.  

Our first two empirical strategies start by exploiting shale-induced liquidity shocks to 

individual banks. Gilje, Loutskina, and Strahan (2016) show that (1) unexpected 

technological breakthroughs in fracking made shale gas production economically viable; (2) 

following these technological breakthroughs, the energy industry began rapidly purchasing 

shale mineral leases from landowners in promising areas, i.e., in “shale counties;” (3) the 

landowners then deposited a portion of these mineral-lease payments in local banks, boosting 

bank liquidity; and (4) banks receiving shale liquidity shocks from their branch networks in 

shale counties increased their residential mortgage lending in non-shale counties, i.e., 

counties that did not have shale development activities. Thus, we first confirm for our sample 

that (1) shale discoveries increased local bank deposits in shale counties, and (2) these banks 

increased their supply of credit to corporate clients in non-shale counties. 

 
2  The EPA (a) estimates that companies spent more than $13.7 billion in 2016 to control pollution 
(https://www.epa.gov/enforcement/enforcement-annual-results-fiscal-year-2016) and (b) reports that fees/ 
penalties from for violating environmental laws reached $6 billion in 2016. 
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Our first identification strategy uses these shale liquidity shocks to individual banks to 

construct measures of shocks to the credit conditions facing firms in non-shale counties. 

Specifically, after constructing measures of the degree to which banks in non-shale counties 

receive liquidity shocks through their branch networks in shale counties, we evaluate how 

these shocks influence pollution in those non-shale counties. For the dependent variable in 

these county-level analyses, we use county-year measures of air pollution, which are 

collected from EPA monitoring stations across the country. Importantly, we focus on changes 

in credit conditions and environmental outcomes in counties without any shale discoveries or 

drilling activities. This mitigates concerns that our results are driven by changes in local 

economic conditions or environmental quality resulting from shale development 

(Muehlenbachs, Spiller, and Timmins 2015; Hill and Ma 2017). Moreover, we control for 

county and year fixed effects, as well as time-varying county traits. Conceptually, therefore, 

our first strategy compares the environmental outcomes in two otherwise similar non-shale 

counties, except that banks in one county receive greater liquidity shocks through their 

branch networks in shale counties than banks in the other county.  

We discover that a positive shock to the supply of bank credit in a county lowers toxic 

pollution in the county. That is, when a non-shale county’s banks are more exposed to 

positive liquidity shocks through their branches in counties experiencing shale discoveries, 

we observe sharp reductions in pollution in those treated, non-shale counties. These results 

hold when (a) controlling for time-varying county traits along with county and year fixed 

effects, (b) analyzing different toxic pollutants, and (c) employing different measures of the 

intensity of air pollution. In terms of magnitudes, consider Benzene, the most monitored 

hazardous air pollutant by the EPA in our sample. We find that in counties where banks 

received a shale-liquidity shock equal to one standard deviation of the cross-county 

distribution of such shocks, Benzene concentration levels fell by 24% of the standard 

deviation of Benzene concentration across counties. It is worth mentioning that we show that 

the pollution-reducing effects of positive county liquidity shocks cannot be explained by 

differential pre-trends in pollution. 
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Our second strategy uses the shale liquidity shocks to individual banks to construct 

measures of shocks to the credit conditions facing individual firms. To construct firm-

specific credit shock indicators, we measure the degree to which banks in the county where a 

firm has its headquarters receive shale liquidity shocks. Specifically, we limit the analyses to 

firms with headquarters in non-shale counties and construct measures of the degree to which 

banks in those non-shale counties receive liquidity shocks through their branch networks in 

shale counties. We then evaluate the impact of those firm-specific credit shocks on toxic 

emissions by the firm’s plants, where we also limit the analyses to plants in non-shale 

counties. This second identification strategy relies on the assumption that a firm’s credit 

conditions are influenced by credit conditions in the county in which the firm has its 

headquarters, which is where the firms’ investment decisions are made (Giroud 2013). 

Extensive research provides empirical support for this assumption, e.g., Petersen and Rajan 

(2002), Berger et al. (2005), Agarwal and Hauswald (2010), and Berger, Bouwman, and Kim 

(2017).  

These plant-level analyses have advantages over the county-level strategy. First, the 

county-level analyses use air pollution data collected from EPA monitors, not measures of 

toxic emissions by plants. For the plant-level analyses, we use data from the EPA’s Toxic 

Release Inventory (TRI) program on toxic emissions from each plant in each year. Second, 

the county-level analyses measure credit shocks and pollution in the same non-shale county. 

In the plant-level analyses, we examine credit shocks to the plant’s headquarters and examine 

toxic releases by its plants. Critically, we omit all plants and headquarters located in shale 

counties—and in robustness checks, we also omit plants and headquarters located in counties 

neighboring shale counties. Third, we include county-year fixed effects throughout the plant-

level analysis, which distinguishes treatment effects—the easing of firm credit conditions—

from local economic conditions that might affect plant behavior. We can include county-year 

effects because not all plants located in a county have their headquarters in the same county. 

Conceptually, therefore, our plant-level analyses compare the toxic releases by two otherwise 

similar plants operating in the same non-shale county, except that one plant has its 
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headquarters in a county with banks that receive greater liquidity windfalls than the other 

plant.  

We find that positive shocks to the credit conditions facing firms reduce emissions of 

toxic pollutants by their plants. Our sample contains 94,304 plant-year observations 

involving 12,296 plants affiliated with 4,035 private and public firms over the period from 

2000 through 2013. The results are robust to controlling for plant, county-year, industry-year, 

and (headquarters)state-year fixed effects, as well as time-varying plant characteristics. The 

estimated economic magnitudes are material. For example, consider two otherwise similar 

plants, except that one receives a positive, sample mean liquidity shock due to its 

headquarters in a county with banks exposed to shale liquidity windfalls, while the other does 

not. The coefficient estimates indicate that toxic emissions from the “shocked” plant would 

fall by 6%.  

In an extension, we evaluate whether—and confirm that—the pollution-attenuating 

effects vary in a theoretically predictable manner across firms. Specifically, we differentiate 

plants by whether they are affiliated with privately-held or publicly-listed firms. Since public 

firms tend to have greater access to finance beyond the credit provided by banks operating in 

the firms’ headquarters-county, we expect shocks to local credit conditions to have a smaller 

impact on public firms. Consistent with this view, we discover that the pollution-reducing 

effects from bank liquidity shocks in a firm’s headquarters-county are much stronger among 

private firms.  

In a second extension, we conduct two-stage least squares (2SLS) regressions. In the 

first stage, we use shale discoveries as an instrument for changes in bank deposits, and in the 

second stage, we evaluate the impact of shocks to bank deposits in firms’ headquarters 

county on toxic emissions by their plants. As in all of the analyses, we limit the analyses to 

firms with headquarters in non-shale counties and measure the degree to which banks in 

those non-shale counties receive liquidity shocks through their branch networks in shale 

counties. The 2SLS extension allows us to assess the economic magnitude of a positive 

liquidity shock—now measured as the percentage change in deposits—on pollution. The 

2SLS results both confirm that easing firms’ credit constraints tends to reduce toxic 



6 
 

 
 

emissions by their plants and indicate that the effects are large: A 1 percentage point increase 

in bank deposits in a firm’s headquarters-county reduces toxic emissions by its plants by 

about 8%. 

The third identification strategy exploits a shock that tightened credit—the global 

financial crisis—and develops a firm-level proxy for the credit-tightening impact of the crisis 

on each firm. Following Almeida et al. (2012), and Cohn and Wardlaw (2016), we use 

heterogeneity in the degree to which firms have debt maturing in the year before the crisis to 

proxy for the credit-tightening impact of the crisis on firms. Since (a) the financial crisis 

made it difficult for firms to roll over maturing debts (Acharya and Mora 2015) and (b) firms 

were unlikely to have anticipated the crisis when taking on those debts before the crisis, we 

use the interaction between firms’ pre-determined debt structure and the onset of the crisis as 

an exogenous source of variation in the severity of the credit crunch shocking individual 

firms. We then examine the impact of this credit tightening on toxic emissions by the firms’ 

plants.  

Our fourth identification also begins with the global financial crisis but we now 

exploit cross-bank differences in their pre-crisis holdings of private-label mortgage-backed 

securities (MBS). Compared to agency-backed MBSs, research suggests that private-label 

MBSs exposed banks to substantial losses and risks during the financial crisis, which was 

triggered by the collapse of the housing market (Ellul and Yerramilli 2013). Erel, Nadauld, 

and Stulz (2013) show that banks that held more securitized products before the crisis 

performed significantly worse during the crisis. Thus, we first develop a bank-specific 

measure of exposure to private-label MBSs before the crisis and show that this measure is 

strongly, positively associated with bank losses and the contraction of credit during the crisis. 

We then develop a measure of the degree to which banks in each firm’s headquarters county 

are exposed to these MBS-induced negative shocks and use this firm-specific measure of 

credit tightening to evaluate the impact of credit conditions on toxic emissions by firms’ 

plants. 

Consistent with the findings based on shale-discovery shocks, we find that credit 

tightening triggered by the global financial crisis increased toxic emissions. First, when using 
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heterogeneity in firms’ debt structures to proxy for the severity of credit tightening caused by 

the crisis, we discover that firms that experienced greater credit tightening increased toxic 

emissions through their affiliated plants. These results are robust to including plant, county-

year, industry-year, (headquarters)state-year fixed effects, and an assortment of time-varying 

firm-level traits. Second, when banks in a firm’s headquarters county are more exposed to 

private-label MBSs, the financial crisis triggered a greater increase in toxic emissions by the 

firm’s plants. Thus, both the third and fourth identification strategies indicate that adverse 

shocks to firms’ credit conditions increase pollution by the firm’s plants. These results further 

emphasize that when credit conditions tighten, firms tend to economize on non-core business 

activities such as pollution abatement, leading to an increase in pollution emissions. 

Our key contribution in this paper is assessing how shocks to a firm’s credit 

conditions influence its emissions of toxic pollutants. Although researchers have shown that 

credit conditions shape a range of economy-wide features, such as economic growth (e.g., 

King and Levine 1993, Jayaratne and Strahan 1996, Levine and Zervos 1998, Rajan and 

Zingales 1998), business cycle fluctuations (e.g., Bernanke and Gertler 1989), and the 

distribution of income (e.g., Beck, Levine, and Levkov 2010), we are unaware of previous 

research that evaluates the impact of credit conditions on the environment. Given the 

enormous costs associated with pollution, our research highlights the broader ramifications of 

financial frictions on the economy and society. Our research is also broadly related to the 

growing literature on environment and finance, which focuses on the impact of pollutant 

emissions on financial markets (e.g., Andersson, Bolton, and Samama 2016; Bolton and 

Kacperczyk 2020a; 2020b). We complement this line of research by showing that an 

exogenous variation in corporates’ financial conditions shapes emissions.  

The paper proceeds as follows. Section 2 describes the data and variables. Section 3 

describes the technological breakthroughs in fracking and shale discoveries, and the shocks 

to credit conditions. Section 4 presents the county-level results and Section 5 provides the 

plant-level analyses. Section 6 employs two additional identification strategies and assesses 

how adverse shocks to credit conditions affect toxic emissions by plants. Section 7 concludes. 
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2. Data and Variables 

2.1 Toxic air pollutants concentration from EPA monitoring stations 

To evaluate the impact of an increase in the supply of bank credit on the local 

environment, we start our analysis by using EPA data on the concentration of hazardous 

airborne pollutants collected at outdoor monitors across the nation. The EPA (2017) defines 

hazardous airborne pollutants as “those pollutants that are known or suspected to cause 

cancer or other serious health effects (including reproductive effects or birth defects), or 

adverse environmental effects.” For each monitor, the EPA annual summary files contain 

pollutant-by-pollutant statistics on the arithmetic mean, 50th, 75th, and 90th percentiles of the 

readings from each monitor over each year. This provides annual measures of pollutant 

concentrations across geographic locations. We focus on (1) the five toxic pollutants with the 

most comprehensive data (Benzene, Toluene, Ethylbenzene, o-Xylene, and m/p Xylene) and 

(2) the standardized index of the top-10 most covered toxic pollutants (the five just 

mentioned and Styrene, Dichloromethane, Carbon tetrachloride, Tetrachloroethylene, and 

Chloroform), which we call Top-10 Toxins. We construct this index by (a) standardizing each 

of the top-10 toxic pollutants into a variable that falls between zero and one and (b) taking 

the average across those ten standardized values for each monitor in each year.3  

To calculate the concentration of each hazardous air pollutant at the county-year level, 

we compute the average of each summary statistic—mean, median, 75th percentile, etc.—

across monitors within the county and year. The average number of monitoring sites in a 

county equals 1.76, and the median value equals one. In the main text, we provide results 

using the mean values of these toxic pollutant concentrations. The results hold when using 

the median, 75th, and 90th percentiles, as reported in the Online Appendix. Table 1 Panel A 

presents cross-county summary statistics on the annual mean values of Top-10 Toxins, and 

each of the five hazardous pollutant concentrations in our sample. Online Appendix Table A1 

provides detailed variable definitions. 

 

 
3 We standardize the variable X into a [0, 1] range using (X– MIN(X)) / (MAX(X) – MIN(X)). 
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2.2 Plant-specific toxic emissions from Toxic Release Inventory 

We also conduct analyses at the plant-level by obtaining pollutant emissions 

information on each individual plant from the Toxic Release Inventory (TRI) basic dataset, 

which is maintained by the U.S. Environmental Protection Agency (EPA). TRI collects 

information on the release of toxic chemicals from over 40,000 plants in the U.S. Starting in 

1987, the TRI program tracks the release of toxic chemicals that cause significant adverse 

effects on human health or the environment. Industrial plants that (a) are involved in 

manufacturing, metal mining, electric power generation, chemical manufacturing and 

hazardous waste treatment, (b) have more than 10 full-time employees, and (c) use or 

produce more than threshold levels of TRI-listed toxic substances must report their releases 

of toxins to the TRI. The TRI provides self-reported toxic emissions data at the plant-level, 

along with information on the plant’s physical location, and its parent company’s name and 

firm ID.  

For each plant in a year, we measure its emissions of pollutants as the total amount of 

toxic chemicals released by the plant. Specifically, Total Toxic Releases is the logarithm total 

amount of toxic chemicals released (including air emissions, water discharges, underground 

injection, etc.) from each plant.4 To address the concern that our analyses might be driven by 

changes in local economic conditions resulting from the shale development activities, we 

exclude TRI plants located in counties where there has been shale development since 2003 

(i.e., shale counties), and plants affiliated with firms headquartered in shale counties. Our 

final TRI pollutant emission sample includes 94,304 plant-year observations over the 2000 – 

2013 sample period, involving toxic release records from 12,296 plants affiliated with 4,035 

private and public parent companies that are successfully matched with additional plant-year 

data that we describe next.  

 

 
4 We also conducted these analyses at the firm-level, rather than the plant-level. For each firm in each year, we 
measure its emissions of pollutants by summing up pollution emissions by its plants in non-shale counties. As 
shown in the Online Appendix, all of the results hold. 
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2.3 National Establishment Time-Series (NETS) database 

We match the TRI data with detailed data on each plant and its firm using the 

National Establishment Time-Series (NETS) database, offered by Dun and Bradstreet. NETS 

follows over 58.8 million establishments as of January each year from 1990 to 2014, 

covering essentially the universe of businesses in the U.S. These data allow us to examine the 

pollution outcomes for both publicly listed and private firms and their plants. For each 

establishment, NETS contains dynamic information on its ultimate parent company and the 

geographic location of firm’s headquarters and all of its plants. We determine the 

headquarters-county for each plant by linking the plant’s parent firm in TRI with firms in 

NETS using the common Dun & Bradstreet Number provided in both datasets.  

 

2.4 Shale wells data and bank liquidity shocks 

To create bank-specific measures of their exposure to shale discoveries, we begin 

with IHS Markit Energy, which is a comprehensive database that provides detailed 

information on the date, location, and well orientation for more than 100,000 shale wells 

drilled across the U.S over the period of 2003 – 2013. For each county in each year, we 

calculate the number of shale wells drilled since 2003, which is when technological 

innovations made “fracking” commercially viable.5 Wellsjt denotes the number of shale wells 

drilled in county j as of year t.  

To measure a bank’s liquidity gains from shale discoveries, we combine U.S. counties’ 

shale drilling activities with the bank’s local branch networks. We retrieve information on 

each bank’s branch structure, location of its branches, and deposit balances in those branches 

from the Federal Deposit Insurance Corporation’s (FDIC) Summary of Deposits database.  

Based on (a) the geographic distribution of a bank’s branches and (b) the number of 

shale wells drilled in each county, we construct two measures of each bank’s exposure to 

shale-induced liquidity shocks in each year. The first measure, Bank liquidity gain1, equals 

the logarithm of one plus the number of shale wells drilled across counties in which a bank 

 
5 Following existing research, we treat horizontal wells as the measure of shale-related activities. According to 
Gilje, Loutskina, and Strahan (2016), almost all horizontal wells in the U.S. are drilled to extract shale or other 
unconventional resources after 2002. 
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has at least one branch, where the number of wells in each county is weighted by the bank’s 

market share in each county, divided by the total number of branches owned by the bank. 

Formally: 

!"#$	&'()'*'+,	-"'#1!,# =	
0#11 + ∑ 456&&7$# ∗ 14!9"#:ℎ67!$# > 0> ∗ ?$+@ℎ9!$#>$ /	!9"#:ℎ67!#B,  (1a) 

where b represents bank, j denotes county, and t denotes year. !"##$!" denotes the number of 

shale wells drilled in county j from 2003 as of year t; 1('()*+ℎ"$#!" > 0)  denotes an 

indicator that equals one if bank b has branches in county j at year t and zero otherwise; 

0123ℎ(#!" equals the proportion of all deposits held within county j in year t that are held at 

bank b’s branches within county j; '()*+ℎ"$#" equals the total number of branches owned 

by bank b in year t. By weighting the number of wells in a county by a bank’s market share 

in that county, this measure assumes that a bank’s liquidity inflows in a shale-development 

county are proportional to its market share in that county. Note that Bank liquidity gain1 

equals zero for (a) banks without branches in shale development counties, and (b) all banks 

before 2003, which is before the technological breakthrough that fostered fracking. As shown 

in Table 1 Panel C, Bank liquidity gain1 has a sample average of 0.08, with a higher value 

indicating greater liquidity shocks. And, among banks that are exposed to shale liquidity 

shocks, the sample average of Bank liquidity gain1 equals 0.6.  

Second, Bank liquidity gain2, takes the first measure and further weights by whether 

each branch is in a shale-boom county or not. We define a shale-boom county as one in 

which the number of wells drilled in a year is in the top quartile for all shale-county-years in 

our sample. Following Gilje, Loutskina, and Strahan (2016), once categorized as a shale-

boom county, it retains that categorization in all subsequent years. Formally: 

!"#$	&'()'*'+,	-"'#2!,# = 	0#[1 + 

∑ E56&&7$# ∗ 14!9"#:ℎ67!$# > 0> ∗ ?$+@ℎ9!$# ∗ 14!FFG$#>H$ !9"#:ℎ67!#I ],  (1b) 

where b represents bank, j denotes county, and t denotes year, and the other 

components,!"##$!" , 14'()*+ℎ"$#!" > 05 , 0123ℎ(#!" , and '()*+ℎ"$#"  are defined the 

same as above.	'778!" is a dummy variable that equals one if the number of shale wells 
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drilled in county j during year t is above the top quartile of county-years with shale 

development activities, and zero otherwise. Thus, this second measure captures each bank’s 

exposure to the shale liquidity shock through its branch networks across shale-boom counties 

only. 

 

3. Shale Discoveries and Bank Liquidity Gains 

In this section, we (1) describe shale development during the 2000s, (2) show that 

banks exposed to shale discoveries through their branches in areas with shale discoveries 

experience sharp increases in bank liquidity (i.e., deposits), and (3) develop measures of the 

degree to which counties and firms are exposed to these liquidity shocks. In Sections 4 and 5, 

we use these measures to evaluate the impact of credit conditions on toxic emissions. 

 

3.1 “Fracking” and shale discoveries 

In late 2002, a technological breakthrough, known as “fracking,” combined horizontal 

drilling with hydraulic fracturing to make shale gas production economically viable. 

Therefore, we use 2003 as the first year when the oil and gas industry started large-scale 

investment in shale development. Fracking had an enormous impact on the energy market. 

According to Annual Energy Outlook (AEO 2016), shale gas went from accounting for less 

than 1% of U.S. natural gas production in the late 1990s to nearly 50% of total U.S. natural 

gas production by the end of 2015.  

 

3.2 Shale development and bank liquidity windfalls 

Given the technological improvements in fracking, oil and gas companies increased 

their purchase of mineral leases from landowners in promising areas. With mineral leases, 

local property owners typically receive payments, including a large upfront bonus, based on 

the number of leased acres, plus a royalty percentage on the extracted resources from the 

lease.  
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These purchases significantly boosted deposits in local banks. As described in Plosser 

(2015), leasing contracts typically involve a bonus that varies between $10 and $30,000 per 

acre, and a royalty percentage ranging from 10% to 25%. Accordingly, if a family owns one 

square mile of land (equivalent to 640 acres) and leases this out at an average value of 

$15,005 per acre, they would receive an upfront payment of $9.6 million plus future royalties. 

Gilje, Loutskina, and Strahan (2016) show that deposits grow faster among banks exposed to 

shale boom counties compared to unexposed banks.  

We reassess and confirm this finding in our sample using the following regression:  

K6LF7'+	-9FM+ℎ!,# = N%!"#$	&'()'*'+,	-"'#!,# + N&′Π!,#'% + Q! + Q# + R!,#,      (2) 

where b and t denote bank and time, respectively. Deposit growthb,t is the growth rate of 

domestic deposits for bank b during year t. Bank liquidity gainb,t represents one of the two 

measures on a bank’s exposure to shale drilling activities described above (i.e., Bank liquidity 

gain1 or Bank liquidity gain2). The coefficient of interest is 9$, which captures the extent to 

which a bank’s deposits grow in response to the shale development activities in its branch 

network. If shale-well drilling indeed brings a large liquidity windfall to local branch offices, 

we expect 9$ to be positive and statistically significant. We also control for an array of time-

varying, bank-specific characteristics measured at the beginning of each period (Π#,"&$ ), 

namely Total asset, Capital asset ratio, Deposit/Total assets, Liquid assets/Total assets, 

Mortgages/Total assets, C&I loans/Total assets, Loan commitments/Total assets, and Letters 

of credits/Total assets. We construct firm-specific controls using data from Reports of 

Condition and Income (“Call Reports”). We include bank and year fixed effects, ;# and ;", 

throughout the analyses. Standard errors are clustered at the bank level. 

 The results reported in Table 2 indicate that shale-well drilling activities within a 

banking institution’s branch networks lead to a significant increase in that bank’s deposit 

growth. As shown in columns 1 and 2, both measures on bank liquidity gains enter the 

regressions positively and significantly. The economic magnitudes are meaningful. The 

coefficient estimates from column 1 indicate that deposits in banks that are exposed to the 

shale development activities with an average value of Bank liquidity gain1 (= 0.6) would 
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grow 1.8 percentage points (=0.6*0.031) faster than banks without such exposure. This is 

equivalent to about 22% of the sample mean of deposit growth. 

We also show that bank liquidity gains induce a material increase in the supply of 

credit. As reported in Table 2, we discover a strong, positive association between a bank’s 

exposure to shale liquidity shocks and the growth rate of its commercial and industrial (C&I) 

loans. The coefficient estimates reported in column 3 suggest that when a bank receives an 

average shale liquidity shock, i.e., Bank liquidity gain1 = 0.6, the bank’s C&I loans grow 2.4 

percentage points (=0.6*0.04) faster than banks that are not exposed to shale development. 

This is large, as the estimated accelerate in growth is equivalent to 34% of the sample mean 

of C&I Loan growth.  

Several factors suggest treating shale-drilling activities as exogenous liquidity 

windfalls for local bank branches. First, the technological breakthroughs in fracking were 

unexpected. Second, the economic viability of shale wells is often driven by broader 

macroeconomic factors, such as demand for natural gas and prices of natural gas (Lake et al., 

2013), that are unlikely to be correlated with local economic conditions (Gilje, Loutskina, 

and Strahan 2016). Third, at least two facts suggest that banks cannot strategically adjust 

branch networks to gain greater exposure to shale windfalls: (a) the discoveries of shale 

formations in different geographies are uncertain, as it is difficult for the oil and gas 

companies to predict how many wells an area needs to drill before producing shale gas; and 

(b) mineral leasing by the oil and gas companies usually occurs at a very rapid pace. As 

reported by Times-Picayune in 2008, several years after the technological breakthroughs, the 

signing bonuses for buying mineral rights in Louisiana’s Haynesville Shale area increased 

from about $100 per acre to between $10,000 and $30,000 per acre within one year.  

 

3.3 County- and firm-level liquidity shocks  

Having established that shale oil discoveries influence bank liquidity through their 

branches in areas exposed to these discoveries, we construct county-specific measures of the 

degree to which banks in non-shale counties—counties in which shale was not discovered—

receive liquidity shocks through their branch networks in shale counties.  
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For each non-shale county in each year, we compute two county-level liquidity shock 

measures based on the two bank-specific shale liquidity shock measures defined above and 

weight them by the share of the county’s deposits held by each bank. From Bank liquidity 

gain1, we construct:  

SF)#+,	&'()'*'+,	-"'#1$,# = ∑T!,$,# ∗ !"#$	&'()'*'+,	-"'#1!,#,   (3) 

where County liquidity gain1j,t represents the extent to which banks in non-shale county j at 

time t received shale liquidity shocks via their branch networks in shale counties, Bank 

liquidity gain1b,t denotes the bank-specific shale liquidity shock measure for bank b in year t 

(Equation 1a), and <#,!," is the share of county j’s total deposits in year t that are held in bank 

b’s branches located in county j. County liquidity gain2, is computed similarly based on Bank 

liquidity gain2b,t.  

We also construct measures of shocks to each firm’s credit conditions by gauging the 

extent to which banks in the firm’s headquarters-county receive shale liquidity shocks. 

Specifically, for each plant, we identify the firm’s headquarters-county using the NETS 

database and compute the two corresponding county liquidity gain measures for that 

headquarters-county. Thus, for each plant, we assign the shale liquidity shock values 

associated with banks in the county in which its parent firm is headquartered. We refer to 

these measures as Firm-county liquidity gain1 and Firm-county liquidity gain2.  

   

4. County-Level Liquidity Shocks and Environmental Quality 

4.1 County liquidity shocks and county pollution 

To evaluate the impact of county-level liquidity shocks on air pollution in these 

counties, we use the following regression specification. 

UF&&$,# = V%SF)#+,	&'()'*'+,	-"'#$,# + V&(Π$,# + Q$ + Q# + R$,#.   (4) 

The dependent variable, Pollj,t, is based on either Top-10 Toxins or one of the pollution 

concentration measures. For Top-10 Toxins and each of the five pollutants (Benzene, Toluene, 

Ethylbenzene, o-Xylene, and m/p Xylene), we conduct regression analyses on the mean, 50th, 

70th, and 90th percentile readings at the monitors within county j during year t. The 
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explanatory variable of interest, County liquidity gainj,t represents one of the two county-level 

liquidity shock measures defined by Equation (3), where we focus on County liquidity gain1j,t 

and County liquidity gain2j,t. We include a set of county characteristics, Π!,", namely Ln(Per 

capita personal income), Ln(Population), Labor market participation, and Unemployment to 

account for time-varying economic conditions, and county and year fixed effects, ;! and ;" 

to condition out time-invariant factors across counties and time specific effects.  

In this way, we are comparing toxic pollutant concentrations between otherwise 

similar non-shale counties in which banks receive different liquidity shocks through their 

branch networks in shale counties. It is worth emphasizing that we reduce the possibility that 

the results will be affected by changes in the demand side emanating from shale discoveries 

by examining only counties in which there are no shale discoveries. Banks in these non-shale 

counties, however, may receive liquidity shocks through their branch networks in shale 

counties. We estimate Equation (4) using OLS, with standard errors clustered at the county 

level, and report the results in Tables 3 and 4. 

We find that county-level liquidity shocks materially reduce pollution. Table 3 reports 

the results for Top-10 Toxins and each of the five toxic air pollutants on the two measures of 

county-specific liquidity shocks. We provide the results on the mean values of each of the 

pollutants collected by EPA monitoring stations during each year in Table 3. As shown, the 

two county-level liquidity shock measures, County liquidity gain1 in columns 1 – 6 and 

County liquidity gain2 in columns 7 – 12, enter negatively and significantly across all of the 

regressions reported in Table 3. Positive liquidity shocks are associated with sharp decreases 

in average toxic air pollution concentrations. The estimated economic magnitudes are large. 

For example, the coefficient estimates from column 2 indicate that the annual mean level of 

Benzene fell by 0.34 (= 3.155*0.108) in non-shale counties in which banks received a one 

standard deviation (0.108) boost in liquidity from shale oil discoveries via their branches in 

shale counties. This is equivalent to 24% (= 0.34/1.404) of the standard deviation of Benzene, 

mean in our sample. As reported in Online Appendix Table A2, these results are robust to 

examining extreme toxic pollutant concentrations. In particular, rather than focusing on the 

mean or median pollutant readings at monitors, we examine pollution levels at the 75th and 
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90th percentiles of readings at each monitor during each year—and confirm the Table 3 

findings.  

Next, we use two strategies to address concerns that the results are driven by pre-

existing differences in the level or trends of toxic pollutants across. First, we redo our 

baseline county-level analysis while adding to the explanatory variables county-level time 

trends prior to the shale discovery period. Specifically, County trends correspond to a full set 

of interactions between county dummies and a time trend variable, so that County trends 

equals =7>*2?	@>88?' ×  B("*@$ , where =7>*2?	@>88?'  represents a vector of 300 

county dummy variables, and Trends equals one in 2000, two in 2001, three for 2002, and 

zero for years over the post-shale-discovery period. As shown in Table 4 columns 1 and 2, 

both county liquidity gain measures remain negative and statistically significant when 

controlling for a full set of county pre-trends, which condition out any differences in pre-

trends across counties. 

Our second strategy directly tests whether the level of pollution prior to shale 

developments varies systematically with the degree to which a county is exposed to 

subsequent bank liquidity shocks. We run the following regressions: 

UF&&$,)*+&,,- 	= W%SF)#+,	&'()'*'+,	-"'#$,)./#&,,- + W&X$,)*+&,,- + 6$,              (5) 

where C7##!,()*+,,- equals the Top-10 Toxins readings in county j averaged over the pre-shale 

discovery period 2000 – 2002. =7>*2?	#DE>D@D2?	F)D*!,(./"+,,- is the average exposure of 

county j to bank liquidity gains during the post-2003 period, and G!,()*+,,- includes the same 

set of county specific controls as above (Ln(Per capita personal income), Ln(Population), 

Labor market participation, and Unemployment), averaged over the 2000 – 2002 period.  

As shown in Table 4, we find no relation between pollution during the 2000-2002 

period and bank liquidity shocks in the post-2003 period: County liquidity gain1, post2003 

and County liquidity gain2, post2003 enter insignificantly when examining toxic emissions 

before shale discovery. Overall, the results in Table 4 suggest that the pollution-reducing 

effects of positive county liquidity shocks cannot be explained by differential pre-trends in 

pollution.  
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4.2 County liquidity shocks and county pollution: heterogeneous effects  

To provide additional evidence on whether county-level liquidity shocks affect 

pollution, we assess whether the drop in pollution associated with a given bank liquidity 

shock is greater in counties in which firms have paid more EPA fines. Specifically, we 

conjecture that (1) when firms believe that they face more intense monitoring by the EPA 

regarding regulatory limits on toxic emissions, this increases the expected value of making 

pollution abatement investments and (2) when there are more EPA fines in a county, this 

tends to increase firms’ assessments of EPA monitoring intensity. 6  Thus, we evaluate 

whether easing access to credit has an especially pronounced effect on pollution abatement in 

counties in which there have been more substantial EPA fines. 

To conduct this evaluation, we use a county-level indicator of penalties for violating 

the Clean Air Act (CAA) based on EPA’s compliance and enforcement data. For each county 

in each year, we calculate the total dollar amount of CAA penalties over the past five years 

across plants located in the county. We define EPA Penalties as equal to one if the total 

penalty amount in a county is above the median value of county-years in the EPA’s 

compliance and enforcement dataset, and zero otherwise. To test our conjecture above, we 

interact EPA Penalties with the county-specific liquidity shock measure, include that 

interaction term in Equation (4), and report the regression results in Table 5.  

We find that the pollution-reducing effects of liquidity shocks are greater in counties 

with a more intense regulatory focus, as measured by EPA Penalties. Table 5 provides the 

results on the mean values for Top-10 Toxins and each of the five toxic air pollutants. As can 

be seen from columns 1 – 6, the interaction of county-specific liquidity shocks and penalties 

for violating CAA, County liquidity gain1*EPA Penalties, enters negatively and significantly 

across the annual mean values for Top-10 Toxins and four out of the five toxic parameters. 

Columns 7 – 12 show that the results remain highly robust when using the other county-level 

 
6 For example, with more fines, firms’ perceptions of the likelihood of being fined might increase because of 
increases in the actual intensity with which regulators examine and penalize pollution in that county or because 
of increases in the degree to which firms are aware that regulators are monitoring their emissions, i.e., the 
salience of the environmental regulatory regime to the firms. 



19 
 

 
 

liquidity shock measure, County liquidity gain2, which further differentiates shale counties 

by whether they experience a shale boom or not. The estimated economic magnitudes are 

large: the coefficients from column 1 in Table 5, for example, suggest that the Top-10-

Toxins-reducing effects of credit supply in counties with a higher amount of penalties for 

violating the CAA are about four times as large as those in counties with a relatively lower 

amount.  

 

5. Firm-Level Liquidity Shocks and Plant-Level Toxic Emissions  

We now assess the relationship between a firm’s credit conditions and its plants’ 

emissions of toxic pollutants. There are two key differences with the county-level analyses. 

First, the county-level analyses use data from EPA monitors. We now examine plant-level 

toxic emissions, using TRI data. In particular, Total Toxic Releases equals the logarithm of 

the total amount of toxic chemicals released (including air emissions, water discharges, 

underground injection, etc.) from each plant in a year. Second, the county-level analyses 

measure credit shocks and pollution in the same county, i.e., Poll and County liquidity gain 

are measured in the same non-shale county, where County liquidity gain measures the degree 

to which banks in the non-shale county receive liquidity shocks through their branch 

networks in shale counties. In our plant-level analyses, we examine credit shocks to the 

plant’s headquarters, which is typically located in a different county from the plant.7 That is, 

we compute the degree to which banks in the county where the plant’s headquarters is 

located receive liquidity shocks through branch networks in other counties. We omit all 

plants and headquarters located in shale counties—and in robustness checks, we also omit 

plants and headquarters located in counties neighboring shale counties. 

 

 
7  In particular, 77,951 observations are in a different county from the plant’s headquarters, and 16,353 
observations are in the same county as its headquarters. 
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5.1 Shale liquidity shocks and plant emissions: Core analyses 

We first evaluate how plants adjust their toxic emissions when banks operating in the 

plants’ headquarters counties—Headquarters(county)—receive shale liquidity shocks in their 

branches in other counties. We estimate the following regressions at the plant-year level. 	 

YF+"&	+FZ':	96&6"767),0,# = V%['9G_:F)#+,	&'()'*'+,	-"'#0,12345#6,# + V&(Π),# 

                               +	Q) + Q45#6,# + Q052,# + Q123/#,# + R),0,#,       (6) 

where the dependent variable, B72)#	27HD+	("#")$"$(,0,", is the log amount of toxic chemical 

releases (measured in pounds) by plant p located in county cnty, affiliated with firm i in 

industry ind, headquartered in county hdqcnty and state hdqst in year t. 

ID(8_+7>*2?	#DE>D@D2?	F)D*0,123'4"5," is one of the two measures of the extent to which the 

banks operating in county hdqcnty receive positive liquidity shocks through their branch 

networks in other counties, and is defined above in Section 3. Plant-specific traits (Π(,") 

include Total sales and Sales growth. We include plant, county-year, industry (2-digit SIC)-

year, and headquarters (state)-year fixed effects, ;(, ;'4"5,", ;042,", and ;123/",", to condition 

out any time-invariant differences across plants and time-varying differences across (plants’) 

counties, industries and (headquarters’) states. We estimate the model using OLS, with 

standard errors clustered at the firm level. To the extent that companies effectively devote 

more resources to limiting toxic emissions when they receive better credit conditions, we 

expect K$ < 0. 

We interpret these shale liquidity shocks to banks in the firm’s headquarters-county as 

changes in the credit conditions facing the firm based on the assumption that firms tend to 

obtain loans from geographically close banks. Extensive research support this assumption, 

e.g., Petersen and Rajan (2002), Berger et al. (2005), Agarwal and Hauswald (2010), and 

Berger, Bouwman, and Kim (2017). For example, Petersen and Rajan (2002) find that the 

median distance between bank and borrower is 4 miles.  

It is worth noting that we include county-year fixed effects throughout the analysis. 

This addresses concerns that our results are driven by economic or regulatory variations 

across counties, such as local credit demand shocks, local environmental regulations, and 
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other omitted variables that might affect pollution emissions. We can include county-year 

effects because not all plants located in a county have their headquarters in the same county, 

which enables us to distinguish the treatment effects from local economic conditions.  

We discover that plants pollute less after banks in the county in which their parents 

firms are headquartered receive positive liquidity shocks. As shown in columns 1 – 4 of 

Table 6, the key explanatory variable—the degree to which banks in the county in which a 

firm is headquartered receive positive liquidity shocks (i.e., Firm-county liquidity gain1, or 

Firm-county liquidity gain2)—enters negatively and significantly in all specifications. These 

results suggest that improvements in firms’ access to finance lead the firm’s plants to emit 

less toxic pollutants. These results are unlikely to be driven by (a) changes in local economic 

conditions triggered by shale development because we exclude both plants in shale counties 

and firms headquartered in shale counties, and (b) changes in local economic conditions due 

to other omitted factors because we include a full set of county-year fixed effects. 

To interpret the economic magnitudes of the estimated coefficients, consider two 

otherwise similar plants, except that one plant has its parent firm headquartered in a county 

that receives a positive liquidity shock equal to the sample median shock (i.e., Firm-county 

liquidity gain1 = 0.05 as shown in Table 1 Panel B), while the other is headquartered in a 

county that does not receive the shock (i.e., Firm-county liquidity gain1 = 0). The coefficient 

estimates from column 1 of Table 6 indicate that toxic emissions from the “shocked” plant 

would be 6% (= 0.05*1.19) lower than those of the other plant.  

We were concerned that activities in counties that neighbor (are geographically 

adjacent to) shale counties could drive our results and lead to spurious results. Thus, we 

repeat the analyses, but exclude plants and firms headquartered in counties adjacent to shale 

counties. As shown in columns 5 – 8, all of the results hold.   

 

5.2 Liquidity shocks and plant pollution: differentiating by bank dependence 

We extend this examination by assessing whether the pollution-reducing effects of 

liquidity shocks to banks in a plant’s headquarters-county vary across firms in a predictable 

manner. If liquidity shocks to banks in the headquarters-county affect firms by easing credit 
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constraints, then the impact should be stronger among firms that rely more heavily on local 

banks. To measure the extent to which firms rely on local banks for credit, we differentiate 

between privately-held or publicly-listed firms. Based on a considerable body of research 

(e.g., Pagano, Panetta, and Zingales 1998; Saunders and Steffen 2011; Borisov, Ellul, and 

Sevilir 2017), we assume that publicly-listed firms have, on average, greater access to credit 

beyond banks operating in their headquarters-county than privately-held firms. We test 

whether the impact of liquidity shocks on plants’ toxic emissions is larger among plants 

affiliated with privately-held firms than among plants affiliated with publicly-listed firms. 

Consistent with this view, we find larger pollution-reducing effects from positive 

bank liquidity shocks among plants affiliated with privately-held firms. As shown in Table 7, 

the key explanatory variable, which is either Firm-county liquidity gain1 or Firm-county 

liquidity gain2, enters negatively and significantly among plants affiliated with privately-held 

firms but enters insignificantly when examining publicly-listed firms.  

 

5.3 Instrumental variable estimation 

In this subsection, we conduct 2SLS regressions where the intermediating variable is 

the change in deposits. This allows us to (a) examine whether a firm’s headquarters-county 

exposure to shale discoveries influences its plant pollutant emissions by boosting the liquidity 

of banks operating in that county, and (b) further assess the economic magnitude of the 

impact of liquidity shocks—measured as the percentage change of bank deposits—on 

pollution.  

To do this, we calculate a county-specific measure of deposit growth. Specifically, for 

each county in each year, County-bank deposit growth equals the weighted average of deposit 

growth across banks in the county, where we weight each bank by its market share in the 

county. We then instrument County-bank deposit growth with measures of county exposure 

to shale development, i.e., County liquidity gains 1 and County liquidity gains 2. We first 

note that both county liquidity gains measures are strongly, positively correlated with 

County-bank deposit growth. As shown in Table 8 Panel B, both County liquidity gains 1 and 

County liquidity gains 2 enter the first-stage regressions positively and statistically 
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significantly. In addition, the F-statistics of the weak instrument test range from 50 – 61, 

further rejecting the null hypothesis that our instrument is irrelevant to the instrumented 

variable. 

The second-stage results reported in Table 8 Panel A suggest that positive shocks to 

bank liquidity in a county ease credit conditions facing firms headquartered in the county, 

and this easing of firm credit constraints reduces toxic emissions by the firm’s plants. The IV 

estimates suggest an economically large effect. For example, the estimated coefficients from 

column 1 of Panel A indicate that if bank deposits in a county grow by 1 percentage point, 

the plant toxic pollution emissions would drop by about 8%.8 

 

6. Toxic Emissions and Adverse Liquidity Shocks  

In this section, we employ our third and fourth identification strategies and assess the 

impact of adverse liquidity shocks on pollution. While the earlier sections focused on positive 

liquidity shocks triggered by shale discoveries, this section uses two strategies for analyzing 

the impact of the negative liquidity shocks triggered by the global financial crisis on toxic 

emissions.  

 

6.1 Adverse liquidity shocks: Differentiating by firms’ debt maturity structure 

To obtain firm-specific adverse liquidity shocks, we examine the tightening of credit 

conditions associated with the onset of the global financial crisis, while differentiating firms 

by their debt maturity structures. Intuitively, to the extent that firms with more debt maturing 

in 2008 faced greater liquidity constraints when the financial crisis hit—as found by Acharya 

and Mora (2015), we can use the maturing debt ratio at the onset of the crisis as a proxy for 

the impact of the financial crisis on firms’ credit constraint.9 Thus, we follow Almeida et al. 

(2012), and Cohn and Wardlaw (2016) and exploit heterogeneity in the maturity structure of 

firms’ debt at the onset of the financial crisis in late 2007. In particular, we differentiate firms 

 
8 Online Appendix Table A6 reports 2SLS regressions results at the firm-level, which yield similar results to the 
plant-level results discussed above.   
9 In a different setting that illustrates the importance of leverage and firms’ network of plants, Giroud and 
Mueller (2016, 2019) show that plants of highly levered firms respond more strongly to declines in local 
consumer demands, which spill over to geographically distant regions through firms’ internal networks. 
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by the amount of debt due in one year, measured at the end of the 2007 fiscal year as a 

proportion of firm assets (Maturing debt as of 2007). Since firms were unlikely to have 

anticipated the advent of the crisis when scheduling their debt maturity before the crisis, we 

exploit firms’ pre-determined debt structure as an exogenous source of variation in the 

severity of the credit crunch following the onset of the crisis and examine the impact of this 

credit tightening on plants’ emissions of toxic pollutants.  

We employ the following model specification. 

YF+"&	+FZ':	96&6"767),0,# = ]%?"+)9'#-	*6^+	"7	F_	20070 ∗ S9'7'7# + ]&(T0,# 
+	Q) + Q45#6,# + Q052,# + Q123/#,# + R),0,#,            (7) 

where the dependent variable, B72)#	27HD+	("#")$"$(,0,", is the log amount of toxic chemical 

releases by plant p located in county cnty, affiliated with firm i in industry ind, headquartered 

in state hdqst in year t. Maturing debt as of 2007i is the amount of debt due in one year, 

measured at the end of fiscal year 2007 as a proportion of firm i’s assets. Crisis equals one 

from 2008 onward and zero otherwise. Firm-specific traits (<0,") include Total sales, Sales 

growth, and one-year-lagged Profitability. Similar to Equation (6) above, we include plant, 

county-year, industry (2-digit SIC)-year, and headquarters (state)-year fixed effects, ;( , 

;'4"5,", ;042,", and ;123/",", to condition out any time-invariant differences across plants and 

time-varying differences across (plants’) counties, industries and (headquarters’) states. We 

estimate the model using OLS, with standard errors clustered at the firm level. Our variable 

of interest, the interaction term—Maturing debt as of 2007*Crisis—represents an exogenous 

change to the liquidity conditions facing each firm, and M$ captures the impact of these shock 

to liquidity conditions on associated plant emissions of toxic pollutants. We conduct the 

analyses over the 2006-2008 period and the 2006-2009 period, as the crisis might have had 

enduring effects on the liquidity conditions and hence the toxic emissions of firms and plants. 

As shown in Table 9, when firms receive an adverse liquidity shock, their associated 

plants tend to increase toxic emissions. Whether examining the 2006-2008 or 2006-2009 

period, Maturing debt as of 2007*Crisis enters positively and significantly. The estimates 

suggest an economically large effect. The column 1 estimates indicate that a one standard 
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deviation increase in a firm’s maturing debt ratio would boost toxic pollution emissions by 

about 9%. Furthermore, neither the estimated coefficient nor its statistical significance on the 

interaction term varies much when including or excluding the control for firm sales, sales 

growth, and lagged profitability. Thus, the positive impact of the adverse liquidity shock on 

toxic emissions does not simply reflect firm performance. Furthermore, the results hold when 

including plant, county-year, industry-year and (headquarters) state-year fixed effects. These 

findings are consistent with the view that a tightening of credit conditions induces firms to 

devote fewer resources toward pollution abatement, boosting plant emissions of toxic 

pollutants. 

 

6.2 Bank holdings of private MBS 

For our fourth identification strategy, we examine the tightening of credit conditions 

associated with the global financial crisis, while differentiating banks by their holdings of 

private-label MBSs. Research suggests that banks holding more private-label MBSs were 

subject to greater losses and risks during the financial crisis, which was triggered by the 

collapse of the housing market (e.g., Agarwal et al. 2012; Ellul and Yerramilli 2013; Nadauld, 

and Stulz 2013). Thus, we use the interaction between MBS exposure and the crisis as a 

bank-specific measure of a banks’ adverse liquidity shock. After first showing that banks 

with greater exposure to private-label MBSs contracted their supply of credit more than other 

banks, we (1) construct measures of each county’s exposure to this negative bank liquidity 

shocks based on the banks operating in the county, and (2) use these measures to evaluate the 

impact of tightening credit conditions in a firm’s headquarters-county on toxic emissions by 

the firm’s plants. 

We use the following specification to examine whether pre-crisis exposure to private-

label MBSs influences bank profits and supply of credit.  

∆b!,&,,7'&,%, 	= c%U9'd"+6	?!@!,&,,7 + c&′X!,&,,7 + 6!,                 (8) 

where the dependent variable, ∆O#,+,,6&+,$,, equals changes in C&I Loan growth (or Return 

on assets) for bank b from 2007 to 2010. C(DP)2"	0'3#,+,,6 is the total value of private-
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label mortgage-backed securities held by bank b, scaled by the book value of total assets, 

measured as of 2007. G#,+,,6 denotes a set of bank-specific controls as above (Total asset, 

Deposit/Total assets, Liquid assets/Total assets, Mortgages/Total assets, C&I loans/Total 

assets, Loan commitments/Total assets, and Letters of credits/Total assets), measured as of 

2007. We report the estimation results in Table 10. 

As shown in Table 10 Panel B, banks that held a larger ratio of private-label MBSs to 

total assets at the onset of the financial crisis experienced a greater contraction of profits and 

C&I loan growth. Private MBS2007 enters the regressions of ΔROA and ΔC&I Loan Growth 

negatively and significantly, suggesting that larger holdings of private MBSs lead banks to 

suffer more profits losses and credit supply reductions. The results hold whether using 

periods over 2007 – 2010 (columns 1 – 4) or 2007 – 2009 (columns 5 – 8). The economic 

impact is large. The coefficient estimates from column 2 of Panel B indicate that banks with 

an average ratio of MBSs to total assets (i.e., Private MBS2007 = 0.023) would reduce C&I 

loans by 3 percentage points more than banks that do not hold any private MBSs. This is 

large given that the median value of the C&I loan growth rate as of 2007 was 8 percentage 

points. 

After confirming that holdings of MBS have a material negative impact on bank 

credit supply, we next construct a measure of county-specific (and thus firms’ headquarters-

county) exposure to this negative bank liquidity shock based on banks operating in the county. 

We then use this measure to evaluate the impact of tightening credit conditions in a firm’s 

headquarters-county on toxic emissions by the firm’s plants. We construct the county-

specific measure using a similar strategy to our earlier analyses. For each county, we 

compute county exposure to MBS-induced liquidity shocks as the weighted average of bank-

specific Private MBS2007 across banks operating in the county as of 2007, where we weight 

each bank by its market share in the county. Similar to our strategy earlier, for each plant, we 

assign the values of MBS exposure associated with banks in the county in which its parent 

firm is headquartered. We refer to this measure as Firm-county exposure to private MBS2007. 

We estimate the following cross-section model to assess the impact of tightening credit 

conditions on toxic emissions. 
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∆YF+"&	+FZ':	96&6"767),0,&,,7'&,%, = ]%['9G_:F)#+,	L9'd"+6	?!@0,12345#6,&,,7 

+	]&′e),&,,7 + Q45#6 + Q052 + Q123/# + 6),0,     (9) 

where ∆B72)#	27HD+	("#")$"$(,0,+,,6&+,$, is the change of the log amount of toxic chemical 

releases by plant p located in county cnty, affiliated with firm i in industry ind, headquartered 

in county hdqcnty and state hdqst over the period 2007 – 2010. 

ID(8_+7>*2?	Q(DP)2"	0'30,123'4"5,+,,6  measures the extent to which banks operating in 

county hdqcnty were exposed to private-label MBS as of 2007. Plant-specific traits (Π(,+,,6) 

include Total sales and Sales growth, measured as of 2007. We include county, industry, and 

headquarters (state) fixed effects to condition out any differences across (plants’) counties, 

industries, and (headquarters’) states. We estimate the model using OLS, with standard errors 

clustered at the firm level. 

Consistent with previous findings, the results in Table 11 suggest that when firms 

receive a negative shock to their credit conditions, their plants tend to emit more toxic 

pollutants. Firm-county exposure to private MBS2007 enters positively and significantly in all 

columns. The coefficient estimates from column 1 indicate that if the pre-crisis MBS 

holdings of banks operating in a firm’s headquarters-county increase by one standard 

deviation, toxic emissions by the firm’s plants would increase by about 13%. The results hold 

whether including or excluding the control for firm sales, sales growth, and whether using 

bank MBS holdings as of 2007 or 2006. Furthermore, the results hold when including county, 

industry, and (headquarters) state fixed effects. These findings confirm the view that an 

adverse shock to firms’ credit conditions induces them to devote fewer resources toward 

pollution abatement, leading to an increase in plant toxic emissions. 

 

7. Conclusion 

In this study, we evaluate the impact of changes in the credit conditions facing firms 

on their plants’ emissions of toxic pollutants. To make this assessment, we use four empirical 

strategies to identify shocks to the credit conditions facing firms. The first two strategies 

begin with the technological breakthroughs that triggered shale development in several 

counties across the U.S. and corresponding liquidity windfalls at bank branches in those 
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counties. We construct measures of the degree to which banks in non-shale counties receive 

liquidity shocks through their branch networks in shale counties and implement the first two 

empirical strategies. We evaluate (1) how these shocks to county credit conditions influence 

the emissions of toxic pollutants in those counties, and (2) how these shocks to a firm’s 

headquarters county influence its plants’ emissions of toxic pollutants.  

The next two identification strategies focus on adverse credit shocks triggered by the 

global financial crisis. First, we differentiate firms by the ratio of maturing debt at the onset 

of the crisis to total assets and use this as a proxy for the adverse impact of the financial crisis 

on firms’ credit constraints. We then evaluate whether firms with higher debt maturity ratios 

emitted more toxic pollutants during and after the crisis. Second, we differentiate banks by 

their holdings of private-label MBSs right before the crisis and use MBS exposure as a proxy 

for the adverse impact of the financial crisis on banks’ supply of credit. This provides a 

measure of the degree to which the financial crisis tightens credit offered by banks in each 

county. We then evaluate the impact of tightening credit conditions in a firm’s headquarters 

county on toxic emissions by the firm’s plants. 

Across all four empirical strategies, we find that finance exerts a strong influence on 

pollution. Shocks that ease firms’ credit constraints induce a sharp reduction in toxic 

emissions and shocks that tighten credit constraints trigger material increases in toxic 

pollutants. This work highlights that credit conditions shape firms’ decisions regarding the 

release of toxic pollutants.  
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Table 1 Summary Statistics 

Panel A: County Sample 
Variable N Mean SD P25 P50 P75 

County-Specific Liquidity Shock        

County liquidity gain1 2225 0.067 0.108 0.000 0.014 0.093 
County liquidity gain2 2225 0.060 0.099 0.000 0.010 0.078 

Hazardous Pollutant Concentration       

Top-10 Toxins, mean 2225 0.027 0.018 0.016 0.024 0.033 
Benzene, mean 2209 1.846 1.404 1.026 1.505 2.187 
Toluene, mean 2149 4.434 4.054 1.926 3.257 5.480 
Ethylbenzene, mean 2123 0.680 0.661 0.276 0.504 0.883 
o-Xylene, mean 2098 0.782 0.791 0.284 0.570 1.003 
m/p Xylene, mean 2037 2.038 2.132 0.726 1.445 2.585 

County Characteristics       

Ln(Per capita personal income) 2225 10.484 0.291 10.298 10.463 10.650 
Ln(Population) 2225 12.625 1.280 11.867 12.748 13.581 
Labor market participation 2225 0.506 0.049 0.481 0.511 0.537 
Unemployment 2225 0.064 0.027 0.045 0.057 0.078 
EPA Penalties, in thousand dollar 2225 1305.773 3833.652 15.625 139.620 758.174 

 
 
Panel B: Toxic Emission Plants 
  N Mean SD P25 P50 P75 

Positive Shock       

Firm-county liquidity gain1 94304 0.050 0.089 0.000 0.009 0.058 
Firm-county liquidity gain2 94304 0.045 0.083 0.000 0.006 0.050 
Total toxic releases 94304 7.897 3.994 5.583 8.603 10.664 
Sales 62380 16.979 1.681 16.042 17.120 18.064 
Sales growth 62380 0.003 0.263 -0.035 0.001 0.055 

Negative Shock, Maturing Debt as of 2007       

Debt maturing in one year as of 2007  10577 0.042 0.056 0.005 0.023 0.053 
Crisis 10577 0.484 0.500 0 0 1 
Total toxic releases 10577 7.111 4.492 3.367 7.842 10.456 
Sales 10560 8.845 1.509 7.814 8.931 9.948 
Sales growth 10560 0.008 0.183 -0.070 0.051 0.114 
Profitability 10560 0.060 0.073 0.033 0.062 0.091 
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Panel C: Banks 
  N Mean SD P25 P50 P75 
Bank liquidity gain1 105579 0.080 0.367 0 0 0 
Bank liquidity gain2 105579 0.049 0.313 0 0 0 
Bank liquidity gain1, exposed only 14202 0.593 0.834 0.024 0.153 0.834 
Bank liquidity gain2, exposed only 14202 0.362 0.785 0.000 0.000 0.068 
Deposit growth 105579 0.085 0.172 0.000 0.051 0.118 
C&I Loan growth 102555 0.069 0.332 -0.096 0.048 0.203 
Total assets 105579 11.776 1.284 10.908 11.647 12.471 
Capital asset ratio 105579 0.111 0.051 0.084 0.098 0.121 
Deposit/Total assets 105579 0.824 0.093 0.796 0.847 0.883 
Liquid assets/Total assets 105579 0.061 0.058 0.028 0.042 0.070 
Mortgages/Total assets 105579 0.422 0.181 0.295 0.428 0.555 
C&I loans/Total assets 105579 0.094 0.071 0.044 0.078 0.125 
Loan commitments/Total assets 105579 0.101 0.083 0.045 0.083 0.135 
Letters of credits/Total assets 105579 0.004 0.007 0.000 0.002 0.005 
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Table 2 Positive Liquidity Shocks and Bank Deposit & Loan Growth 

This table presents the bank-year regressions of bank deposit growth on liquidity shock from the shale-drilling 
activities from 2000 – 2013. The dependent variable is deposit growth in columns 1 and 2, and C&I loan growth 
in columns 3 and 4. For each bank in a year, we construct two measures of shale liquidity shocks, Bank liquidity 
gain1 and Bank liquidity gain2. Both measures capture the extent to which each bank receives liquidity gains 
resulting from shale development through its branch networks across counties. Appendix Table A1 provides 
detailed variable definitions. Bank specific controls include Total asset, Capital asset ratio, Deposit/Total assets, 
Liquid assets/Total assets, Mortgages/Total assets, C&I loans/Total assets, Loan commitments/Total assets, and 
Letters of credits/Total assets, all measured at the beginning of each year. We include Bank and Year fixed 
effects throughout the table. P-values are calculated using heteroscedasticity robust standard errors clustered at 
the bank level, and reported in parentheses. *,**, and *** indicate significance at 10%, 5%, and 1%. 

  Deposit Growth C&I Loan Growth 
 (1) (2) (3) (4) 

Bank liquidity gain1 0.031***   0.040***   
 (0.000)  (0.000)  

Bank liquidity gain2  0.028***  0.034*** 
  (0.000)  (0.000) 

Total assets (lag) -0.160*** -0.161*** -0.170*** -0.170*** 
 (0.000) (0.000) (0.000) (0.000) 

Capital asset ratio (lag) 0.983*** 0.984*** 1.407*** 1.409*** 
 (0.000) (0.000) (0.000) (0.000) 

Deposit/Total assets (lag) -0.626*** -0.626*** -0.128*** -0.127*** 
 (0.000) (0.000) (0.001) (0.001) 

Liquid assets/Total assets (lag) -0.079*** -0.080*** 0.012 0.011 
 (0.000) (0.000) (0.742) (0.745) 

Mortgages/Total assets (lag) 0.084*** 0.084*** -0.176*** -0.176*** 
 (0.000) (0.000) (0.000) (0.000) 

C&I loans/Total assets (lag) 0.241*** 0.243*** -2.505*** -2.502*** 
 (0.000) (0.000) (0.000) (0.000) 

Loan commitments/Total assets (lag) 0.451*** 0.451*** 0.675*** 0.676*** 
 (0.000) (0.000) (0.000) (0.000) 

Letters of credits/Total assets (lag) 0.336** 0.338** 1.142*** 1.145*** 
 (0.019) (0.019) (0.000) (0.000) 

BHC Fixed Effects Yes Yes Yes Yes 
Year Fixed Effects Yes Yes Yes Yes 
Observations 105,579 105,579 102,555 102,555 
R-squared 0.547 0.546 0.290 0.290 
# of banks 10617 10617 10217 10217 
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Table 3 Positive Liquidity Shocks and Hazardous Air Pollution, County-Level Analyses Using Data from EPA Pollution Monitoring 
Stations 

This table reports the regression results of the effects of county-level liquidity shocks on the concentration of hazardous airborne pollutants based on EPA monitoring stations. 
Our county-year sample includes only non-shale counties, i.e., those counties with no local shale development. The dependent variable is the arithmetic mean of each of the 
air pollutants collected by EPA monitoring stations during each year. We report the results on the average standardized density of top 10 most monitored pollutants, and each 
of the five most monitored hazardous pollutants, namely, Benzene, Toluene, Ethylbenzene, o-Xylene, and m/p Xylene. The key explanatory variable is one of the county-
specific, time-varying measures on the extent to which banks in a county are exposed to shale development via its branch located in shale-boom counties, i.e., County 
liquidity gain1 or County liquidity gain2. For each county in a year, we calculate its banks’ shale liquidity shock by taking the average of bank-specific shale liquidity shock 
(i.e., Bank liquidity gain1 or Bank liquidity gain2), weighted each bank by its local market share in that particular county. We provide detailed variable definitions in 
Appendix Table A1. County controls include Ln(Per capita personal income), Ln(Population), Labor market participation, and Unemployment. We include county and year 
fixed effects across columns. P-values are calculated using heteroscedasticity robust standard errors clustered at the county level, and reported in parentheses. *,**, and *** 
indicate significance at 10%, 5%, and 1%. 

  

Top-10 

Toxins 

Benzene Toluene 

Ethylbenz

ene 

o-Xylene  

m/p 

Xylene 

Top-10 

Toxins 

Benzene Toluene 

Ethylbenz

ene 

o-Xylene  

m/p 

Xylene 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

County liquidity gain1 -0.020** -3.155*** -5.425*** -0.595** -0.690** -2.476*** 

      

 

(0.015) (0.000) (0.000) (0.048) (0.044) (0.008) 

      

County liquidity gain2 

      

-0.021** -3.313*** -5.660*** -0.583* -0.635* -2.434** 

       

(0.010) (0.000) (0.000) (0.071) (0.083) (0.015) 

County Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 2,225 2,209 2,149 2,123 2,098 2,037 2,225 2,209 2,149 2,123 2,098 2,037 

R-squared 0.661 0.672 0.681 0.669 0.689 0.702 0.661 0.671 0.681 0.669 0.688 0.702 

# of counties 300 300 288 287 285 274 300 300 288 287 285 274 
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Table 4 Positive Liquidity Shocks and County-Level Hazardous Air Pollution, Pre-
Trends 

This table reports the regression results of the effects of county-level liquidity shocks on the concentration of 
hazardous airborne pollutants based on EPA monitoring stations, while controlling for differential trends within 
counties. In columns 1 & 2, County trends correspond to a full set of interactions between county dummy and 
the time trends variable, !"#$%&	(#))&! ×  +,-$(. , where !"#$%&	(#))&!  represents a vector of 300 
county dummy variables, and Trends is a time trend indicator that equals one in 2000, two in 2001, three for 
2002, and zero for years over the post-shale-discovery period. The dependent variable in columns 1 & 2 is the 
average standardized values of the top 10 pollutants collected by EPA monitoring stations during each year. The 
key explanatory variable is one of the county-specific, time-varying measures on the extent to which banks in a 
county are exposed to shale development via its branch located in shale-boom counties, i.e., County liquidity 
gain1 or County liquidity gain2. County controls in columns 1 & 2 include Ln(Per capita personal income), 
Ln(Population), Labor market participation, and Unemployment. In columns 3 & 4, we regress county-level 
pollutants over the pre-shale discovery period, 2000-2002, on county exposure to bank liquidity shocks since 
2003. The dependent variable is the average standardized values of the top 10 pollutants collected by EPA 
monitoring stations during the pre-shale period, 2000 – 2002. The key explanatory variable is County liquidity 
gain1 (or County liquidity gain2) averaged over the post-shale period, 2003 – 2013. County controls in columns 
3 & 4 include Ln(Per capita personal income), Ln(Population), Labor market participation, and Unemployment 
averaged over the pre-shale period. We provide detailed variable definitions in Appendix Table A1. We include 
county and year fixed effects across columns. P-values are calculated using heteroscedasticity robust standard 
errors clustered at the county level, and reported in parentheses. *,**, and *** indicate significance at 10%, 5%, 
and 1%. 

 Top-10 Toxins Top-10 Toxins, pre2003 

 Controlling for Pre-trends Pre-shale Pollution and Post-
shale Liquidity Shocks 

 (1) (2) (3) (4) 
County liquidity gain1 -0.018**    
 (0.029)    
County liquidity gain2  -0.018**   
  (0.028)   
County liquidity gain1, post2003   0.007  
   (0.773)  
County liquidity gain2, post2003    0.007 
    (0.776) 
County Controls Yes Yes Yes Yes 
County Trends Yes Yes No No 
County FE Yes Yes No No 
Year FE Yes Yes No No 
Observations 2,225 2,225 157 150 
R-squared 0.728 0.728 0.289 0.283 
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Table 5 Heterogeneity Effects of Positive Liquidity Shocks on County-Level Hazardous Air Pollution, by EPA Penalties 

This table reports the heterogeneous effects of county-level liquidity shocks on hazardous air pollutants concentration from EPA monitoring stations, while differentiating 
counties by the intensity of EPA penalties. Consistent with the previous tables, our county-year sample includes only non-shale counties, i.e., counties with no local shale 
development. EPA Penalties is an indicator that equals one if the dollar amount of penalties imposed on a county’s establishments for violating Clean Air Act over the past 
five years are greater than the sample median value, and zero otherwise. The dependent variable is the mean values of each of the air pollutants concentration collected by 
EPA monitoring stations during each year. We report the results on the average standardized density of top 10 most monitored pollutants, and each of the five most monitored 
hazardous pollutants, namely, Benzene, Toluene, Ethylbenzene, o-Xylene, and m/p Xylene. The key explanatory variable is one of the county-specific, time-varying 
measures on the extent to which banks in a county are exposed to shale development via its branch located in shale-boom counties, i.e., County liquidity gain1 or County 
liquidity gain2. We provide detailed variable definition in Appendix Table A1. County controls include Ln(Per capita personal income), Ln(Population), Labor market 
participation, and Unemployment. We include county and year fixed effects across columns. P-values are calculated using heteroscedasticity robust standard errors clustered 
at the county level, and reported in parentheses. *,**, and *** indicate significance at 10%, 5%, and 1%. 

 Top-10 
Toxins Benzene Toluene Ethylbenz

ene o-Xylene  m/p 
Xylene 

Top-10 
Toxins Benzene Toluene Ethylbenz

ene o-Xylene  m/p 
Xylene 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
County liquidity gain1 
* EPA Penalties -0.019*** -1.167** -2.364 -0.777*** -0.709** -2.655***       

 (0.006) (0.032) (0.171) (0.005) (0.042) (0.003)       
County liquidity gain1 -0.006 -2.321*** -3.782** -0.023 -0.183 -0.583       

 (0.419) (0.000) (0.032) (0.931) (0.544) (0.458)       
County liquidity gain2 
* EPA Penalties       -0.020*** -1.202** -2.584 -0.850*** -0.753* -2.865*** 

       (0.007) (0.047) (0.180) (0.007) (0.052) (0.004) 
County liquidity gain2       -0.006 -2.446*** -3.881** 0.048 -0.097 -0.392 

       (0.445) (0.000) (0.045) (0.865) (0.767) (0.648) 
EPA Penalties Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
County Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 2,225 2,209 2,149 2,123 2,098 2,037 2,225 2,209 2,149 2,123 2,098 2,037 
R-squared 0.663 0.673 0.683 0.671 0.690 0.705 0.663 0.672 0.682 0.671 0.690 0.704 
# of counties 300 300 288 287 285 274 300 300 288 287 285 274 
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Table 6 Positive Liquidity Shocks and Plant Toxic Releases, Plant-Level Analyses 

This table reports the plant-year regressions of a plant’s releases of toxic pollutants on its headquartered county liquidity shocks. Columns 1 – 4 exclude plants and firms in 
counties with shale development activities (i.e., shale counties), and columns 5 – 8 further exclude plants and firms in counties adjacent to a shale county. The dependent 
variable is the logarithm of the total volume of toxic chemical releases in all columns. The key explanatory variable is one of the firm-county measures on the extent to which 
banks in a plant’s headquarters county are exposed to shale development via their branch located in shale counties, i.e., Firm-county liquidity gain1 or Firm-county liquidity 
gain2. Plant controls include Sales and Sales growth. We provide detailed definitions in Appendix Table A1. We include Plant, County-year, Industry-year, and Headquarters 
(State)-year fixed effects in all specifications. P-values are calculated using heteroscedasticity robust standard errors clustered at the firm level, and reported in parentheses. 
*,**, and *** indicate significance at 10%, 5%, and 1%. 

 Total Toxic Releases 

 

Excl. firms & plants located in  
shale counties 

Excl. firms & plants located in  
shale & neighboring counties 

 (1) (2) (3) (4) (5) (6) (7) (8) 
             

Firm-county liquidity gain1 -1.192** -1.745**     -1.409** -2.455***   
 (0.038) (0.017)   (0.049) (0.007)   

Firm-county liquidity gain2   -1.193** -1.699**   -1.534** -2.568*** 
   (0.045) (0.025)   (0.042) (0.008) 

Sales  0.029  0.029  0.016  0.017 
  (0.227)  (0.223)  (0.515)  (0.508) 

Sales growth  0.005  0.005  -0.007  -0.007 
  (0.885)  (0.892)  (0.853)  (0.845) 

Plant fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 
County-year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 
Industry-year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 
Headquarters(State)-year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 94,304 62,380 94,304 62,380 75,972 51,022 75,972 51,022 
R-squared 0.909 0.919 0.909 0.919 0.914 0.924 0.914 0.924 
# of plants 12296 8636 12296 8636 11349 7956 11349 7956 
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Table 7 Positive Liquidity Shocks and Plant Toxic Releases, Heterogeneity by Bank Dependence 

This table reports the regressions of a plant’s releases of toxic pollutants on its headquartered county liquidity shocks, while differentiating plants by the extent to which their 
parent firms have access to outside sources of financing, and thus their reliance on banks within the headquarters-county. We exclude plants and firms in shale counties. We 
use the status of private or publicly traded to proxy for a firm’s dependence on bank credit within the headquarters-county. Columns with the odd number use a sample of 
plants owned by private firms, and columns with the even number focus on plants affiliated with publicly listed firms. The dependent variable is the logarithm of the total 
volume of toxic chemical releases in all columns. The key explanatory variable is one of the firm-county measures on the extent to which banks in a firm’s headquarters 
county are exposed to shale development via their branch located in shale counties, i.e., Firm-county liquidity gain1 or Firm-county liquidity gain2. Plant controls include 
Sales and Sales growth. We provide detailed definitions in Appendix Table A1. We include Plant, County-year, Industry-year, and Headquarters (State)-year fixed effects in 
all specifications. P-values are calculated using heteroscedasticity robust standard errors clustered at the firm level, and reported in parentheses. *,**, and *** indicate 
significance at 10%, 5%, and 1%. 

 Total Toxic Releases 

 Private Public Private Public Private Public Private Public 
 (1) (2) (3) (4) (5) (6) (7) (8) 

Firm-county liquidity gain1 -2.869*** 0.051 -3.722*** -0.987      (0.000) (0.960) (0.000) (0.453)     
Firm-county liquidity gain2     -2.874*** 0.014 -3.797*** -0.846 
     (0.000) (0.990) (0.000) (0.549) 
Plant controls No No Yes Yes No No Yes Yes 
Plant fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 
County-year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 
Industry-year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 
Headquarters(State)-year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 37,781 48,463 23,913 31,609 37,781 48,463 23,913 31,609 
R-squared 0.914 0.921 0.920 0.935 0.914 0.921 0.920 0.935 
# of plants 5133 6347 3405 4460 5133 6347 3405 4460 
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Table 8 Positive Liquidity Shocks, Deposit Growth, and Plant Toxic Releases, 2SLS 
Results 

This table reports the 2SLS regressions of a plant’s releases of toxic pollutants on its headquartered county-
specific liquidity shocks. We exclude plants and firms in shale counties. The dependent variable is the logarithm 
of the total volume of toxic chemical releases across all columns for each plant in a given year. The explanatory 
variable, County-bank deposit growth, equals the weighted average of bank deposit growth, where each bank is 
weighted by its local market share in a particular county. Our instruments are one of the county-specific, time-
varying measures on the extent to which banks in a county are exposed to shale development via its branch 
located in shale-boom counties, i.e., Firm-county liquidity gain1 or Firm-county liquidity gain2. Plant controls 
include Sales and Sales growth. We provide detailed definitions in Appendix Table A1. We include Plant, 
County-year, Industry-year, and Headquarters (State)-year fixed effects in all specifications. P-values are 
calculated using heteroscedasticity robust standard errors clustered at the firm level, and reported in parentheses. 
*,**, and *** indicate significance at 10%, 5%, and 1%. 

Panel A: Second-Stage Results 
  Total Toxic Releases 
  (1) (2) (3) (4) 
County-bank deposit growth -8.062** -10.451** -7.387* -9.397** 
 (0.046) (0.029) (0.051) (0.037) 
Plant controls No Yes No Yes 
Plant fixed effects Yes Yes Yes Yes 
County-year fixed effects Yes Yes Yes Yes 
Industry-year fixed effects Yes Yes Yes Yes 
Headquarters(State)-year fixed effects Yes Yes Yes Yes 
Observations 94,169 62,280 94,169 62,280 
R-squared 0.902 0.909 0.903 0.911 
Weak_ID_FTest 57.40 49.82 61.62 53.52 
# of plants 12291 8633 12291 8633 
  
Panel B: First-Stage Results 
  County-bank deposit growth 
  (1) (2) (3) (4) 
Firm-county liquidity gain1 0.149*** 0.168***    (0.020) (0.024)   
Firm-county liquidity gain2   0.163*** 0.183*** 
   (0.021) (0.025) 
Plant controls No Yes No Yes 
Plant fixed effects Yes Yes Yes Yes 
County-year fixed effects Yes Yes Yes Yes 
Industry-year fixed effects Yes Yes Yes Yes 
Headquarters(State)-year fixed effects Yes Yes Yes Yes 
Observations 94,169 62,280 94,169 62,280 
R-squared 0.796 0.803 0.796 0.803 
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Table 9 Negative Liquidity Shocks and Plant Toxic Releases, Maturing Debt 

This table reports the estimates of the effects of a firm’s maturing debt at the onset of the 2007-2008 financial 
crisis on its plants’ releases of toxic pollutants. The analysis uses plants affiliated with public firms for which we 
observe a firm’s debt maturity structure as of the end of fiscal year 2007. In this experiment, we restrict the 
sample period to the 2006 – 2008 in columns 1 and 2, and 2006 – 2009 in columns 3 and 4. Crisis is defined as 
an indicator that equals one in year 2008 (and 2009), and zero in 2006 and 2007. We measure a firm’s exposure 
to maturing debt at the onset of the crisis as follows:  Maturing debt as of 2007 equals the amount of debt 
maturing within one year as a proportion of the total assets as of fiscal year-end 2007. The dependent variable is 
the logarithm of the total volume of toxic chemical releases in all columns. Firm controls include Sales, Sales 
growth, and one-year-lagged Profitability. We provide detailed definitions in Appendix Table A1. We include 
Plant, County-year, Industry-year, and Headquarters (State)-year fixed effects in all specifications. P-values are 
calculated using heteroscedasticity robust standard errors clustered at the firm level, and reported in parentheses. 
*,**, and *** indicate significance at 10%, 5%, and 1%. 

  Total Toxic Releases 
 2006 - 2008 2006 - 2009 

  (1) (2) (3) (4) 
Maturing debt as of 2007 * Crisis 1.702*** 1.708*** 1.775*** 1.680*** 

 (0.003) (0.003) (0.007) (0.009) 
Sales  0.587**  0.689*** 

  (0.026)  (0.010) 
Sales growth  -0.456*  -0.302 

  (0.053)  (0.144) 
Profitability, lag  0.397  0.725 

  (0.427)  (0.101) 
Plant fixed effects Yes Yes Yes Yes 
County-year fixed effects Yes Yes Yes Yes 
Industry-year fixed effects Yes Yes Yes Yes 
Headquarters(State)-year fixed effects Yes Yes Yes Yes 
Observations 7,995 7,994 10,577 10,560 
R-squared 0.971 0.971 0.963 0.963 
# of plants 2820 2820 2930 2930 
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Table 10 Holdings of Private MBS and Bank Loan Growth 

This table presents the cross-section regressions of changes in bank profits and loan growth on their pre-crisis holding of private-label mortgage-backed securities (MBS). 

Panel A provides the summary statistics for the bank sample. Panel B reports the regression results. The dependent variable in columns 1 – 4 is changes in return on assets 

from 2007 to 2010, ΔROA2007-2010, and the change in the commercial and industrial loan growth from 2007 to 2010, ΔC&I Loan Growth2007-2010. The dependent variable in 

columns 5 – 8 is changes in return on assets from 2007 to 2009, ΔROA2007-2009, and the change in the commercial and industrial loan growth from 2007 to 2009, ΔC&I Loan 
Growth2007-2009. The key explanatory variable, Private MBS, equals the total value of private-label mortgage-backed securities held in both trading and investment portfolios, 

scaled by book value of total assets, measured at the end of 2007. Bank characteristics include Total asset, Deposit/Total assets, Liquid assets/Total assets, Mortgages/Total 
assets, C&I loans/Total assets, Loan commitments/Total assets, and Letters of credits/Total assets, all measured at the year of 2007. P-values are calculated using 

heteroscedasticity robust standard errors, and reported in parentheses. *,**, and *** indicate significance at 10%, 5%, and 1%. 

Panel A: Summary Statistics for the Bank Sample 
  N Mean SD P25 P50 P75 

ΔROA2007-2010 6678 -0.005 0.014 -0.008 -0.002 0.001 
ΔC&I Loan Growth2007-2010 6231 -0.127 0.363 -0.327 -0.123 0.075 
ΔROA2007-2009 7013 -0.008 0.016 -0.010 -0.004 0.000 
ΔC&I Loan Growth2007-2009 6523 -0.133 0.363 -0.338 -0.128 0.067 
Private MBS2007 7724 0.003 0.016 0.000 0.000 0.000 

Private MBS2007, exposed banks 1001 0.023 0.039 0.003 0.010 0.027 

Total assets,2007 8082 11.927 1.430 10.988 11.785 12.668 

Deposit/Total asset,2007 8033 0.959 0.254 0.877 0.997 1.110 

Liquid assets/Total assets,2007 8073 0.047 0.055 0.022 0.032 0.050 

C&I loans/Total assets,2007 8021 0.100 0.081 0.046 0.083 0.133 
Mortgages/Total assets,2007 8021 0.444 0.205 0.308 0.462 0.600 
Loan commitments/Total assets,2007 8021 0.124 0.114 0.054 0.101 0.161 

Letters of credits/Total assets,2007 8071 0.007 0.016 0.000 0.002 0.007 
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Panel B: Regression Results 
  2007 – 2010 2007 – 2009 

 
ΔROA2007-2010 ΔC&I Loan Growth2007-2010 ΔROA2007-2009 ΔC&I Loan Growth2007-2009 

  (1) (2) (3) (4) (5) (6) (7) (8) 
Private MBS2007 -0.026** -0.033*** -1.264*** -1.115*** -0.040*** -0.038*** -1.279*** -1.097*** 

 (0.017) (0.003) (0.000) (0.000) (0.008) (0.007) (0.001) (0.003) 
Bank characteristics, 2007 No Yes No Yes No Yes No Yes 
Observations 6,596 6,596 6,052 6,052 6,927 6,927 6,333 6,333 
R-squared 0.001 0.079 0.002 0.056 0.001 0.094 0.002 0.066 
  



44 

 
 

Table 11 MBS-Induced Negative Liquidity Shocks and Plant Toxic Releases 

This table presents the effects of MBS-induced liquidity shocks to a firms’ headquartered county on its plants’ 
releases of toxic chemicals. The unit of analyses is the cross-section at the plant level. The dependent variable is 
the log change of total amount of toxic emissions by a plant from 2007 to 2010. The key explanatory variable, 
Firm-county exposure to private MBS2007 (or 2006), equals the weighted average of banks’ holding of private MBS 
across banks operating in a firm’s headquarters county as of 2007 (or 2006), where we weight each bank by its 
market share in the county. Plant controls include Sales and Sales growth as of 2007. We include County, 
Industry-year, and Headquarters (State) fixed effects in all specifications. P-values are calculated using 
heteroscedasticity robust standard errors clustered at the firm level, and reported in parentheses. *,**, and *** 
indicate significance at 10%, 5%, and 1%. 

  Δ Total Toxic Releases2007-2010 

  (1) (2) (3) (4) 

Firm-county exposure to private MBS2007 22.035*** 30.455***   

 (0.001) (0.000)   

Firm-county exposure to private MBS2006   15.323*** 17.508*** 

 
  (0.004) (0.006) 

Plant controls No Yes No Yes 
County FE Yes Yes Yes Yes 
Industry FE Yes Yes Yes Yes 
Headquarters(State) FE Yes Yes Yes Yes 

Observations 7,876 5,086 7,876 5,086 
R-squared 0.178 0.241 0.178 0.241 
 


