ENERGY GAME CHANGERS



Outline

1 The Value and Importance of Fundamental Research in Energy

o Clean, Affordable, Reliable, Resilient Electrical System of the Future

- Powering US Industry of the Future



CLEAN, AFFORDABLE, RELIABLE, RESILIENT
ELECTRICAL SYSTEM OF THE FUTURE
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William Chueh (Stanford) — Storage

Virginia Wright (Idaho National Lab.) — Cybersecurity
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Solar Energy: Can we recapture solar manufacturing

bv further lowering cost?



on Solar Photovoltaics

NEARLY FREE ENERGY:
Solar PV is the only energy generation technology that has the
potential to produce nearly free (<1 ¢/kWh) energy

SOLAR R&D WORKS:
Joint government-commercial-academic R&D (largely in the U.S.)
has brought down the cost of solar to today’s competitive level

PURSUE ADVANCED SOLAR:

U.S. has historically led in the support of solar R&D, but China now
reaps the manufacturing benefits. To leapfrog ahead again, we should
double down on a new generation of advanced solar technologies.



Over the Last 40 Years
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Cumulative Global Shipments [MW]
FSA = Flat-Plate Solar Array - $608M total ($,917)

TFP = Thin-Film PV Partnerships - $335M
PVMaT = PV Manufacturing Technology - $228M

From 1975 to 2015: 20% reduction in price
for every doubling of cumulative production
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with Potential for Further Reductions!

Levelized Cost of Electricity for
New U.S. Generation Facilities -

e For <$10B in investment,
industry revenue is now
$20B annually in the U.S.

« 8,000 businesses and
260,000 jobs total
(downstream), larger than
coal, oil, and gas extraction
combined.

* Reliable path to:
... combat Climate Change,
... improved Grid Resilience,
... boost our National Security.



Potential for Energy from Solar PV
Reduce installation costs with LIGHTWEIGHT, FLEXIBLE modules

CONVENTIONAL installation FLEXIBLE installation

« Rigid, fixed modules « Flexible, retractable modules
Aluminum racking * No racking

« Discrete wiring and electronics » Integrated wiring and electronics

Integration of PVs into existing surfaces could REDUCE PV cost by FACTOR of 3 !



Pursuit of

 Lightweight with high power-to-weight ratios
 Flexible module formats of any form-factor
 Using abundant and inexpensive materials

* Produced at high speed and w/ high efficiency
« Engineered to absorb different colors of light
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Can we enable multi-day grid storage?




Key trends in electricity generation & storage

Declining
cost of Li-ion batteries

Average battery pack price
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Grid: Can renewables + storage compete on cost with fossil fuels?
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Short Duration Storage for Grid: 3-10 hours

Net load - March 31
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Long Duration Storage for Grid: Days to Seasonal
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Storage Game Changer
S 2 S

Today’s battery technology
for transportation

e telt

Tesla

Tomorrow’s battery
technology for grid storage
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Looks more like a chemical
plant 2 < $20/kWh

New set of
challenges for grid
storage will require
basic energy and
R&D investment to
prepare for a future
that runs on clean &
cost-competitive
electricity



Storage technologies that win on economics
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David Fedor
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- Fusion Energy



Approaches to fusion have been sub-optimal

Either “too big” or “too unproven™ and thus aiways 30 years away”

high-confidence
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History of “bootstrapped” breakthroughs
In magnet and fusion science and technology

demonstrated advantages of high field and density
first high-field (9T 0.55MA) operation
“neo-Alcator” confinement
first time exceed Lawson criterion
first high-field (8T 2MA) diverted operation
feasability of high-Z, high power operation
stationary, ELM-free H-mode

discovered self-generated toroidal flows
record power density
stationary, ELM-free I-mode
demonstrated off-acis LH current
demonstrated detachment with high confinement
pioneered field-aligned RF antenna

record boundary heat flux
super H-mode

high-field fusion ->—
science :

world record plasma PreSSure me—————

A&C C-Mod
1980 1990 2000 2010

development large-scale HTS joints
invention HTS non-insulated coil
compact HTS cyclotrons
invention HTS twisted stack conductor
design/build/operate Levitated Dipole eXperiment

design/build/test ITER CS model coil

lead US ITER magnet R&D

Nobel Prize: fractional quantum Hall effect

developed NbsSn standards benchmark testing

high-field magnet
engineering

theory/experimental demonstration coolant stability
first 10T SC fusion magnet
advanced NbsSn 2x performance
invention of Incoloy Alloy 908
first demonstration of wind-and-react
invention of cable-in-conduit conductor

= perfection of high-field copepr magnets




HTS is the disruptive technology for fusion

High-temperature superconductors (HTS) & From a fundamental discovery (1988) to

1000x larger operating space, enabling : a mature, commercially available
much higher magnetic fields. {technology produced at scale
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HTS > SPARC achieves net energy
gain at university/Start-up scale

Human
for scale

ITER
- Magnetic field =53 T Magnetic field =9.2 T Magnetic field =12 T
Fusion power = 500 MW  Fusion power = 500 MW  Fusion power > 50 MW

Energy gain = 10 Energy gain = 10 Energy gain > 2




SPARC optimizes the path to fusion energy

Proven physics

high-confidence

~70x smaller than

physics
+ ITER
ITER
Magnet technology |
scales to commercial =
power plants
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CFS company launched /w collaborative research
at MIT
Major domestic and international investmenﬁtev»
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