$$
r<g
$$

John H. Cochrane

Hoover Institution, Stanford University and NBER

May 25, 2021

Preview

- Debt sustainability: The most important macro question.
- The hope:

$$
\frac{d}{d t}\left(\frac{b_{t}}{y_{t}}\right)=\left(r_{t}-g_{t}\right) \frac{b_{t}}{y_{t}}-\frac{s_{t}}{y_{t}} .
$$

$r<g$: Raise debt $(s<0)$ then roll over $(s=0), b / y$ declines?
"Fiscal expansion" with "no fiscal cost?" (Blanchard, Yellen v. 1)

- Why is $r<g$? Will it last? ("Low interest rates \& gov't debt.")
- Does $r<g$ work? (" $r<g$ ".)
- $r<g$ is fun, but irrelevant to US fiscal policy issues. Like seignorage, it is a small benefit to government finance. Large deficits need to be repaid with surpluses.
- Can see $E(r)<E(g)$ yet debt $=$ PV of surpluses. Grow out of debt strategy is like writing out of the money puts, calling it arbitrage. Don't calibrate certainty models with uncertain data.

r fact

- Steady trend since 1980.
- Savings glut, fx reserves, QE, zero bound, liquidity, etc. Icing. Cake?
- Basic economics? (Why do we not know?)

Basic economics

FRED \approx - Real Potential Gross Domestic Product

$$
r=\delta+\gamma(g-n)=\theta f^{\prime}(k)
$$

real $r=$ impatience $+(1-2) \times$ (growth - pop. $)=$ marg. product of capital

- Less g-n? Less capital intensive (services)? Fewer ideas (end of growth)? More tax and regulation (θ)?
- Should we fear return to more g? (No. Surpluses easier.)
- Gov gets g, private uses g - n. Less n is bad for government!
- Savings from bulge of middle aged boomers? Will reverse.

Inflation

- Quiz: What happened in 1980?
- 1980-1990 fear inflation return?
- Post 1980 negative beta (rates and inflation decline in recession, exchange rate rises). Will that last/reverse?
- (Though 1980 also inaugurated strong growth.)

Liquidity, privilege?

FRED $\approx \approx$ — Long-Term Government Bond Yields: 10 -year: Main (Including Benchmark) for the Euro Area

Does it work?

- The hope:

$$
\frac{d}{d t}\left(\frac{b_{t}}{y_{t}}\right)=\left(r_{t}-g_{t}\right) \frac{b_{t}}{y_{t}}-\frac{s_{t}}{y_{t}} .
$$

$r<g$: Raise debt (with $s<0$) then roll over $(s=0), b / y$ gently declines? "Fiscal expansion" with "no fiscal cost?"

- Puzzles
- Washington understands logic better than economists!
- If US does not have to repay debt, why should citizens?
- Never work, pay taxes? Checks, not infrastructure. Limit?
- Theory wall between $r<g$ manna and $r>g$ austerity? 0.01\%?
- Obviously not. Conventional discussion:

1. $r(b / y)$ rises. Crowd out? Liquidity premium? Borrow until $r=g$?
2. r rises. Lose $\beta<0$, reserve status, demographics, g changes.
3. There is a B / y limit. (Really a $B / y+$ plan to pay it off limit.) 50-100 years of large b / y threatens doom loop. Dry powder. Another crisis, WWII starting at $b / y=200 \%$?

- Today point 1: $r<g$ is irrelevant to US fiscal policy issues.

Perpetual deficits with steady b / y ?

The whole $r-g$ debate is irrelevant to current US fiscal policy issues.

Total Deficits, Primary Deficits, and Net Interest
ㅍ
Percentage of Gross Domestic Product

- Scenario 1: $r<g$ by 1% and $b / y=100 \%$ allow $s / y=-1 \%$.
- Not $s / y=-5 \%$ in good times, $s / y=-25 \%$ in $1 / 10$ year crisis, and then entitlements, and then "one-time" expansion!
- $500 \% b / y$ forever to finance $5 \% s / y$?

One time expansion and grow out?

The whole $r-g$ debate is irrelevant to current US fiscal policy issues.

- Scenario 2: "One-time b/y expansion" and then $s=0$.
- $s=0$ would be an austerity / conservative dream!
- $r<g$ by 1% does not allow perpetually growing b / y !

Reversion takes a long time

- Even if we could get to $s=0, r<g$ by 1% takes a long time.

WWII exit was not painless

- WWII exit featured steady primary surpluses. Plus 1947-1952, 1970s, inflation, capital controls, financial repression. Worse in UK

R, g and present values

Summary: $r<g$ in perfect foresight modeling

- $r<g \approx 1 \%, b / y \approx 100 \%$ shifts the average surplus to a slight perpetual deficit $s / y \approx-1 \%$, while it lasts.
- Any substantial variation in deficits about that average must be met by a substantial period of above average surpluses, to bring back debt to GDP in a reasonable time. Like seigniorage.
- A quantitative question. $r<g$ of 10% would be different.
- Point 1: $r<g$ debate is irrelevant to current US fiscal policy.

Point 2: Which r ? Uncertainty, liquidity fundamentally change.

- Liquidity, uncertainty: Many r to choose from.
- $r=$ rate of return on government debt may $<g$ average growth, but present values converge and debts must be paid.
- Do not measure r from a world with liquidity and uncertainty, and use it in perfect foresight modeling!
- Discontinuity at $r=g$? (Manna vs. austerity)

The hidden put option example

$$
\begin{gathered}
u^{\prime}(c)=c^{-\gamma} ; \log \left(c_{t+1} / c_{t}\right) \sim \text { i.i.d. Normal } \\
\gamma=2, \delta=0, \sigma=0.15 \\
g=E\left[\log \left(c_{t+1} / c_{t}\right)\right]=3 \% \\
r^{f}=\exp \left(\delta+\gamma g-\gamma^{2} \sigma^{2} / 2\right)=1.5 \%
\end{gathered}
$$

- Borrow b_{0}, roll it over forever at $r^{f}=r$ on gov't debt.
- Apply r^{f}, g to a risk free model: free lunch.

$$
\frac{b_{t}}{y_{t}}=\left(\frac{1+r^{f}}{1+g}\right)^{t} \rightarrow 0
$$

- Satisfies the false certainty TV condition
$\beta^{T}\left(\frac{c_{T}}{c_{0}}\right)^{-\gamma} b_{T}=e^{-\delta T} e^{-\gamma g T} b_{0} e^{\left(\delta+\gamma g-\gamma^{2} \sigma^{2} / 2\right) T}=e^{-\gamma^{2} \sigma^{2} T / 2} b_{0} \rightarrow 0$
- But b_{0}, roll forever, violates the real TV condition

$$
E\left[\beta^{T}\left(\frac{c_{T}}{c_{0}}\right)^{-\gamma} b_{T}\right]=\frac{1}{\left(1+r^{f}\right)^{T}} b_{0}\left(1+r^{f}\right)^{T}=b_{0} \neq 0
$$

$b_{0}>0$ requires surpluses, especially in high u^{\prime} states.

Ex-post consumption and debt paths

Debt and Consumption

- Borrow 1, roll over at $r^{f}<g$ forever. Certainty: g beats r^{f}. Uncertainty: there are sample paths of low consumption (high u^{\prime}).

Ex post debt to GDP ratio

- Certainty: b/y declines. Uncertainty: Some low growth sample paths lead to huge b / y, fiscal adjustment in (unlikely) low c, high u^{\prime} state. $r<g$ strategy is like writing out of the money puts.

Liquidity value of government debt

- Example: All debt is money. G debt return $r=-\pi<g$. No magic.
- Steady state can finance small deficit.

$$
(\pi+g) \frac{M}{P y}=-\frac{s}{y}
$$

but big deficits need to be repaid by later surpluses.

- PV? Discount with r^{f}, i.e. with $e^{-\delta t} u^{\prime}\left(c_{t}\right)$, suppose $r^{f}>g$:

$$
\frac{M_{t}}{P_{t} y_{t}}=\int_{\tau=t}^{T} e^{-\left(r^{f}-g\right)(\tau-t)}\left(\frac{s_{\tau}}{y_{\tau}}+i_{\tau} \frac{M_{\tau}}{P_{\tau} y_{\tau}}\right) d \tau+e^{-\left(r^{f}-g\right)(T-t)} \frac{M_{T}}{P_{T} y_{T}}
$$

Debt $=$ PV of surpluses, including seignorage. Terminal value converges. Can fund $s<0$. Big $s<0$ need to be repaid by $s>0$.

- Discount with gov't debt return $r=-\pi<g$:

$$
\frac{M_{t}}{P_{t} y_{t}}=\int_{\tau=t}^{T} e^{-(-\pi-g)(\tau-t)}\left(\frac{s_{\tau}}{y_{\tau}}\right) d \tau+e^{-(-\pi-g)(T-t)} \frac{M_{T}}{P_{T} y_{T}}
$$

Explosive "bubble," negative PV.

- Same $M /(P y)<\infty$. Which is usefu? "Mine bubble"? See s limit?

The technical problem

- You can discount one-period payoffs with ex-post returns.

$$
1=E_{t}\left(\frac{\beta u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)} R_{t+1}\right)=E_{t}\left(R_{t+1}^{-1} R_{t+1}\right)
$$

- You cannot always discount infinite payoffs with ex-post returns.

$$
p_{t}=E_{t} \sum_{j=1}^{T} \frac{\beta^{j} u^{\prime}\left(c_{t+j}\right)}{u^{\prime}\left(c_{t}\right)} d_{t+j}+E_{t} \frac{\beta^{j} u^{\prime}\left(c_{t+j}\right)}{u^{\prime}\left(c_{t}\right)} p_{t+T}
$$

each term converges, yet

$$
p_{t}=E_{t} \sum_{j=1}^{T} \prod_{k=1}^{j} \frac{1}{R_{t+k}} d_{t+j}+E_{t} \prod_{k=1}^{T} \frac{1}{R_{t+k}} p_{t+T}
$$

terms can explode in opposite directions.

$$
\frac{p_{t}}{d_{t}}=E_{t} \sum_{j=1}^{T} \prod_{k=1}^{j} \frac{1}{R_{t+k}} \frac{d_{t+k}}{d_{t+k-1}}+E_{t} \prod_{k=1}^{T} \frac{1}{R_{t+k}} \frac{d_{t+k}}{d_{t+k-1}} \frac{p_{t+T}}{d_{t+T}}
$$

Roughly, $r<g$ is the condition for $r<g$ to fail!

Bohn's (1995) example - uncertainty

- $\frac{c_{t+1}}{c_{t}} \sim$ iid. $\frac{1}{1+r^{f}}=E\left[\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma}\right] . r^{f}<g$ is possible.
- Government keeps a constant debt/GDP. Borrows c_{t}, repays $\left(1+r^{f}\right) c_{t}$ at time $t+1 . \quad b_{t}=c_{t}$. See as present value?
- $s_{t}=\left(1+r^{f}\right) c_{t-1}-c_{t}$. Discounting with marginal utility,

$$
\begin{gathered}
b_{t}=E_{t} \sum_{j=1}^{T} \beta^{j}\left(\frac{c_{t+j}}{c_{t}}\right)^{-\gamma} s_{t+j}+E_{t} \beta^{T}\left(\frac{c_{t+T}}{c_{t}}\right)^{-\gamma} c_{t+T} \\
=E_{t} \sum_{j=1}^{T} \beta^{j}\left(\frac{c_{t+j}}{c_{t}}\right)^{-\gamma}\left[\left(1+r^{f}\right) c_{t+j-1}-c_{t+j}\right]+E_{t} \beta^{T}\left(\frac{c_{t+T}}{c_{t}}\right)^{-\gamma} c_{t+T} \\
b_{t}=\left\{c_{t}-E_{t}\left[\beta^{T}\left(\frac{c_{t+T}}{c_{t}}\right)^{-\gamma} c_{t+T}\right]\right\}+E_{t}\left[\beta^{T}\left(\frac{c_{t+T}}{c_{t}}\right)^{-\gamma} c_{t+T}\right]
\end{gathered}
$$

Bohn's (1995) example

- Discounting with gov't bond return $=r^{f}$,

$$
\begin{gathered}
b_{t}=\sum_{j=1}^{T}\left(\prod_{k=1}^{j} \frac{1}{R_{t+k}}\right) s_{t+j}+\left(\prod_{k=1}^{T} \frac{1}{R_{t+k}}\right) c_{t+T}= \\
=\sum_{j=1}^{T} \frac{\left(1+r^{f}\right) c_{t+j-1}-c_{t+j}}{\left(1+r^{f}\right)^{j}}+\frac{1}{\left(1+r^{f}\right)^{T}} c_{t+T} \\
b_{t}=\left[c_{t}-\frac{c_{t+T}}{\left(1+r^{f}\right)^{T}}\right]+\frac{c_{t+T}}{\left(1+r^{f}\right)^{T}} .
\end{gathered}
$$

Taking expected value,

$$
b_{t}=c_{t}\left[1-\frac{(1+g)^{T}}{\left(1+r^{f}\right)^{T}}\right]+c_{t} \frac{(1+g)^{T}}{\left(1+r^{f}\right)^{T}}
$$

Bohn's (1995) example

- Discounting with marginal utility $c_{t}^{-\gamma}$, terms converge

$$
b_{t}=\left\{c_{t}-E_{t}\left[\beta^{T}\left(\frac{c_{t+T}}{c_{t}}\right)^{-\gamma} c_{t+T}\right]\right\}+E_{t}\left[\beta^{T}\left(\frac{c_{t+T}}{c_{t}}\right)^{-\gamma} c_{t+T}\right] .
$$

- Discounting with government bond return $=r^{f}$, offsetting explosions

$$
\begin{gathered}
b_{t}=c_{t}\left[1-\frac{(1+g)^{T}}{\left(1+r^{f}\right)^{T}}\right]+c_{t} \frac{(1+g)^{T}}{\left(1+r^{f}\right)^{T}} \\
b_{t}=\left\{c_{t}-E_{t}\left[\beta^{T}\left(\frac{c_{t+T}}{c_{t}}\right)^{-\gamma}\right] E_{t} c_{t+T}\right\}+E_{t}\left[\beta^{T}\left(\frac{c_{t+T}}{c_{t}}\right)^{-\gamma}\right] E_{t} c_{t+T}
\end{gathered}
$$

- Both right. Which is more useful?
- At least be careful about offsetting infinite limits! Can miss $b / y=1$, not ∞, that deficits are repaid in PV terms. No "mineable bubbles"!

Discontinuity at $r=g$?

$r=g$ divides bond vigilantes from garden of Eden? Divides \int forward to present value, repay, vs. \int back to debt just accumulates past?

Look at flows.

- $r-g=+0.01 \%$ with $b / y=100 \%$ means $s / y=0.01 \%=\$ 2$ billion.
- $r-g=-0.01 \%$ means $s / y=-0.01 \%=-\$ 2$ billion.
- This transition is clearly continuous.

Look at growing out of "one time" expansion
$-r-g=-0.01 \%$, means $b / y=150 \%$ resolves with $s=0$ back to $b / y=50 \%$ in 11,000 years.

- $r-g=+0.01 \%$ means $b / y=150 \%$ grows to 450% in 11,000 years, on the way to ∞.
- "Wealth effect" in transversality condition, is likely the same.

Lessons

- Economic meaning of solving integrals forward vs. backward should be continuous.
- Economically sensible reading: Small $r<g$ is not discontinuously different from small $r>g$.

Bottom line

Lessons

- $r<g \approx 1 \%$ is fun but irrelevant for US fiscal problems.
- $r<g \approx 1 \%$ allows steady small deficits like seignorage. Larger deficits need to be repaid with subsequent surpluses.
- Grow out of debt opportunity is like writing out of the money put options and calling it arbitrage.
- With liquidity or uncertainty, discounting with ex post return can lead to terminal condition and PV that explode in opposite directions, while discounting with marginal utility is well behaved.
- If you do it, be careful. Discounting with marginal utility is safer.
- Do not pluck r measures from the world and use risk free models for quantitative questions.

