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Quantitative Risk Analysis 
A Number-Free Introduction to the Method, with 
Examples Including Decision Support from 
Artifcial Intelligence 

Elisabeth Paté-Cornell 

INTRODUCTION 

Risk can be defned as uncertainties about occurrences of undesirable events and their con-
sequences. Risk analysis can be either quantitative or qualitative. The result of the qualitative 
approach is a judgment of how serious the risk can be. The result of the quantitative method is 
a failure probability, or the chances of potential losses. It is generally an input to a risk man-
agement decision. A risk analysis should be based on facts and should be independent of the 
preferences of the decision maker. Rational risk management decisions, by contrast, need to 
include both an assessment of the risk, and the decision maker’s risk attitude, which may vary 
among people and organizations. The qualitative risk analysis method ofen mixes facts and 
preferences and refects in words some knowledge but also the feelings of decision makers 
and experts. This common qualitative approach presents two major problems. It does not 
allow for a rational comparison of risks, and perhaps more importantly, it does not treat sys-
tematically the dependencies and trade-ofs among diferent risk factors. The alternative is 
a quantitative probabilistic analysis, based on a complete set of known failure scenarios (or 
rather classes of scenarios), their probabilities, and the numerical values of their outcomes. The 
quantitative approach is the basis of this report. While avoiding equations and quantifcation, it 
is shown here how the quantitative method has been developed and applied in diferent types 
of settings. These could be sociological situations and processes, or problems of engineer-
ing system reliability including cyber risks. Three risk analysis examples are presented: the 
risk of anesthesia to a surgery patient, the risk of losing a space mission due to a failure of the 
spacecraf heat shield, and an AI-supported system of warnings and management of the risk 
of cyberattacks. An issue, when using an AI algorithm in risk management decisions, is the 
alignment of preferences. For the algorithm to be relevant, its risk attitude must match that of 
the actual decision maker. This implies that the AI system must be transparent enough about 
its risk preferences, and fexible enough to permit alignment of the risk attitudes between the 
AI system and the decision maker. 



    

 

 

 

 
 
 
 
 

 

RISK ANALYSIS 

RISK: UNCERTAIN SCENARIOS WITH THE POSSIBILITY OF NEGATIVE 

OUTCOMES 

Risk can be defned in several ways—for instance, qualitatively or quantitatively. It can simply 
be the probability of failure of a system or procedure in a given time frame (Paté-Cornell 2023).1 

Risk analysis is a quantitative method with numerical results. A qualitative risk assessment, 
however, generally yields risk results that can be simply presented as adjectives (the risk is 
“small,” or “bigger than [another] risk”).2 

In a quantitative mode, the risk characterization includes computation of both the probability 
and the consequences of the failure scenarios (Kaplan and Garrick 1981; Paté-Cornell 2009). 
The risk can then be described by the probability distribution of the outcomes, i.e., by the 
chances that the losses might exceed diferent levels. 

The risk analysis results are generally input to a decision under uncertainty. However, the 
preferences of the decision maker should not infuence the risk estimates where they would 
introduce psychological biases. Instead, they should be part of the risk management phase, 
along with the risk analysis results (Paté-Cornell 2007b). 

A simple but insufcient defnition of a risk is ofen presented as the expected value of the 
outcomes—i.e., the product of the probability and the consequences of a hazardous event. 
While this result may provide useful information to a decision maker who focuses on the 
average losses, it is insufcient to support the decisions, for example, of a risk-averse deci-
sion maker, who puts more weight on the extremes than the expected value (Abbas and 
Howard 2015; Bier and Lin 2013). 

WHY DO A RISK ANALYSIS? 

Decision Support 

Risk analysis provides a support to decisions under uncertainties in cases that involve some 
losses compared to the expected situation (Coombs and Pruit 1960). The ultimate goal is 
to protect systems, operations, and people, generally within cost constraints. One does a 
risk analysis to manage the risk-beneft trade-ofs and optimize the use of risk management 
resources by anticipating potential problems and identifying the weaknesses of an operation 
or a system before an accident or a failure (Paté-Cornell 2022). In a seismic area, the analy-
sis of the risk involves the frequency and severity of earthquakes, and its management for a 
homeowner relies on the strength of the house structure. Improving that structure to a given 
level of seismic security will involve a cost, which will be the owner’s choice, and will depend 
on his or her fnancial means and risk attitude. 

One key point of this report is the importance of recognizing and characterizing uncer-
tainties, and quantifying failure probabilities in order to take timely and cost-efective risk 
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management measures. This requires recognizing and assessing not only the marginal 
uncertainties of relevant factors, but also the dependencies among events that can lead to 
a failure (Aven 2008). 

The ultimate objective is to identify and support rational proactive risk management, account-
ing for all available relevant information, including precursors and near misses (Paté-Cornell 
2004). These important data address protection not only against a particular failure mode, 
but also against other risks that may involve some of the same events and parameters. An 
example of ignoring prior information is that of the British Petroleum accident in the Gulf of 
Mexico in 2010, where several near misses that preceded the disaster were ignored. It was 
a difcult situation and a difcult well, but the crew hoped that since there had not yet been a 
catastrophic failure of the well and the blowout preventer, it would not happen on their watch. 
It did (US BP Commission 2011). 

Rationality 

Rationality is a key feature of the approach to risk management described here, and of 
the role of risk analysis as an input to these decisions. Rationality can be defned in sev-
eral ways. A classic defnition, which is used here, is based on a set of axioms designed by 
von Neumann about rational preferences—for instance, no circularity of choices (Abbas and 
Howard 2015). These axioms lead to the defnition and encoding of a utility function for each 
of the possible outcomes, as assessed by the rational decision maker. In turn, this implies the 
choice of the option that maximizes his or her expected utility at any given time. That decision 
analysis approach ensures the consistency of preferences and the coherence of the deci-
sions. The risk attitude is included in that utility function as a measure of how the preferences 
vary with the value of the outcomes (Lichtenstein and Slovic 2006). 

TWO MAIN APPROACHES TO RISK ANALYSIS: QUALITATIVE 

AND QUANTITATIVE 

Both the qualitative and the quantitative models are based on the identifcation of failure 
scenarios, but they do not process the information and characterize their results in the same 
way (Ostendorf and Paté-Cornell 2023). 

Qualitative analysis is based mostly on expert opinions (Cooke and Shrader-Frechette 1991; 
Hora 2007). In the best cases, they are true experts who have the beneft of fundamental 
knowledge and can address situations for which there is no or little experience. Risk esti-
mates can also be an expression of belief from people who may not have the same level 
of knowledge and/or whose heuristics involve biases (Kahneman et al. 1982). Some of them 
may be decision makers or advisors whose opinion is needed, sometimes immediately. 
Expert opinions refect whatever they know about the problem but also, in many cases, 
their feelings, fears, and wishes (Lerner and Keltner 2001). Most risk management decisions 
in everyday life are made on that qualitative basis, and do not rely on more sophisticated 
considerations. 
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Because it is simpler, qualitative risk analysis is clearly popular, even in complex situations 
that might require a deeper understanding of uncertainties. It does not involve formal prob-
ability or a quantitative link to available evidence. The most likely scenario is ofen considered 
sufcient. That level of assessment is fne in situations where risk management seems obvi-
ous, and it is ofen unavoidable in an emergency. 

If it is clear that a failure is going to happen, a decision has to be made on the spot, even 
though the situation could ofen have been considered ahead of time. Qualitative but informed 
decisions can then be made based on the opinions of experts when they are available. This 
may be the case in operating rooms where surgeons have gathered, through training and 
experience, the knowledge and information that allows them to face diferent kinds of prob-
lems, even new ones. The same is true of pilots in a difcult situation. 

THE QUALITATIVE APPROACH: PROBLEMATIC ISSUES OF RISK COMPARISON 

AND EVENT DEPENDENCIES 

When considering complex systems and situations, qualitative risk estimates ofen introduce 
some problematic issues that are seldom recognized. First, one cannot compare risks ratio-
nally and explicitly to make consistent and optimal decisions. A qualitative decision support is 
more likely to be biased than a well-defned numerical comparison. This may happen when a 
limited amount of resources must be optimally allocated to the management of diferent fail-
ure modes in a situation or a system. 

More importantly perhaps, a qualitative risk analysis generally does not account for proba-
bilistic dependencies. Some important situations may not be envisioned, and the chances 
of failure may be much greater than implied by an assumption of independence of the vari-
ous failure modes. A typical case is that of “perfect storms,” such as that which occurred in 
New England in October 2001 (Paté-Cornell 2012). Three storms converged of the coast of 
Maine, making their efect much more destructive than if they had occurred sequentially. As 
recommended by the US Coast Guard, most boats stayed ashore, but one decided to go to 
sea anyway and sank, drowning its crew. 

AN ALTERNATIVE: A QUANTITATIVE PROBABILISTIC RISK ANALYSIS (PRA) 

The basis of quantitative risk analysis is the explicit processing of uncertainties using prob-
abilities and assessing the outcomes of the diferent scenarios independently from their 
probabilities (Garrick 2008; Paté-Cornell 2009). When a decision is made, both probabilities 
and outcomes for the diferent options are combined in a rational decision analysis frame-
work (Abbas and Howard 2015). 

The Method and the Factors of Quantitative Risk Analysis 

Failure scenarios The frst task is to generate a set of failure scenarios as complete as 
knowledge of the problem allows, in order to construct a legitimate probability distribution 
of the outcomes. 
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In the identifcation of failure cases, one generally needs to focus on classes of scenarios, 
rather than simple ones, since adding details to each would make their number uncontrollable 
and may not add useful information. The considered scenarios are the possible conjunctions 
of events leading to system failures, including technical failures of the system’s components, 
human actions, and external events that may afect the whole system. Furthermore, the analy-
sis focuses on the considered system at a given time, and one may need to anticipate its evo-
lution in the future. 

Bayesian probabilities Once the scenarios have been identifed, their probabilities are com-
puted per time unit or per operation. Short of relevant statistics—which is ofen the case— 
one uses Bayesian probability (de Finetti 1974; Apostolakis 1990), based on all information 
available for each component of the risk, including the judgment of experts. 

A critical aspect of the probabilistic process is the treatment of dependencies among these 
factors. Consider, for instance, redundant subsystems. One of them (at least) has to work for 
their function to be performed. Their failures ought to be as independent as possible, and a 
risk analysis should include their correlation, if any. 

Another key element of the failure probability is the efect of external events (for instance, 
foods) that afect all components of a system at the same time. Therefore, they create 
dependencies that need to be considered explicitly. An external event can be an earthquake 
shaking a building and all its components, thus increasing the structural failure probability 
(Cornell 1968). Similarly, in the political world, a coup d’état may afect simultaneously— 
diferently, but with correlations—the diferent parties trying to capture power and may 
increase the risk of success of an insurrection. 

The numerical part of the analysis involves the assessment of both the probabilities and the 
consequences of the diferent scenarios. That assessment leads to a probability distribution 
of the outcomes (generally losses), which will be a result of the risk analysis. 

The extremes of the distribution must be represented in the computations, even if their 
probabilities look small. People who have sometimes ignored the possibility of a rare failure 
scenario before the fact have sometimes justifed it afer a disaster by arguing that it was 
not likely enough to be considered. Yet, the losses might have been controlled if the right 
measures had been taken in time. The decision to ignore a rare but grave event should be a 
serious one, and at least ought to be made explicitly. As part of risk analysis, resilience man-
agement is critical since it involves anticipating diferent loss scenarios and planning to avoid 
them even if they are the result of rare events. But mostly, the question is how to respond to 
them if a failure occurs and one is caught in a loss situation. 

Loads and Capacities 

Systems fail when the demand on them exceeds their capacity—i.e., their ability to absorb the 
load (Paté-Cornell 2009). Quantitative risk results are critical in the design and operation of a 
technical system, as well as in the planning and execution of a social, political, or commercial 
operation. In many cases, the failure of a scenario may result from excessive loads. 
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Therefore, to guide the design and management of a physical system, one needs to consider 
in a risk analysis the chances that in its operating life, the loads will exceed the capacity. For 
example, an analysis can show the probability that an earthquake load on a structure exceeds 
the maximum that it can take in a given time frame. One can test the structure’s model on a 
seismic table, where the load is controlled as part of the test and the model represents the 
capacity of the real structure as well as can be represented given the scale. In the same way, 
one can assess the risk that a debt on a company exceeds its assets. In both cases, the result 
depends on all considered scenarios involving the loads and their probabilities at the time 
of the decision. An important part of the information about what can hit the system (the load) 
and what it can take (the capacity) includes the near misses and the partial failures that may 
have happened in the past, which provide information about the capacity of the system. 

The Values and the Power of Bayesian Probabilities 

Bayesian probability As mentioned earlier, probabilities of scenarios do not have to be 
based on statistics and ofen cannot. Bayesian probability (de Finetti 1974; Apostolakis 1990) 
is then the right tool. The events may have never occurred, in which case one has to consider 
the probabilities of conjunctions leading to possible failures. But past events may not rep-
resent future ones. For instance, the risk of a revolution in a country, stable so far, may not 
refect its history. The structure of the scenarios and their probabilities are then based on 
knowledge about the factors involved, from past experience or expert opinions. 

These judgments are thus the results of compounding relevant factors. To make such a 
judgment, one might use the fundamental Bayesian rule of logic: the probability of the con-
junction of two events is the product of the probability of one, multiplied by the probability of 
the other given the frst [p(A and B) = p(A) × p(B given A)]. That simple logical rule is essential 
to all computations of the chances of scenarios and ensures that dependencies are properly 
accounted for. 

Note that there are two kinds of uncertainties: aleatory and epistemic. Aleatory uncertainties 
represent the randomness in a situation where the probability of each event is well known but 
the outcome of each trial is not. For example, a die may be well balanced with a probability of 
1/6 for each face but throwing the die will lead to one of the six possibilities with an aleatory 
probability of 1/6. Epistemic uncertainties refect uncertainty about fundamental probability. 
In this case, it could be that the die is not balanced, and the probability of each face is not 
known. Statistics address aleatory uncertainties, but generally not epistemic ones. Bayesian 
probabilities are more general and allow assessing both types of uncertainties, providing a 
global probabilistic measure. 

Bayesian Probabilities Rely on Multiple Data Sources 

The choice of data sources is critical as it determines the quality and the credibility of the risk 
results. Not only should these sources be revealed and discussed, but all information that is 
needed should be acquired if time and resources permit. 
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The key data sources are as follows. 

• Actual, in situ data and statistics For instance, fight data may be essential in the 
analysis of the risks involved in civil aviation. The data, in that case as in many situations, 
involve not only the performance of the diferent subsystems such as the engines, but 
also the external events such as storms that may afect the whole aircraf. One problem 
of external events is that they may introduce dependencies among subsystem failures. 
These events must therefore be considered in the design of the system or the process, 
and redundancies may be included to reduce the failure risk. Furthermore, the failures 
of redundancies must be as independent as possible for their combination to be efec-
tive, so that at least one of them can perform the task. 

• Surrogate data about similar subsystems elsewhere Surrogate data may be a good 
source of information when actual data about the considered system are limited or 
inexistent. This may be the case for new ones, for which parts (similar but not identical) 
may exist elsewhere and may provide relevant if not perfect information. When initial 
nuclear power plants were designed and their safety was analyzed through a probabi-
listic risk analysis, some of their parts were novel but similar ones existed elsewhere. 
This was the case with nuclear reactors in the early submarines of the US Navy, which 
provided the best sources of experience that could be used when designing the frst 
nuclear power plants. 

• Test data They are critical, and their value depends on the test design. The more simi-
lar the parts tested to the actual part and their environment, the more valuable the test 
data. An example is that of shaking tables that permit testing the reliability of structures 
to seismic loads. The structure model has to be realistic—if not of the right size—and 
the seismic waves provided by the table must represent properly the loads to which 
the structure will be subjected. 

• Engineering models or social science models They need to include accurate represen-
tations of both the loads and the capacities for the considered system. They depend on 
the nature and dynamics of the risk. One of the frst detailed quantitative risk analyses 
was developed and used in the design and operation of nuclear power plants. Afer 
several iterations, they represented most of the uncertainties involved in the consid-
ered subsystems (US NRC 1975). The model of the accident scenarios includes frst the 
initiating events. It could be, for example, a pipe rupture in the generator. Sub-models 
are then designed to assess the state of the plant afer the sequence of events following 
an initiating event. In addition, external events can afect several subsystems and cause 
failure dependencies (Cornell 1980). It could be, for instance, whether there could be a 
failure of the core that causes radioactive release and loss of coolant. The next step is 
to assess the consequences of that accident. It depends on the quantity of radioactive 
material released, the weather conditions that can carry it, and the occupancy of the 
ground within its reach. 
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• Expert opinions They are both essential and controversial. Experts may have diferent 
levels of expertise, and some may not even know what they do not know. In addition, 
they can be biased and may try to infuence the information and the decision to ft their 
own preferences. In general, the best use of experts is limited to parts of the analysis in 
which they have true experience and knowledge. Consulting several experts provides 
more complete information and may allow diminishing the efects of biases. Several 
medical doctors, for instance, may have diferent opinions about the risk of a specifc 
disease given the symptoms of a particular patient. The problem is to aggregate expert 
opinions when they disagree. That can be done analytically by weighting the opinions of 
the diferent experts as a function of their credibility or simply choosing the judgment 
of one of them. More efectively, in some cases, the experts can be brought physically 
together around a table, so that they can discuss their sources of information and their 
mental models. It may be critical in medicine where disagreements may lead to diferent 
treatments and diferent outcomes for the patient. 

A Long-Term Risk Analysis Is a Dynamic Exercise as New Events Occur 
and Information May Improve 

The dynamic aspect of the risk analysis models is twofold. First, the frequency of accidents/ 
incidents and of their nature vary and these variations can be captured by a quantitative analy-
sis of these changes. Second, the knowledge itself of diferent system states may change— 
and hopefully improve—over time. 

An important consideration is whether the risk is constant or not. As an example, follow-
ing the tsunami that hit Japan in 2011 and caused an accident at the Fukushima nuclear 
power plant, a dynamic analysis of earthquakes and tsunamis in that area was published. 
There existed data since the year 840, showing an increase in the frequency of earthquakes 
of magnitude 8 or greater, such as that which caused the 2011 tsunami (Epstein 2011). A 
Bayesian analysis of these data allowed computation of the probability of such an accident, 
either assuming a constant rate of earthquakes or an increase in frequency as suggested by 
history. That type of information could be critical in siting, designing, or managing a plant in 
that area and elsewhere. 

Again, one ofen does a risk analysis, static or dynamic, because there is not enough 
information about the considered system, but some can be gathered about the various 
subsystems and the diferent aspects of the risk can be brought together through 
a quantitative analysis. 

The Format of the Results Includes Probabilities of the Failure Modes and the 
Distribution of Their Outcomes 

The results can be of two diferent types: the marginal probability of an accident or system 
failure, or the probability distribution of the losses and damage caused by such accidents 
per time unit or operation. 
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In the frst case, the result is simply the probability of a subsystem failure; for instance, the 
engine of a car. The second possibility is to assess the uncertainties about the diferent levels 
of consequences (mostly losses) of a system failure and to provide a probability distribution 
of the possible outcomes. An example, as mentioned earlier, is the probability of failure losses 
in earthquakes in a specifc type of building and a given area (Cornell 1968). The result of the 
analysis is the probability that each loss level is exceeded, either in a specifed time frame or 
per operation. This is the format of the risk analysis of nuclear power plants as currently done, 
which allows assessing the uncertain benefts of safety improvements in the diferent subsys-
tems (US NRC 1975). 

The Risk Analysis Method Can Be Applied to Technical Systems as Well as 
Human-Based Situations 

Probabilistic risk analysis provides verifable numbers that are the results of links and their 
uncertainties between scenarios and evidence. In other words, it is fact-based and should 
not involve preferences that are to be introduced into the decision phase of the analysis. As 
mentioned earlier, the method was developed in engineering to assess the failure risk of an 
accident in nuclear power plants. In the 1970s, these plants were new and complex, and the 
practical knowledge of their engines’ reliability came essentially from reactors of US nuclear 
submarines. 

The questions of risk and uncertainties encountered in engineering systems occur as well 
in social, medical, and political situations. The same quantitative risk analysis procedure is 
applicable based on key events and factors, their probabilities, their dependencies, and their 
consequences. For instance, assessing the risk of a new medical procedure requires gather-
ing probabilistic information about an operation’s procedure, the state and the physiological 
factors of the potential patients, as well as the skills of the medical teams. The problem of 
new systems occurs in that domain as well. It can be the case, for example, of the risk of a new 
medical device designed to clean a valve in the heart. 

The same model can be applied in the political feld—for example, to assess the risk of a 
terrorist attack in a given country (Bunn 2006; Kucik and Paté-Cornell 2012). This analysis 
requires an understanding as thorough as possible of the terrorists’ scenarios and behav-
iors, the means at their disposal, their leadership, and the measures that they might consider 
when implementing their plan. In industry, for instance, when operating a system such as an 
ofshore platform, one can assess the risk of cutting corners for lack of time, or due to the 
unavailability of parts that are necessary in a critical procedure. This was the case in the acci-
dent of the Piper Alpha oil rig in July 1988, which ended in explosions and fres as a young 
worker had failed to tag an inoperative pump at the end of a summer day (Paté-Cornell 1993). 

When Several Actors Are Involved in a Confict, the Risk Can Be Approached 
Through Game Analysis 

Events and scenarios may involve several organizations or human beings with diferent and 
conficting objectives. Game analysis allows assessing the probabilities and consequences 
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of decisions in situations of confrontation or competition (Paté-Cornell and Dillon 2006); for 
instance, the risks of insurgencies and terrorism (Paté-Cornell and Guikema 2002; Merrick 
and Parnell 2011). The quantifcation of these scenarios requires probabilities based on the 
knowledge of the strategies, the means and the preferences of the diferent adversaries. An 
example was the analysis of the risk of an insurrection in the Philippines, and of the moves of 
the insurgents against the government forces in the island of Mindanao. The risk was assessed 
considering alternative moves of both parties, and the efect of the diferent factors that moti-
vated each party on the decisions of the other (Kucik and Paté-Cornell 2012). 

Risk Management Is Best Supported by a Quantitative Approach to Risk Analysis 

The bases of the quantitative risk analysis are systems analysis, scenarios of evolution 
including failure, and the probabilities of these scenarios and their outcomes. As such, they 
allow better and more accurate support of complex risk management decisions than simple 
guesses. 

Quantitative information thus allows better risk management decisions than simple qualifcation 
generally does. First, it permits ranking risk management tasks by order of cost-efectiveness. 
In addition, it supports decisions that involve explicitly the risk attitude of a decision maker, 
who needs the quantitative description of the consequences of the diferent risk scenarios to 
estimate his or her utility for the outcomes. 

Also, it allows judging if the residual risk as estimated probabilistically is tolerable given 
the uncertainties. The acceptability of a risk depends not only on its magnitude but also on 
the decision process. The risk magnitude and the uncertainties do matter in a reasonable 
analysis, and many organizations and governments have adopted quantitative thresholds 
and objectives. The question is how to know the chances that the objectives are met given 
the uncertainties. For example, a goal of less than 10−6 per person for a cancer caused by 
environmental pollutants has been set up by the Environmental Protection Agency in the US 
(US EPA 2005). Assessing such a risk requires knowing not only the amount of a poisonous 
substance to which someone can be exposed but also the dose-response relationship that 
determines the response of the individual. Given the diversity of the exposure and of the pop-
ulation, these factors are uncertain, but the mean of the result may allow for some credibility 
that the goal is satisfed. 

Perhaps most importantly, quantitative risk analysis allows managing trade-ofs of costs 
versus benefts at the margin—for instance, when deciding how much to allocate to diferent 
aspects of the risk factors. It could be that relaxing a constraint by one unit (for example, by 
allocating one more day or another million dollars to a particular task) would cause a signif-
cant risk reduction. Alternatively, it could be that the allocated risk management resources 
are too generous and inefective at the margin, and that one could reduce the cost or the time 
spent without increasing the risk. In all cases, one needs the value of that risk to assess the 
shadow price of the constraint. 
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KEY GRAPHIC RISK ANALYSIS TOOLS: BAYESIAN NETWORKS 
AND INFLUENCE DIAGRAMS 

INFLUENCE DIAGRAMS 

To understand the role of key failures and events in the reliability of a system and its opera-
tion, one can use a graphical representation based on nodes and arrows called an infuence 
diagram (Shachter 1988). Infuence diagrams can be designed to yield the probability or prob-
ability distribution of outcomes, therefore a risk assessment result. They can also include 
decision variables, in which case they provide an optimal decision based on the maximization 
of an expected utility. The nodes then include these decision variables, classically represented 
in rectangles, random variables in ovals, and outcomes in trapezoids. The dependencies 
among them are represented by conditional probabilities shown by arrows between the 
nodes. Figure 1 shows a simple infuence diagram example for the decision of taking a hike 
tomorrow given uncertain weather predictions. 

An infuence diagram is constructed in the following way: frst, one draws the decision node 
(here, to go or not on a hike). Then, one draws the nodes that infuence that decision; here, 

FIGURE 1 An infuence diagram for the decision to plan a hike tomorrow (no probabilities or 
outcome utilities, which are necessary in reality) 

Data Tables 

˜˜˜°˜˜˜Options 
˜˜˜°˜˜˜Variables: values

 and probabilities 

The weather 
tomorrow? 

A hike 
tomorrow? 

The pleasure 
of a hike 

Rain on the 
trail? 

Source: Created by author for this paper 
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the uncertainty about the weather tomorrow, and about rain on the trail given the weather. 
The arrows among the nodes represent the conditional probability of their target given their 
source. 

Note that in the infuence diagram of the hike decision example, the utilities of the outcomes, 
the conditional probability distributions of the data—i.e., the marginal probabilities for the 
weather tomorrow—and the conditional probabilities for rain on the trail given the weather 
are encoded in separate tables. 

A more complex and realistic quantitative example of an infuence diagram is presented in 
the appendix. 

Infuence diagrams allow automatic resolution of decision problems in a quantitative setting. 
They are homomorphic to decision trees because they represent the same process and pro-
vide the same results, but they can be considered easier to construct and to use in communi-
cating the analysis. In the case shown in fgure 1, the weather prediction is the initial random 
variable, and its credibility infuences the decision. 

This formulation can be applied to all risk and decision analysis models—for instance, the risk 
of a terrorist attack. In that case, the diagram can represent the decision of the main decision 
maker (the defender) as well as that of the attacker to represent the game between the two 
and the links between the knowledge and the acts of both sides when making the next deci-
sion. The diagram representing a government’s and a terrorist group’s situations and deci-
sions is presented in fgure 2. The pointed red line shows the infuence of insurgents’ beliefs 
and actions on those of the government and vice versa. 

This representation is important because it shows the analysis of a two-sided game in a single 
diagram. That formulation could be expanded to additional players to address a game involv-
ing three or more sides. While it can be complicated, that analysis is feasible, contrary to a 
common belief that game models cannot represent more than two players. 

Another example of an infuence diagram is an application to the case of an oil tanker’s loss 
of propulsion and the risk of losing oil (see fgure 3). Key variables are the control of the drif 
and the location of the ship, either on the high sea or at a site where it can hit a rock, causing 
a breach in the oil tank. The measure of the risk is the probability distribution of the amount of 
oil that fows out of the breach and can reach the ground, and in addition, the damage that it 
causes. 

STRUCTURE OF A RISK ANALYSIS MODEL FOR CYBERSECURITY 

A probabilistic risk analysis using infuence diagrams was developed and applied to several 
situations (Paté-Cornell et al. 2018). An example is the assessment of the risk of a cyberattack 
as shown in fgure 4. Consider a target of attack such as a commercial company. A number 
of uncertain variables represent the factors of a cyberattack on that company. Several pos-
sible attackers may be set against it with diferent objectives (e.g., money versus technical 
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FIGURE 2 An infuence diagram representing a confrontation game between a government and a 
terrorist group with information and decision links 
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FIGURE 3 Infuence diagram for a ship grounding example and the risk of oil spill 
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FIGURE 4 Infuence diagram representation of the structure of a cyber risk analysis 
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systems), and insiders of the organization may be part of the attack. Such an attack involves 
penetration of the computer system, navigation, extraction, and use of the information. The 
results are the consequences for the defender. They are ofen uncertain a priori. The choice 
of the attackers’ target depends on the system’s structure and the difculty of penetrating it, 
the attackers’ objective, whether insiders are part of the attack, and the efectiveness of the 
countermeasures taken by the organization before, during, or afer the attack. 

One critical aspect of the defense against a cyberattack is the timing of its detection. The 
attack scenario can be based on the use of lost or stolen devices, data spillage, emails, 
websites, malware, and so forth. The consequences to the defender of a successful attack 
can include the costs of investigation, the stolen device, intellectual property, loss of privacy, 
reputation damage, and business interruption. This model has proven quite useful, and was 
used, for instance, in the analysis of the risk of a cyberattack on the internal cyber structure 
of a space center (Paté-Cornell and Kuypers, 2023). 

HUMAN FACTORS ARE MAJOR ELEMENTS OF SYSTEM FAILURE 

RISK ANALYSIS 

The failure of technical systems ofen involves human errors. Yet, it should be noted that 
human interventions can have opposite efects; for instance, in some cases errors can cause 
a failure that would not have happened otherwise, or with a smaller probability. In other cases, 
human access and skills allow an operator to prevent a failure that would have occurred other-
wise and caused severe damage. That was the case of the successful landing of US Airways 
fight 1540 on the Hudson River in 2009, thanks to the skills of the pilot. 

THE MANAGEMENT ROOTS OF HUMAN ERRORS: THE SAM MODEL 

A Critical Aspect of Human Errors Is That They Are Ofen Caused by 
Management Decisions 

Managers decide who should be hired and how they should be trained. They also decide what 
should be done in specifc crises, and with what incentives and constraints. An analysis of the 
risk can thus be done starting with management decisions, their efects on people’s actions, 
and in turn, on the reliability of the considered system. 

A more efective method is to start with the probability of failure of the technical system or 
the operations. The managerial risk can then be assessed based on three major steps: the 
analysis of the system (S), the operators’ actions that afect each subsystem (A), and the man-
agement decisions that infuence or determine these actions (M) (Murphy and Paté-Cornell 
1996). That SAM model can be illustrated again by the case of the loss of ship propulsion, the 
control of the drif, and the collision with a rock unless the ship is at high sea. The structure of 
the model is as follows: 

• Step 1 The frst step is the assessment of the probability of system failure as a function 
of the probability of failure of the diferent subsystems, their contributions to the overall 
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system function, their failure dependencies, and the role of external events. This analysis 
includes the identifcation of the failure modes (conjunctions of events leading to failure) 
and their probabilities. 

• Step 2 A critical part of that analysis includes the role of human operators and human 
errors. It requires identifying the operators of each subsystem and their decisions and 
actions that can cause a system failure. It may be a failure to solve observed problems, 
learn from a near miss, maintain parts of the system, identify a defciency or a deteriora-
tion, and other human errors in specifc parts of the system. To address the problem, it is 
important at that stage to try to understand the attackers’ motivations. Again, operators’ 
decisions and actions may involve some errors, but also positive moves that actually 
decrease potential losses and protect people. 

• Step 3 In turn, the management of the organization determines or afects the decisions 
and actions of the operators in charge of each of the subsystems, and thus the failure 
risk of the whole system (Paté-Cornell 1990). The managers hire the operators focusing 
on their competence, and they decide on their specifc jobs and on their compensations 
given the quality of their performance. Key decisions at that level are the constraints of 
time and resources, which in turn may afect the quality of the work. Examples involve 
the maintenance of each subsystem and the frequency and depth of their inspection, 
which determine the reliability of these components including under external events. 

Explicit Linking of System Failure Risk to Human Decisions and Actions, 
and to Management Decisions 

The global risk analysis model linking the systems’ failures to management decisions includes 
frst the risk of system loss (S), then the human decisions and actions (A) that afect that mod-
el’s variables (especially the probability of subsystems’ failures) and the management deci-
sions (M) that afect these decisions and actions as represented in fgure 5. That SAM model 
is most useful in guiding management decisions with the understanding of how they afect 
operators’ behaviors and the system failure risk (Murphy and Paté-Cornell 1996). 

The simplifed example presented in fgure 5 starts with the loss of propulsion of an oil tanker, 
which is linked to maintenance quality, and in turn to resource constraints of time and money. 
The control of the drif, which afects the chances of grounding and the energy of the shock, 
depends on the skills of the captain and the crew, thus by the management of personnel. This 
model allows getting to the root causes of accidents and supports risk management deci-
sions better than a simple model of system failure and subsystems’ performance. 

An important feature of this SAM model is that it starts with the system’s performance to 
identify the roles of the operators and in turn, the efect of management on system reliability. 
In reality, the causality chain starts with the management decisions that afect the operators’ 
performance and thus the system’s reliability. But the SAM structure is more efective in sup-
porting risk analysis and efective risk management in diferent felds. 
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   FIGURE 5 An example of the SAM model structure (System, Actions, Management) for the risk of an 
oil spill due to loss of tanker propulsion 
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RISK MANAGEMENT DECISIONS SUPPORT: RISK ANALYSIS 
AND DECISION ANALYSIS 

A few basic notions regarding risk are involved in risk management decisions, as detailed 
below. 

THE DECISION MAKER’S RISK ATTITUDE IS A MAIN RISK MANAGEMENT 

FACTOR 

Risk management decisions are made under uncertainties about the facts that underline the 
risks. In addition, these decisions require explicit consideration of value judgments including 
a risk attitude (Abbas and Howard 2015). The values allocated to the diferent attributes that 
characterize the outcomes are those of the decision maker. These values may refect depen-
dencies in the combinations of attributes. 

The risk attitude is an essential part of an outcome’s valuation through a utility function, which 
shows the way the decision maker feels about the outcome. The risk attitude represents the 
variation of the utility (or disutility) with the diferent values of the attributes and their combi-
nations. Considering potential losses, the preferences of a risk-averse decision maker involve 
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a greater increase in disutility with a specifc variation of the losses at the higher end of the 
spectrum of outcomes than at the lower end. This implies that he or she fears an increment 
of high-level losses more than an equal increment of low-level losses. The reverse is the risk 
attitude of the risk-prone decision maker, who is more sensitive to a variation in the losses at 
the lower end than at the higher end of the loss spectrum. The risk-indiferent decision maker 
does not care about the starting point, and regards equally the variations in losses at any 
given point of the loss spectrum. 

The risk attitude is key to decisions under uncertainties and depends only on the preferences 
of the decision maker. In other words, there is no right or wrong risk attitude. 

THE FOCUS SHOULD BE ON THE DATA ONE NEEDS RATHER THAN 

THE DATA ONE HAS 

Another aspect of the information relevant to a given decision is that one should not limit one-
self to the data that are immediately available and easily gathered. What matters is to deter-
mine what data are needed, and to look for them as thoroughly as possible, recognizing that 
getting perfect information may be impossible and that some uncertainty is likely to remain. 

Risk analysis and risk management information are generally imperfect and incomplete, 
which may be particularly critical in emergencies when there is no time to gather perfect 
information. A rational decision still has to be made under the remaining uncertainties, 
and the question is whether to gather additional data, given the costs and the value of that 
information. 

THE ROLE OF THE DECISION MAKER IS ESSENTIAL, BOTH IN TERMS 

OF KNOWLEDGE AND OF PREFERENCES 

Since decisions under uncertainty require the decision maker’s value judgment and risk 
attitude, he or she should be identifed if possible, when the decision is suggested by an 
AI system. This may not be feasible for a specifc decision, and the analyst may have to con-
sider the preferences of a group of people and enter in the algorithm what he or she thinks 
they may collectively feel about that risk. In that exercise, the analyst may lean toward risk 
aversion and want to be conservative—for instance, if the risk management decision will 
afect the protection of people. 

THE QUEST FOR ADDITIONAL DATA SHOULD BE BASED ON THE VALUE 

OF THAT INFORMATION 

Another critical issue is the choice of data, and more importantly, the judgment of what con-
stitutes appropriate data given the limits of the existing dataset. It can be tempting to focus 
on what seems the most likely situations and to dismiss and ignore the rare extremes. It is an 
error that has caused failure to protect a system against rare events that proved catastrophic 
when they occurred. 
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One may thus need additional information, even though it may take time and resources to get 
it. Its value is determined by its efect—i.e., the improvement of risk management decisions. 
Importantly, the value of information depends on the risk attitude of the decision maker. The 
risk-averse, for instance, may consider more valuable the information that will permit a greater 
decrease in the probability of a severe outcome. Therefore, he or she will be willing to put 
larger resources into addressing the possibility of an extreme case. 

An important point about the value of more data is that additional information does not nec-
essarily decrease the uncertainties: one may discover a new scenario that was never envi-
sioned and increases seriously the uncertainties about the outcomes. 

ARTIFICIAL INTELLIGENCE IS CRITICAL BUT MAY INTRODUCE 

AN ALIGNMENT PROBLEM 

AI may be an important part of risk management decisions since an AI system can pro-
vide relevant information and/or suggest options, given a larger database than provided by 
human knowledge. The information is as good as its sources and the processing of the data. 
Decision makers may trust the AI system if they believe that it is better than them at process-
ing the information. But the decision itself depends in good part on preferences, and if they 
follow the opinion of AI, it will be dictated by the risk attitude that has been embedded in the 
system. 

This implies that under uncertainties, the value of an AI decision algorithm depends on the 
alignment of its risk attitude with that of the human decision maker (Paté-Cornell 2023, 2025). 
Therefore, if the AI analyst knows who will use the system, he or she can include in the algo-
rithm the relevant risk attitude. Most of the time, however, it is not the case, and the analyst 
may input into the system what seems a reasonable risk factor—possibly a conservative one 
out of prudence. The decision maker, if aware of the AI’s preferences, has to decide whether 
to adopt its recommendation or to ignore it and make a decision consistent with his or her 
own risk attitude. 

As described further, four examples of AI decision recommendations have been described in 
a previous publication (Paté-Cornell 2023, 2025): the choice of a medical test, a defense deci-
sion regarding the use of autonomous drones in combat, a sailing race where an AI system 
can give advice regarding a boat’s trajectory and sail setting, and autonomous vehicles, in 
which the system makes risk management decisions that may ft the preferences of the popu-
lation of riders. In all four examples, the main decision maker (the patient, the commander, the 
skipper, or a rider) has to think, explicitly or implicitly, of the chances of diferent possible out-
comes and choose the optimal option—either the choice of the AI system, or that based on 
his or her risk attitude. The AI system thus needs to be aligned when there is a discrepancy 
between its preferences and those of the decision maker. 

Aligning the AI system, if needed, thus requires that the algorithm be accessible, that its risk 
attitude be explicit, and that the system be set for the encoding of the actual decision factors. 
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EXAMPLE 1: PATIENT RISK IN ANESTHESIA 

THE SYSTEM INVOLVES BOTH THE PATIENT AND THE ANESTHESIA TEAM 

In this risk analysis study, the system included both the surgery patient and the anesthesia 
team. The surgical procedure was a safe one, such as knee surgery, and the risk of the sur-
gery was limited to the anesthesia (Paté-Cornell et al. 1997; Paté-Cornell 1999). 

A key factor regarding the patient is his or her resistance to surgery and anesthesia (see 
fgure 6). For instance, some patients such as obese human beings and premature babies 
are more vulnerable to anesthesia. The other part of the system is the anesthesiologist, 
whose performance is afected by his or her competence and alertness. 

Competence may be an issue, in particular with residents who may not yet have the experi-
ence that it will take to face a serious problem. Diminished alertness may also be an issue 
for any practitioner (for instance, due to lack of sleep) when a patient problem needs to be 
detected, understood, and corrected. 

The patient’s case may be a complex one that will require a high level of anesthetist com-
petence.3 One must acknowledge the role of the nurse-anesthetists in the operating room. 
Some of them have experience that may allow them to supplement that of the anesthesiol-
ogists, and detect, for instance, tube disconnect problems that need to be addressed on 
the spot. 

FIGURE 6 The development of an anesthesia accident 
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Furthermore, the rules and the environment of the hospital may afect the roles and the 
respective responsibilities of the surgeon and the anesthetist. In critical decisions, in par-
ticular, a clear allocation of duties may afect the safety of the patient. 

CRITICAL INFORMATION AND INFORMATION SOURCES 

A hospital in Adelaide, Australia, was the source of part of the information used in this study. 
In the United States as in Australia, the risk of a severe anesthesia accident in an operation is 
in the order of 1/10,000. What is considered here a severe accident is brain damage or death. 
Bayesian probability was used to assess the probabilities of the diferent events in accident 
sequences, starting with initial events such as the disconnection of the oxygen tube linked to 
the patient’s lungs, or a mistake in intubation in which the tube was inserted in the stomach. 

To analyze the unfolding of an accident and short on statistics, one needed expert opinions. 
Those came from anesthesiologists, active or retired, but also from surgeons and from nurses 
who were particularly helpful. 

Focusing on the dynamics of an accident and the way it was handled, detection and medical 
reaction times were key risk factors. These included the time that it took to observe an inci-
dent afer it happened, to identify the cause, and to address the problem. Next, of course, the 
question was whether the detection and reaction were correct, and the problem was solved. 

The dynamics of an accident are thus critical to the risk analysis and can be addressed 
through a stochastic process. 

THE DYNAMIC MODEL OF ANESTHESIA RISK MANAGEMENT 

A dynamic model of risk analysis includes quantifcation of the duration of events in accident 
sequences, and of the chances of the possible outcomes. 

A general anesthesia accident sequence involves frst the occurrence of an initiating event 
such as a drug allergy (see fgure 6). Next is the reaction of the practitioner, who may take a 
few minutes to observe and understand the problem. Another issue is the time that it takes for 
the patient to react to the drug and the medical intervention, and hopefully to recover. But this 
is a case in which the patient’s tolerance for a particular drug and the time he or she can live 
with an allergy—if they have any—afect the risk of an accident, possibly a deadly one. The 
question here is thus how the risk is infuenced by the competence and alertness of the prac-
titioner, and by the sensitivity of the patient to a specifc drug. 

The hospital’s management decisions may involve education, hiring, recertifcation, and the 
rules of interaction. The reactions of the practitioners depend in part on these factors, and 
how they afect the performance of the anesthetists. But a key issue is their ability to face a 
crisis given their personality, the training that they have received, and the monitoring of their 
behaviors. 
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  FIGURE 7 The structure of the anesthesia patient risk model 
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THE STRUCTURE OF THE QUANTITATIVE RISK ANALYSIS MODEL 

Figure 7 represents the structure of the risk analysis model, focusing on the anesthetist and 
the organizational measures that afect his or her performance. 

As mentioned earlier, statistical data were available for the initiating events and the overall 
accident probability. The frst element of a scenario is the initiating event, which triggers a 
subsequent set of events that may lead to an accident. The analysis allowed assessing the 
risk for each type of possible accident in an operation, then the global risk. One of the ini-
tiating events is the disconnection of the tube linking the oxygen supply to the throat of the 
patient if the anesthesia is administered by ventilation. Other initiating events include esopha-
geal intubation, non-ventilation, malignant hyperthermia, inhaled anesthetic overdose, serious 
allergic reaction to the anesthetic, and severe hemorrhage. Each of them may be followed by 
an accident sequence, which depends in large part on the reaction of the anesthesia team 
and on the state of the patient. 

Detecting the evolution of accidents then depends on observing and reacting to signals. The 
frst issue is whether the problems are visible and within what time they occur. For instance, 
short of oxygen the patient may turn blue, and the problem can be diagnosed, hopefully in 
time for correction. The success of the anesthesia team in detecting and responding to sig-
nals thus determines in large part the outcomes of initiating events. The probability of these 
outcomes is the product of the probability of the initiating event and of the conditional prob-
ability of each scenario that may follow. 

The probability of an accident given an initiating event is thus the result of a dynamic model 
of accident sequences. Assuming that the initiating events could be the result of a human 
error, the risk depends mostly on the performance of the anesthetist. One can then assess 
the probability of an accident for each initiating event, then for a given operation. 
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Structure of the Risk Model Given Human Response and Management 

For each scenario, the efect of the anesthetist’s performance on the patient’s risk is com-
puted by considering its role in the occurrence of an initiating event, and in the possible sub-
sequent events that may lead to an accident. The patient risk of death or brain damage can 
then be linked to the performance of the anesthesiologist using the following structure and 
considering the following factors. 

• The organizational factors For example, the time the practitioner has been on duty may 
afect his or her performance. Anesthesiologists generally cover the full operation, and 
the time on duty may reach as long as 12 hours. 

• The state of the anesthesiologist in terms of mood and ability It also afects his or her 
ability to perform without problem. It may be a characteristic of the personality but may 
also depend on the case and the time constraints. 

• The probability of some initiating events of anesthesia accident These events can lead 
to death or brain damage. The problem may depend on the performance of the surgeon 
(for example, a hemorrhage) but the outcome is a function of the reaction of the anesthe-
siologist, whose role is to control the hemorrhage and manage the blood supply at his 
or her disposal. The risk to the patient is thus a function of the intervention, and to some 
extent, the state of the anesthetist. 

The analysis allows linking the competence and behavior of the anesthetist to the time it takes 
him or her to react, and to the state of the patient. Given the adequacy of that intervention, 
one can assess the benefts to the patient of organizational improvements in the practitioner’s 
work environment. 

EXAMPLES OF MANAGEMENT MEASURES THAT AFFECT THE ANESTHETIST’S 

PERFORMANCE 

The state of anesthesiologists in terms of competence and alertness is afected by their per-
sonality and by the training and circumstances that determine their ability to face problems in 
the operating room. An important part of their training is done on simulators. 

It is also a function of the surgical operation and of the necessary equipment. A number of 
measures that afect these factors can be taken by the hospital, and by the profession in 
general. The work schedule depends on the frequency and the nature of operations. The 
anesthetist function starts at the onset by putting the patient under anesthesia, afer which 
he or she needs to be monitored, sometimes for hours. Therefore, the anesthetist needs 
to be paying attention, even in times when things go smoothly and the patient seems to be 
doing fne. That phase of the work has sometimes been compared to that of a copilot who 
may feel that he should not need to intervene. In fact, given that kind of perception, some 
anesthetists have been observed doing something else, even briefy leaving the operating 
room. 
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Some factors that afect the state of the practitioners include the following: 

• Selection and periodic training of anesthetists All medical students may not have the 
right personality to be anesthetists, and in particular to face critical situations that may 
lead to an accident and require immediate and intense attention. Their initial training is 
thus critical, but so is their continuous education through experience, sharing situations 
faced by their colleagues, and understanding the way in which they were resolved. 

• Supervision of residents A critical part of that training is the supervision of residents. 
They are doctors already but may not have the experience that allows them to face seri-
ous and/or rare situations. Even later in their career, some anesthetists may not be able 
to handle problems that they have never encountered before or have forgotten, and they 
may need some reeducation or a backup who can take over. 

• Equipment performance Equipment does not appear to play a critical role in the risk of 
an anesthesia accident. Nonetheless, inspection and maintenance is an important part 
of the process. For example, oxygen needs to be available, and the conducting tube 
needs to be functional and plugged. 

In fact, these factors are general problems in many industries and can be handled by rules, 
regulations, incentives, and rewards. 

EFFECT OF A MANAGEMENT POLICY CHANGE ON PATIENT RISK: 

EXAMPLE OF SIMULATOR TRAINING FOR ANESTHETISTS 

Consider the policy of one day of simulator training per year, for experienced anesthetists who 
may lack regular training and may have forgotten the adequate response to some situations. On 
the one hand, this measure may be burdensome to some who do not believe that they need it. 
On the other hand, it will allow others to remember procedures that they may have forgotten, or 
to get familiar with new technologies or situations to which they have never been exposed. 

PATIENT RISK REDUCTION: ANALYTICAL RESULT 

If the measure of retraining experienced practitioners is enforced, they will encounter rare 
events, frst on a simulator and perhaps later on a patient. The model described earlier was 
applied to that case, using statistics and expert opinions. It was found that this policy change 
may reduce the overall risk of patient accidents by 16 percent, assuming that the problem is 
fxed; i.e., that the experienced anesthetists actually learn about procedures that they have 
forgotten or never encountered before. 

CONCLUSIONS OF THE ANESTHESIA STUDY AND THE EFFECTS 

OF CULTURAL FACTORS 

Drug and alcohol abuse, which were the initial motivations of the study, were not found to be 
major contributors to patients’ risk. This does not mean, of course, that rare problems should 
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not be given serious attention, but the major contributors to patient risk attributable to anes-
thesia were routine problems such as distraction or incompetence of the practitioner. 

The main procedural improvements and the best risk reduction benefts were found to be 
the following: 

• Formal recertifcation of practitioners It was found to reduce the patient’s risk of an 
accident by 23 to 29 percent per operation. 

• Regular simulator training of the practitioners Such training reduced the patient’s 
risk by 16 percent. 

• Improving the supervision of residents Improved supervision reduced the patient’s risk 
by 14 percent. 

• And to a lesser extent, limiting anesthetists’ time on duty This measure reduced the 
patient’s risk by 6 percent. 

What is important in this case is that the risk analysis showed that what the hospitals were 
most concerned about—i.e., drug and alcohol abuse—were not the major contributors to 
patients’ risk. Even though these abuses had received a lot of attention, they were not in fact 
the most dangerous. Instead, it was more routine events that may not be as visible or note-
worthy yet needed to be addressed even when they were problems of regular, sometimes 
well-regarded, practitioners. 

This kind of surprise is in fact ofen the result of risk analyses because people do not pay as 
much attention to common problems as to rare ones, and risk management eforts may be 
focused on more visible rather than more relevant events. 

A TECHNICAL RISK ANALYSIS EXAMPLE WITH ORGANIZATIONAL 
ROOTS: THE SHIELDS OF SPACE SYSTEMS 

THE ROLE OF HEAT AND RADIATION SHIELDS 

The US space shuttle needed to be protected against heat at reentry into the atmosphere. 
Other systems, such as the Europa Clipper that orbits around Jupiter, need to be protected 
against radiation (Ding et al. 2020). The questions are: What is the risk of losing a system 
through a failure of a given shield, and how to provide adequate shielding? 

The issue is one of load; that is, the heat or the radiation versus the capacity of the shield and 
of what it protects, and therefore what load the system can tolerate without failure. The heat 
shield may sustain diferent kinds of heat loads that could create a gap in the skin of a space-
craf. If that happens, the hot gases penetrate the surface and could destroy critical sub-
systems under the skin. 
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  FIGURE 8 The space shuttle assembly: the orbiter, main tank, and two solid rocket boosters 

Source: NASA 

THE TECHNICAL FAILURE RISK OF THE HEAT SHIELD 

A risk analysis was performed for the US space shuttle heat shield before the program was 
terminated in 2011 (Paté-Cornell and Fischbeck 1993). The shuttle system consisted of the 
orbiter, attached to a large tank containing liquid oxygen and liquid hydrogen, and two solid-
fuel rocket boosters that assisted the main engines at takeof (see fgures 8 and 9). The orbiter 
was protected by about 25,000 black tiles glued to its aluminum surface through a felt pad. 
The tiles could debond at takeof if they were not properly attached to the orbiter skin, or 
if they were hit either by pieces of the shield of the external tank (as was the case with the 
space shuttle orbiter Columbia in 2003) or by other kinds of debris such as ice, stones, birds, 
and so forth. 

The risk analysis was based on maps of the space shuttle orbiter representing zones charac-
terized by the values of four key factors at each point of the orbiter: the heat load, the debris 
density, the aerodynamic forces that may cause the loss of adjacent tiles if one is detached, 
and the sensitivity to heat loads of the diferent parts of the aluminum skin and subsystems 
underneath. For each factor, a map of the orbiter showed its intensity in diferent zones. 
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   FIGURE 9 The black tiles of the heat shield of the space shuttle orbiter: cumulative hit load (debris 
density) during about 30 fights 

Right wing 

Source: NASA 

The structure of the risk analysis model is shown in fgure 10, which is an infuence diagram 
showing the uncertain events and variables from the initial loss of tiles to the gaps in the 
orbiter skin, their size and their efect on the subsystems exposed to hot gases, and fnally, 
the potential loss of a mission. 

The result of the analysis was a map of the orbiter’s tiles showing the risk contribution of 
each zone to mission failure (fgure 11). In that fgure, the darker the area, the more risk-
critical the tiles in that zone. That map was communicated to diferent space centers, and in 
particular to the tile maintenance team at Kennedy Space Center, where it was used. The con-
tribution of the tiles to the failure risk was shown to be about 1/1000 per mission, i.e., about 
10 percent of the failure risk of a mission, which was in the order of 1/100. 

ORGANIZATIONAL FACTORS OF THE HEAT SHIELD FAILURE RISK 

AND RISK MANAGEMENT 

An important part of the study was the extension of the technical failure risk to the organi-
zational factors that contributed to it. A number of organizational improvements in the treat-
ment of the tiles were considered. They included relaxing the schedule constraints of the tile 
maintenance between fights, testing the most risk-critical areas by hand before takeof, and 
improving the heat shield of the external tank to reduce the risk that pieces of it could debond 
and hit the black tiles of the orbiter. 
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FIGURE 10 Infuence diagram showing the analysis of the risk of losing a space shuttle mission due 
to a failure of the heat shield tiles 

Debris damage IE1l 

Initial loss 
of tile i Reentry heating i Burn through i Subsystem 

malfunction i 
Loss of 
shuttle 

Debonding caused 
by factors other 
than debris IE2l 

Loss of additional tiles 
(final patch size) i 

Source: Paté-Cornell and Fischbeck 1993 

Some of these measures were implemented but not the improvement of the attachment of the 
heat shield to the external tank. During the last Columbia fight in 2003, a piece of it detached, 
hit the lef wing, and caused a large gap that allowed hot gas to destroy critical parts of the 
orbiter. The space shuttle orbiter exploded, killing all astronauts on board. 

The study had been made publicly available before the accident but was rejected by one 
reviewer because it was not based on “data,” explicitly restricted in his mind to mission 
failure statistics due to the tiles. Since the accident had not happened yet, as is sometimes 
the case, there were no such data available. The lesson was learned, however—further risk 
analyses of the shuttle were performed and allowed improvement of shuttle subsystems. 

The lesson was that, of course, one does not need the failure of an engineering system to jus-
tify a risk analysis that will allow global improvements. One needs a set of data characterizing 
the performance of the diferent subsystems and their dependencies to be able to assess the 
global failure risk before (enough) statistics are gathered. 

ARTIFICIAL INTELLIGENCE AND RISK MANAGEMENT: 
THE PROBLEM OF AI SYSTEMS ALIGNMENT 

AI SYSTEMS PROVIDE TWO THINGS: INFORMATION AND DECISION SUPPORT 

Information can feed the analysis of failure risk, risk management options, and risk reduction 
benefts. Some of that information is deterministic, some probabilistic. Some of that informa-
tion is comprised in an initial database, trained then enriched by machine learning as experi-
ence is gathered, including elements of the model described earlier, such as failure modes 
and efects of external events. Note that the information may include errors and biases; it 
may be limited, but in general provides some notions that may not have been gathered by 
human experts. 
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   FIGURE 11 Results of the risk analysis: contribution of the tiles in diferent minimal zones to the loss 
of a shuttle mission 

15: 2321 

1: 1111 
Key 

i: kjhl 
5: 1221 

i: Min zone ID* 
k: Burn through index 
j: Functional criticality index 9: 2112 
h: Debris damage index 
l: Secondary tile loss index 

25: 3122 

12: 2311 

3: 1121 

19: 2321 

2: 1111 

30: 3312 

23: 3112 
11: 2131 

27: 3132 

22: 2332 

7: 1311 
29: 3312 

33: 3332 17: 2321 

Source: Paté-Cornell and Fischbeck 1993 

21: 2331 

Risk criticality 

6: 1311 100 

50 
33 

14: 2312 30 
25 

16 
15 

13: 2311 6 
3 
2 

128: 3222 
0 

4: 1131 

21: 2331 

26: 3132 

24: 3122 

11: 2131 

16: 2321 

32: 3332 

8: 1331 

31: 332210: 2121 

18: 2321 

AI RISK MANAGEMENT DECISIONS 

Decisions under uncertainties are supported by the algorithm based on that information, but 
also by a risk attitude encoded in the program. This is an important feature that is not always 
understood by the people who receive the message—i.e., the managers and users of the 
system—who do not question the AI system given the span of information that it relies upon. 
The risk attitude is just one factor embedded in the algorithm but not explicit to the user. 
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Yet, whereas the information can be justifed and corrected if needed, there is no correct risk 
attitude, except if one believes that the risk preference of a crowd or an organization should 
prevail. The choice and the source of the risk attitude are thus critical to the relevance of the 
AI message. 

That choice may pose an alignment problem if a specifc decision maker, responsible for risk 
management, wants his or her risk attitude to prevail (Paté-Cornell 2023, 2025). For instance, 
based on the diagnosis of an AI system, the owner of a small plane may decide that what seems 
to be a minor problem is too dangerous for a fight. Another pilot may decide that the risk is 
tolerable. In any case, the AI system provides a judgment and a decision, based on a risk atti-
tude implemented in the algorithm that may or may not be that of the actual decision maker. 

In this general alignment problem, the AI parameters represent preferences that need to ft 
those of the decision maker and/or the organization that manages the system. 

THE AI ALGORITHM AND ITS OUTPUT 

All risk management decisions under uncertainties thus refect a risk attitude. Yet, as men-
tioned earlier, there is no “right” risk attitude, unless it has been explicitly specifed by 
the risk management organization. For instance, most defciencies, small as they may be, 
in nuclear power plants or in an airplane, require attention. But the management of small 
defects in a car depends on the risk attitude and on the resources of the owner. 

If the risk attitude is not specifed elsewhere (e.g., by polls among the population regarding 
a specifc risk), the risk attitude of the AI decision algorithm is the analyst’s choice based on 
opinions of experts or a crowd, of public intuitions and fears, or other factors. 

If the algorithm includes a utility, the risk attitude is included in that function. Also included in 
the utility are the values that the decision maker chose for each possible outcome for each 
attribute. That utility is continuous and monotonic (it grows with the outcome value) and the 
risk attitude can be assessed from that function.4 This is important because if one wants to 
choose the optimal option given the preferences of the decision maker, the AI system needs 
to be aligned to these preferences. To do so, one may need to “unzip” the algorithm, extract 
from it the value of that risk attitude, check whether it fts the decision, and modify it if it 
does not. 

To ensure the alignment, one needs to assess the risk attitude of the decision maker by 
presenting him or her with “lotteries”; i.e., choices based on probabilities and values of out-
comes, and ask what would be, for example, the “selling price” of that lottery that he or she 
would be willing to pay to get rid of the uncertainties. By equating the utility of that selling 
price (the “certain equivalent” of the lottery) to the expected utility of the lottery, one may be 
able to assess the utility of a sufcient number of outcomes, and therefore a risk attitude. That 
ofen implies drawing a utility function through the points that one has gathered, in order to 
assess an estimate of the risk attitude as the ratio of the second derivative to the frst (minus), 
at least in the relevant outcome segments. 
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THE HUMAN IN THE LOOP PROBLEM 

The question is whether there is a human in the loop at decision time, or whether the AI 
decision is automatically implemented. If the best option is determined by AI alone, but the 
decision itself is made by someone else, there may be an alignment problem with the risk 
attitudes. One cannot make the comparison unless one gets to know the attitudes of both 
the AI system (which is not obvious) and the actual decision maker. As will be shown in some 
examples further, that issue is critical—for example, in medical choices or national security 
decisions. 

AN AI SYSTEM MAY NOT BE TRANSPARENT: WHAT IS ITS RISK ATTITUDE? 

If a human makes the decision based on information provided by an AI system, it is important 
for the decision maker to understand the source of the AI opinion, both in terms of informa-
tion and preferences, and to know the system’s risk attitude. 

CAN THE DECISION MAKER OVERRIDE THE AI DECISION? 

In some cases, the decision is automatically implemented. In others, the AI system provides 
the option that the algorithm identifes as optimal, which refects the risk attitude embedded 
in the program. It could be that the AI system is more risk-averse than the decision maker 
or that they do not use the same trade-ofs among attributes. The question is whether the 
AI system fts the decision maker’s preferences. 

For example, in a medical case, the patient may want to avoid a painful procedure, even if the 
judgment of the AI system is that it is the safest choice for the global population. These trade-
ofs, however, will be felt diferently by diferent people, and the objective for the patient is to 
choose the option that he or she prefers given the uncertainties. 

FOUR REAL-LIFE EXAMPLES OF AI RISK ALIGNMENT PROBLEMS 

The alignment problem and the use of AI systems as providers of decision guidance has 
become essential in many domains and will be increasingly so as large databases and large 
language-learning models will be implemented in a number of felds of life. 

What is presented here is a set of four examples that are realistic but illustrative (Paté-Cornell 
2025). It is assumed that in each case, a human being will have the choice between two 
options: following the AI system’s recommendation, thus accepting in some cases an auto-
mated decision, or using his or her own judgment, knowledge, and risk attitude to make a 
decision that may be diferent from that of the algorithm. 

A Medical Case 

A patient had chosen to get a mammogram without any symptom of breast cancer because 
it was a CDC recommendation that the test be performed given her age. There was a minor 
image problem in the visual equipment, and her doctor recommended a needle test, which 
came back negative. Nonetheless, a risk-averse AI system recommended that she get an 
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additional surgical biopsy. The patient had to decide whether to follow that advice. In this 
case, given the very low probability of a disease and the downsides of surgery, and with the 
advice of a higher-level practitioner, she did not accept the test, and decades later has never 
had breast cancer. 

A Defense Case 

Automatic drones are used to hit specifed targets with a human in the loop. By contrast, 
autonomous drones guided by an AI system choose their target and can respond automati-
cally and immediately to an enemy attack. The use of autonomous drones in combat is, for the 
moment, forbidden by the US Department of Defense. The US and China (as far as we know) 
have some of these drones but have not used them in combat. Other countries such as Russia 
and Turkey do use them, and the US may have to consider the speed of ballistic exchange and 
the use of autonomous drones in combat to avoid the immediate destruction of US capabili-
ties. The problem with that option is that it may not allow a commander to stop an exchange of 
weapons to allow for negotiation of a truce that could decrease the losses on both sides. 

A Sports Case: Sailing Races 

A sophisticated AI system was at the core of the victory of the New Zealand team in the 2024 
America’s Cup. Yet, there are generally remaining uncertainties in the AI evaluation of the 
winds, the currents, and the performance of the competitors. Most AI sailing guides are not as 
sophisticated as the New Zealand one but still provide valuable information. Given an AI eval-
uation of winds and currents, should a skipper change her course or the setting of her sails? 
It depends on the sophistication and the accuracy of the AI system and on the experience of 
the skipper. In the end, it is her decision given her knowledge of the area, her understanding 
of the competition, and her actual objective in the race (try with a small chance to fnish frst 
or ensure a decent position even if it is not among the top ones). In any case, one key factor in 
that decision is her risk attitude, which may or may not be that of the AI system. 

Autonomous Vehicles 

Autonomous vehicles are generally safer than other vehicles, yet susceptible to accidents, 
many of which are caused by other cars (e.g., rear-ending). They function without information 
about a rider’s risk acceptance given interactions with other vehicles. The autonomous vehi-
cle’s reaction is dictated by the AI system and thus depends on the judgment introduced by 
the analyst. In the design of the algorithm, risk attitude is part of the vehicle’s management 
sofware. The analyst’s opinion becomes the risk attitude of the passenger, which varies by 
defnition and is part of the algorithm. One could imagine giving the passenger the option to 
set automatic risk control; but frst, that would require on the passenger’s part an understand-
ing of his or her risk attitude, and second, it could trigger a legal challenge. 

In all four cases, the ultimate choice should depend on the risk attitudes of the decision maker 
and of the AI system if they can be aligned. Otherwise, it may only be the judgment of the ana-
lyst, thus refecting a risk attitude that is embedded in the AI system without an explicit link to 
the actual decision maker. 

32 ELISABETH PATÉ-CORNELL U QUANTITATIVE RISK ANALYSIS 



    

  

  
 
 

 

   
 

   

 
 

 
 

 

 

  

SOME APPROACHES TO SOLUTIONS OF THE AI ALIGNMENT PROBLEM 

Aligning the risk attitudes of the AI system to that of the future decision maker(s) is generally 
needed in the decision stage if AI is playing a decision role. This adjustment involves several 
aspects of the AI system. 

• Revealing explicitly the sources of AI information This is one essential way to allow the 
decision maker to assess the validity of the probabilistic information. 

• Flexibility of the AI system One needs to permit adjustment of the risk tolerance factor 
either by allowing “unzipping” of the system to modify that factor in the algorithm, or 
by allowing the decision maker to input his or her risk attitude in the sofware before 
making the decision. In both cases, this implies access to the risk attitude of the sof-
ware and possible modifcation of it, while preventing adversaries from accessing and 
modifying the system. 

• Education about preferences The decision maker must be able to assess his or her 
own risk attitude in terms compatible with those of the AI system, and to check it against 
the AI’s. To do so, she or he can assess and compare lotteries as is shown further, and 
the risk attitude can be derived from evaluation and comparison of these lotteries. 

• Communications, when feasible, between the analyst and the decision maker 
Communications may be essential between the analyst and the user if the analyst is 
designing the algorithm to guide a specifc, known decision maker in the decisions to 
be made. The problem is to know who decides and what risk he or she is willing to take. 
But the solution should also involve the people who will have to live with the conse-
quences of the chosen option—for instance, medical AI recommendations. 

AI-BASED CYBER RISK MANAGEMENT: AN EXAMPLE 
OF WARNINGS OF A CYBERATTACK 

The assessment of warnings of cyberattacks to guide the response of the defender is an 
example of the general risk analysis model presented earlier. The model presented here 
is based on a specifc but illustrative case of cyber defense that demonstrates a general 
approach to cyber risk management supported by an AI system (Faber and Paté-Cornell 
2020).5 

AN ILLUSTRATIVE SITUATION AND ITS ACTORS 

• A commercial corporation and its cyber system A company, for example selling t-shirts, 
wants to protect its main computer, which contains data (commercial, fnancial, techni-
cal, etc.) that some attackers would like to get. 
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• Two kinds of actors: customers and attackers Both are trying to enter the computer 
system. The customers need to place their order, and cyber attackers are trying to reach 
its core to access and steal the information that they want to get. In the study, the behav-
iors of the attackers were observed through 18 “honeypots,” which are simulated targets 
that were set up to attract and identify potential attackers. 

• A hybrid defense system protects the computer It involves both a human expert and 
a robot. Therefore, both an AI system and a human being are in the loop. 

• Opening or closing a gate The defenders’ decisions are to open or close the “gates” 
in the computer system when actors are observed progressing through them. A gate is 
understood here as one step in the kill chain (the sequence of attack functions) of the 
cyber attackers, but the customers go through some of the same “gates” even though 
they do not intend to attack the system. 

• Who makes the gate decisions In the beginning the human decides whether to open or 
close these gates. The robot observes and learns. 

• Robot learning The robot (the AI system) learns from the human expert who makes the 
original sequential decisions, then takes over the control of each gate when its level of 
competence is deemed sufcient by the algorithm. 

• The expert can take back control When the level of uncertainty or the size of the 
outcomes is too high, the robot passes the hand back to the human, who then decides 
whether to open or close the gate before returning control to the robot. 

The hybrid cyber defense system is represented in fgure 12, showing the interaction between 
the two defense actors. The defense team observes and follows each entry into the computer. 
At each gate, it makes the decision to keep it open or to close it, understanding the possibility 
that the actor is an attacker but that it could also be a legitimate customer. That decision is a 
rational one, based on probabilities and an expected utility, thus on the uncertainties about 
the actors and the value of the outcomes in both cases (a loss or a sale). That utility is a value 
function assumed to be that of the decision maker or the organization, and to include the cor-
responding risk attitude. 

The defenders thus must make gate decisions under uncertainty given a trade-of based 
on the probability that the actor is an attacker or a customer. The value function that guides 
the defenders’ decisions to open or close each gate is the utility of the outcomes to the 
defenders—a sale if the actor is a customer, a loss if the actor is an attacker. 

As shown in fgure 12, the robot passes the hand to the human when the threshold of 
uncertainties or outcome size exceeds a level specifed in the algorithm. 
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  FIGURE 12 The hybrid cyber defense system 
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MODEL OF THE DEFENDERS’ DECISION SEQUENCE 

One can thus describe the cyber defense model as follows. 

• Two kinds of actors are trying to enter the computer There is some uncertainty about who 
is who. The legitimates are the customers, and the others are the attackers who are trying 
to enter the core to do some damage to the company’s operation, or to extract information 
to their beneft. The defenders have some information about the attackers, from which they 
can derive a probability that the attackers are attempting to enter the system. 

• The defenders’ job is to look for and identify the actors They do so by detecting their 
“kill chain”; that is, the sequence of attack steps that attackers can implement. 

• Attack steps The attackers’ behaviors are represented by the attack steps. There are 
uncertainties about the nature of the “gates” (are they really part of an attack?), but there 
exists some information from previous observations of the attackers’ kill chain and 
behaviors. 

• The objective of the defenders The objective is to develop a rational gate policy to opti-
mize the system’s value as a decision rule. 

• The defenders’ goal The goal is to lock out the attackers and let the customers pass; 
therefore, to observe, recognize, and respond to the attackers’ “kill chain,” stop them 
but make sure that the buyers can pass. This involves managing the trade-of between 
the risk of an attack and possible loss of a sale to a customer. 

THE DEFENSE PROCESS 

The defense is based on a gate policy as described in fgure 13, which represents the dynam-
ics of actors’ and defenders’ moves through a computer. On the lef side, actors enter 
the computer. Some are attackers (thinner path line in the fgure) and some are legitimate 

HOOVER INSTITUTION U STANFORD UNIVERSITY 35 



    

 
 

 
 

 
  

  

 

 
  

  
 

  FIGURE 13 A defenders’ gate policy for cybersecurity 
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customers (thicker path line). Their goal is to move through the computer, from lef to right 
through the computer representation of the fgure to reach its core. The sequence of the kill 
chain elements is the following: recognition (of a target), weaponization (development of an 
attack), delivery (of the attack sofware), exploitation, control, execution, and maintenance. 
The defenders know these kill chain steps and want to recognize them so that they close 
the gate when they detect the attempted passage of an attacker. But uncertainties remain 
in the detection of the kill chain and the nature of the actors trying to pass. 

When the attackers implement each of the attack steps, the defenders may receive signals 
that indicate the danger, but with uncertainty. Based on what they know, they make a rational 
decision under uncertainty to close the gate or leave it open. In the analysis of their deci-
sion, probabilities represent the information available to the defenders. In the example of 
fgure 13, the attackers are stopped three times but make it once to the core. The customers 
are stopped once but reach the core twice. 

HOW THE ROBOT LEARNS 

In the example presented in fgure 13, the human and the robot make defense decisions to 
protect the computer at each gate. Figure 14 shows a purely illustrative example of which one 
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FIGURE 14 The respective roles of the human and the robot in defense of the gates over time. 
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of the defenders (the AI system or the human) makes the decision to open or close the gates. 
Sixteen gates (on the vertical axis) are considered over 100 time units. The decisions of the 
human are represented in red, and of the robot in blue. In the beginning, the human expert 
has the knowledge and experience, and the robot learns by observing how the human makes 
the system’s protection decisions. 

As shown in fgure 14, the robot learns quickly about gates 1, 5, 9, and 14, and takes over the 
decisions related to these gates afer that. It takes more time to learn enough to take over 
the other gates. Gate 7 presents the particular case where the robot, having taken its control 
at time 27, passes the hand back to the human expert at time 28. That happens because at 
time 27, the uncertainties or the outcomes exceed the encoded thresholds—i.e., signals that 
the robot does not know enough to make the gate decisions. Afer the human intervenes, the 
robot has learned enough to take back control. 

The learning algorithm is thus the following: 

• The expert makes initial gate control decisions. 

• The robot learns and takes over at diferent times for each gate. 

• When the uncertainties or the outcomes are too great, the robot passes the hand to 
the expert. 

• Afer that, the robot knows enough to do the risk management. 
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LESSON FROM THAT EXAMPLE 

The lesson in this example is that the risk of a cyberattack can be managed by an AI system 
with human supervision. In this example, it was with a human in the loop for the case where 
the AI framework is not yet equipped to handle a particular situation. The principle is that ele-
ments of the kill chain are observed, although with uncertainties, by the defenders who make 
rational gate decisions given what they know when they observe a signal. 

SOME OF THE RISK ANALYSIS CHALLENGES 

From the examples presented earlier, a number of lessons can be learned about what to 
do and what not to do in a risk analysis. 

BASIC TASKS AND CHALLENGES 

• The basic task is the formulation of the model It involves integrating hardware and sof-
ware, as well as human and management factors. When designing an AI-based risk man-
agement model, the challenge is to make sure that the limits of the analytical framework 
are right and involve the information that is needed. This implies not cutting wrongly for 
convenience the considered information, including the options that can be envisioned. 
What matters is the data that one needs, not necessarily the data that one has. 

• Gathering and processing the information It can also be a challenge. It involves iden-
tifying the relevant data, statistics if they exist, and models of the risk and risk manage-
ment options, including the choice of experts. Note that it is important, if feasible, for the 
risk analyst to spend time at the location of the operations. As an example, information 
about anesthesia was gathered in good part by the researchers spending several days 
in an operating room to observe how the system worked, what could go wrong, what 
signals would appear, how they could be observed and communicated, and what the 
response of the diferent actors might be. 

• Communicating the risk analysis results That ofen involves explaining probability and 
Bayesian reasoning, and especially events dependencies. The basic formula of Bayesian 
logic is that the probability of [A and B] is that of A multiplied by that of [B given A], and 
that logic ofen has to be explained. Both joint and conditional probabilities are elements 
of the assessment of the probabilities of scenarios, but ofen confused, including by 
professionals. 

• Understanding the risk attitude of the decision maker It is essential to understand risk 
tolerance as part of the individual’s values. 

• Probability goes against deep-seated, deterministic ways of thinking Few people are 
comfortable with uncertainties in the frst place, and even more so with probabilities and 
combinations of probabilities. The concept ofen requires communication and education. 
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SOME CLASSIC ERRORS IN RISK ANALYSIS 

It is useful when doing a risk analysis to be aware of and to avoid some classic errors. 

• Making the problem more complex than needed It is a common issue since the descrip-
tion of each scenario could be enlarged by adding details that may not be critical to the 
risk. It is ofen tempting to add these details because they seem important to the decision 
maker, but the analysis may show that they may have little impact on the risk result. 

• Mixing uncertainties (facts) and preferences Guesstimates generally involve some facts. 
But the probabilities are ofen biased by what is preferred or feared by the decision 
maker, with the thought that probabilistic estimates, biased by his or her preferences, 
will infuence the decision toward the choice that they prefer. 

• Irrelevant statistics They are ofen used because they are there but have to be avoided 
if they are no longer representative of the situation—for example, because they are 
based on values (e.g., fnancial) of the past and things have changed since then. 

• Assumption that things are designed, constructed, and operated as they are supposed 
to be Many failures occur because that is precisely not the case. Such a common mis-
understanding of the system may yield risk results that are inferior to reality because 
they do not account for human errors that may afect the system or the operations in 
several stages of design and implementation. 

• Irrelevant assumptions of independence The factors of scenarios are ofen assumed 
(without checking) to be independent. Therefore, the probability of their conjunction, 
if it is estimated as the product of their marginal probabilities, is undervalued. That is 
because, as mentioned earlier, the probability of [A and B] is that of A multiplied by that 
of [B given A], which might be greater than the product of the marginals p[A] × p[B] if 
B and A are highly correlated. 

• Manipulation of the results of a risk analysis to infuence a decision For example, 
providing a “conservative” estimate out of “prudence” is ofen tempting to analysts or 
experts, who are trying to infuence a risk management decision by providing manipu-
lated risk results. Yet, it is false and simply leads to wrong risk results and decisions. 

FINAL CONSIDERATIONS 

In managing risks on the basis of quantitative risk assessments, one needs to consider care-
fully the impacts of one’s decisions. 

• By providing risk analysis results, one creates a culture in which the risk of failure is not 
only recognized but quantifed. First, one must recognize that the risk analysis may not 
be error-free. Yet the quantitative method provides an estimate, and the result may be 
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small. But in any case, the process and the results may be diferent from perceptions 
infuenced by a culture of fear, in which the risk may be overstated, or from an environ-
ment of denial, in which the risk is understated for a number of reasons, either personal 
or managerial. The main reason for the quantifcation is that the objective is not only to 
state the existence of a risk but to manage it as well and as economically as possible. 

• The results of a risk analysis may reveal some efects of the organizational structure. Are 
there organizational silos that act against others? Part of the risk management may be to 
modify the organization and/or the process—for example, to make sure that the risks are 
managed by people close to the problem. In some cases, the risk needs to be brought to 
the attention of the organizational top, with an accurate defnition of the level of severity. 

• Finally, a key factor is the quality of the communication system: What information can the 
risk analysts provide, especially to people who are not familiar with the quantifcation 
method and with probability and yet will beneft from a numerical result? Will it be under-
stood when it matters? 

In conclusion, when the system is simple enough, risk management may be automatic, and 
the system is unlikely to fail. In most cases though, perceptions of the failure risk may be 
somehow inaccurate, and the quantifcation, if it is well done, provides a solid improvement 
to simple guesstimates. So, it is important to reward those who do it well! 
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APPENDIX 

CONSTRUCTION OF AN INFLUENCE DIAGRAM AND AN EXAMPLE OF SEISMIC 

PROTECTION 

One way to describe the process of constructing an infuence diagram is to relate it to the 
equivalent decision tree for a decision under uncertainties. 

1. Decision Trees 

Consider a decision that involves several possible options, each leading to an uncertain out-
come, and the goal of the decision maker who wants to choose the option that maximizes the 
expected utility. 

The structure of a decision tree is represented below, along a horizontal axis, for the specifc 
example of either reinforcing or insuring a house against earthquakes. 

FIGURE A1 The decision tree for the example of seismic risk management focusing on a house 

p’(H|EQ) Decision State State 2,005,000 4.3 × 10–3 
variable variable 1 variable 2 0.3 

EQ 
1/70 

EQ 

EQ 

EQ 

EQ 

Z 

Z 
0.2 

Reinforce 

Do nothing 

$23,428 

1/70 

1/70 

69/70 

69/70 

$18,571 

Insurance 

$31,364 

Z 

Z 

0.05 

0.75 

Z 

H 

H 

H 

L 0.2 p(L|EQ) 

L 0.2 p(L|EQ) 
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0.05 

0.5 

0.75 

1 

1 

p’(L|EQ) 

p’(Z|EQ) 

p’(Z|EQ) 

p(H|EQ) 

p(H|EQ) 

p(Z|EQ) 

p(Z|EQ) 

p(Z|EQ) 

705,000 7.1 × 10–3 

5,000 2.9 × 10–3 

5,000 0.9857 

130,000 1.071 × 10–2 

130,000 2.86 × 10–3 

30,000 7.14 × 10–4 

30,000 0.9857 

2,000,000 1.071 × 10–2 

700,000 2.86 × 10–3 

0 7.14 × 10–4 

EQ 
Z 1 p(Z|EQ) 0 0.985769/70 

Costs H: 2M Reinforce: 5k/yr 
L: 700k Insurance: 30k/yr 
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The tree starts on the lef with a square decision node that represents the possible options 
(here: insuring the house, reinforcing it, or doing nothing). Following each option, there are 
possible sequences of certain or uncertain events (scenarios). 

Each event or factor is represented by an oval node linked in a chain to other events in the 
scenario that are connected to it by conditional probabilities. Each of these nodes represents 
an event or state variable with its possible realizations (e.g., it happens or not) and the prob-
abilities of each realization conditional on the previous events in the chain. 

At the end of the chain, the outcome is represented by its value in the relevant measure 
(e.g., a monetary value). As mentioned earlier, the decision tree shown here represents the 
decision to reinforce or insure a house given the possibility of an earthquake (EQ), and the 
(uncertain) consequences of that earthquake in terms of damage to the house (high H, low L, 
or zero Z). The vertical line in the probability domain represents the chances of the event on 
the lef, “given” the event on the right. 

The probabilities p and p’ represent the chances of diferent loss levels given the decision 
represented at the beginning (reinforcement or not) and the events that follow (earthquake or 
not). The numbers on each branch represent the numerical values of the probabilities, and at 
the end of each path, the value of the cost incurred in the scenario, with or without an earth-
quake, and the overall probability of that scenario (the product of the conditional probabilities 
on each branch of it). 

• If the decision maker is an expected-value decision maker, he/she chooses the 
reinforcement solution that minimizes the expected costs. 

• If the decision maker is as risk-prone as possible, he/she maximizes the maximum 
benefts and does nothing. 

• If the decision maker is as risk-averse as possible, he/she minimizes the maximum 
losses and chooses the insurance. 

2. Infuence Diagram 

The corresponding infuence diagram can be represented as follows: 

The infuence diagram of fgure A2 has two components: the graph that represents the 
variables (in squares, ovals, and trapezoids) and their dependencies (the arrow), and 
the tables that represent the numerical values of the probabilities and the outcomes. 

The graph is constructed in the following way. First, the decision is represented in the square 
or rectangle (here, the risk management options). Then the diferent events are represented 

42 ELISABETH PATÉ-CORNELL U QUANTITATIVE RISK ANALYSIS 



    

 

 
  

 

 
 

 

  

  

  

  

  

FIGURE A2 Infuence diagram homomorphic to the decision tree of fgure A1 

DIAGRAM 

Risk 
management 

decision 

Reinforcement and 
insurance costs Costs 

(losses) 

Earthquake 
occurence 

Building 
performance 

TWO COMPONENTS 

TABLES 

Alternatives 

p(EQ) 

p(EQ) 

p(H|reinf, EQ) ... etc. 

p(H|no reinf, EQ) ... etc. 

Outcomes for 
each scenario: 
decision, EQ, 
performance 

in ovals. In this example, the earthquake occurrence does not depend on other variables 
(no arrow into that node) but it infuences the building’s performance (the level of damage, 
H, L, or Z). Both the initial decision’s cost and the cost of the damage, if any, infuence the 
overall costs outcome. 

The tables contain the values of the probabilities of the earthquake in a given time frame, of 
the levels of damage conditional on the earthquake, and the chosen risk management option. 

This pattern of diagram construction (decision node, variables, and outcomes) can be applied 
to any decision under uncertainties, and yields the optimal decision given the decision rule 
introduced in the data; for instance, minimize the overall expected value (or another function) 
of the costs. 

NOTES 

1. The risk is sometimes understood to include the possibility of positive as well as negative outcomes of 
an event. The focus here is on losses, but the method presented below can include some benefts as well. 

2. This report is written without equations and very few numbers. A risk analysis, however, is a quantitative 
exercise and the appendix is analytical and quantitative, presented to show the design and the use of 
infuence diagrams. 

3. “Anesthetist” here could refer either to a nurse-anesthetist or an anesthesiologist, who is a medical doctor. 

4. The risk attitude is the ratio of the second to the frst derivative (-U”(x)/U’(x)) of the utility function U(x) of 
the spectrum of possible outcomes x. 

5. This case has been developed by Col. Isaac Faber for his PhD thesis in risk analysis at Stanford under 
the supervision of the author (Faber and Paté-Cornell 2020). This section is based on their work. 
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