Adjusting for Confounding Using Text Matching

Molly Roberts (UCSD)

joint work with Brandon Stewart (Princeton) and Rich Nielsen (MIT)

April 29, 2021

Roberts Text Matching April 29, 2021 1 / 28

▶ Lots of discussion about status of women in academia/implicit bias

- ▶ Lots of discussion about status of women in academia/implicit bias
- ▶ Maliniak, Powers, Walter (2013): women cited less than men in IR

 Roberts
 Text Matching
 27 April 2021
 2 / 28

- ▶ Lots of discussion about status of women in academia/implicit bias
- ▶ Maliniak, Powers, Walter (2013): women cited less than men in IR
 - ▶ 3,000 Articles published in top tier IR 1980-2006

- ▶ Lots of discussion about status of women in academia/implicit bias
- Maliniak, Powers, Walter (2013): women cited less than men in IR
 - ▶ 3,000 Articles published in top tier IR 1980-2006
 - ▶ Women receive about 80% of the citations of male counterparts

- Lots of discussion about status of women in academia/implicit bias
- Maliniak, Powers, Walter (2013): women cited less than men in IR
 - ▶ 3,000 Articles published in top tier IR 1980-2006
 - ▶ Women receive about 80% of the citations of male counterparts
 - Network analysis suggests:

- ► Lots of discussion about status of women in academia/implicit bias
- ▶ Maliniak, Powers, Walter (2013): women cited less than men in IR
 - ▶ 3,000 Articles published in top tier IR 1980-2006
 - ▶ Women receive about 80% of the citations of male counterparts
 - Network analysis suggests:
 - Women self-cite less than men

- ▶ Lots of discussion about status of women in academia/implicit bias
- Maliniak, Powers, Walter (2013): women cited less than men in IR
 - ▶ 3,000 Articles published in top tier IR 1980-2006
 - ▶ Women receive about 80% of the citations of male counterparts
 - Network analysis suggests:
 - Women self-cite less than men
 - ▶ Men cite men more and men make up largest proportion of scholars

▶ Difficult study to do, because there are lots of confounders

- Difficult study to do, because there are lots of confounders
- ► For example: women write about different topics/with different words

- Difficult study to do, because there are lots of confounders
- ► For example: women write about different topics/with different words
- Is the reason they get fewer citations the choice of topics, or perceived gender?

- ▶ Difficult study to do, because there are lots of confounders
- ► For example: women write about different topics/with different words
- Is the reason they get fewer citations the choice of topics, or perceived gender?
- ► The perfect experiment:

- Difficult study to do, because there are lots of confounders
- ► For example: women write about different topics/with different words
- Is the reason they get fewer citations the choice of topics, or perceived gender?
- ► The perfect experiment:
 - Randomly assign names to journal articles

- Difficult study to do, because there are lots of confounders
- ► For example: women write about different topics/with different words
- Is the reason they get fewer citations the choice of topics, or perceived gender?
- The perfect experiment:
 - Randomly assign names to journal articles
 - Wait for ten years

- Difficult study to do, because there are lots of confounders
- ► For example: women write about different topics/with different words
- Is the reason they get fewer citations the choice of topics, or perceived gender?
- ► The perfect experiment:
 - Randomly assign names to journal articles
 - Wait for ten years
 - See how many citations they accumulate over time

- Difficult study to do, because there are lots of confounders
- ► For example: women write about different topics/with different words
- Is the reason they get fewer citations the choice of topics, or perceived gender?
- ► The perfect experiment:
 - Randomly assign names to journal articles
 - Wait for ten years
 - See how many citations they accumulate over time
- ► Maliniak et al solution: TRIP codes articles into (many) categories

- Difficult study to do, because there are lots of confounders
- ► For example: women write about different topics/with different words
- Is the reason they get fewer citations the choice of topics, or perceived gender?
- ► The perfect experiment:
 - Randomly assign names to journal articles
 - Wait for ten years
 - See how many citations they accumulate over time
- ► Maliniak et al solution: TRIP codes articles into (many) categories
- Control for these categories (topic, approach, etc)

- ▶ Difficult study to do, because there are lots of confounders
- ► For example: women write about different topics/with different words
- Is the reason they get fewer citations the choice of topics, or perceived gender?
- ► The perfect experiment:
 - Randomly assign names to journal articles
 - Wait for ten years
 - See how many citations they accumulate over time
- ► Maliniak et al solution: TRIP codes articles into (many) categories
- Control for these categories (topic, approach, etc)
- ▶ Also control for many other things (R1, tenure, co-author, journal, ..)

 Roberts
 Text Matching
 27 April 2021
 3 / 28

► TRIP hand coding a heroic effort

- ► TRIP hand coding a heroic effort
- ► Two problems with hand coding:

- ► TRIP hand coding a heroic effort
- ► Two problems with hand coding:
 - 1. Really time consuming

 Roberts
 Text Matching
 27 April 2021
 4 / 28

- ► TRIP hand coding a heroic effort
- ► Two problems with hand coding:
 - 1. Really time consuming
 - 2. Need to know the confounding categories ahead of time

- ► TRIP hand coding a heroic effort
- ► Two problems with hand coding:
 - 1. Really time consuming
 - 2. Need to know the confounding categories ahead of time
- Can we do this automatically?

- ► TRIP hand coding a heroic effort
- ► Two problems with hand coding:
 - 1. Really time consuming
 - Need to know the confounding categories ahead of time
- Can we do this automatically?
- ▶ Can we estimate the ways the relevant topics to condition on?

- ► TRIP hand coding a heroic effort
- ► Two problems with hand coding:
 - 1. Really time consuming
 - 2. Need to know the confounding categories ahead of time
- Can we do this automatically?
- ► Can we estimate the ways the relevant topics to condition on?
- ► Our solution: Text analysis!

 Roberts
 Text Matching
 27 April 2021
 4 / 28

- ► TRIP hand coding a heroic effort
- Two problems with hand coding:
 - 1. Really time consuming
 - 2. Need to know the confounding categories ahead of time
- Can we do this automatically?
- Can we estimate the ways the relevant topics to condition on?
- Our solution: Text analysis!
- Data: 3,201 journal articles from top 12 IR journals, 1980-2006.

- ► TRIP hand coding a heroic effort
- Two problems with hand coding:
 - 1. Really time consuming
 - 2. Need to know the confounding categories ahead of time
- Can we do this automatically?
- Can we estimate the ways the relevant topics to condition on?
- Our solution: Text analysis!
- Data: 3,201 journal articles from top 12 IR journals, 1980-2006.
- Merge with Maliniak et al data

 → we can use their other variables, including gender, article age, tenure, etc.

- ► TRIP hand coding a heroic effort
- ► Two problems with hand coding:
 - 1. Really time consuming
 - 2. Need to know the confounding categories ahead of time
- Can we do this automatically?
- ▶ Can we estimate the ways the relevant topics to condition on?
- Our solution: Text analysis!
- ▶ Data: 3,201 journal articles from top 12 IR journals, 1980-2006.
- Merge with Maliniak et al data → we can use their other variables, including gender, article age, tenure, etc.
- ► Compare All-Female to Co-ed/All-Male

- ► TRIP hand coding a heroic effort
- ► Two problems with hand coding:
 - 1. Really time consuming
 - 2. Need to know the confounding categories ahead of time
- Can we do this automatically?
- ▶ Can we estimate the ways the relevant topics to condition on?
- Our solution: Text analysis!
- ▶ Data: 3,201 journal articles from top 12 IR journals, 1980-2006.
- Merge with Maliniak et al data → we can use their other variables, including gender, article age, tenure, etc.
- ► Compare All-Female to Co-ed/All-Male

- ► TRIP hand coding a heroic effort
- ► Two problems with hand coding:
 - 1. Really time consuming
 - 2. Need to know the confounding categories ahead of time
- Can we do this automatically?
- ▶ Can we estimate the ways the relevant topics to condition on?
- Our solution: Text analysis!
- ▶ Data: 3,201 journal articles from top 12 IR journals, 1980-2006.
- Merge with Maliniak et al data → we can use their other variables, including gender, article age, tenure, etc.
- ► Compare All-Female to Co-ed/All-Male
- ► Our plan:

 Roberts
 Text Matching
 27 April 2021
 4 / 28

- ► TRIP hand coding a heroic effort
- Two problems with hand coding:
 - 1. Really time consuming
 - 2. Need to know the confounding categories ahead of time
- Can we do this automatically?
- ▶ Can we estimate the ways the relevant topics to condition on?
- Our solution: Text analysis!
- ▶ Data: 3,201 journal articles from top 12 IR journals, 1980-2006.
- Merge with Maliniak et al data → we can use their other variables, including gender, article age, tenure, etc.
- ► Compare All-Female to Co-ed/All-Male
- Our plan: Find similar articles,

 Roberts
 Text Matching
 27 April 2021
 4 / 28

- ► TRIP hand coding a heroic effort
- ► Two problems with hand coding:
 - 1. Really time consuming
 - 2. Need to know the confounding categories ahead of time
- ► Can we do this automatically?
- ► Can we estimate the ways the relevant topics to condition on?
- Our solution: Text analysis!
- ▶ Data: 3,201 journal articles from top 12 IR journals, 1980-2006.
- Merge with Maliniak et al data → we can use their other variables, including gender, article age, tenure, etc.
- ► Compare All-Female to Co-ed/All-Male
- Our plan: Find similar articles, control for text and non-text features,

- ► TRIP hand coding a heroic effort
- ► Two problems with hand coding:
 - 1. Really time consuming
 - 2. Need to know the confounding categories ahead of time
- Can we do this automatically?
- ▶ Can we estimate the ways the relevant topics to condition on?
- Our solution: Text analysis!
- ▶ Data: 3,201 journal articles from top 12 IR journals, 1980-2006.
- Merge with Maliniak et al data → we can use their other variables, including gender, article age, tenure, etc.
- ► Compare All-Female to Co-ed/All-Male
- ► Our plan: Find similar articles, control for text and non-text features, estimate how gender influences citations.

Text Matching

 Roberts
 Text Matching
 27 April 2021
 5 / 28

Text Matching

► Text as pre-treatment confounder

Text Matching

► Text as pre-treatment confounder → a surprisingly frequent problem

- ► Text as pre-treatment confounder \leadsto a surprisingly frequent problem
- Applications

- ► Text as pre-treatment confounder \rightsquigarrow a surprisingly frequent problem
- Applications
 - ▶ In International Relations, are women cited less frequently than men?

Roberts Text Matching 27 April 2021 5 / 28

- ► Text as pre-treatment confounder \rightsquigarrow a surprisingly frequent problem
- Applications
 - ▶ In International Relations, are women cited less frequently than men?
 - ▶ Does censorship change the behavior of social media users?

- ► Text as pre-treatment confounder \leadsto a surprisingly frequent problem
- Applications
 - ▶ In International Relations, are women cited less frequently than men?
 - Does censorship change the behavior of social media users?
 - Naive approach: compare posts/posting rate after censorship of censored and uncensored users

Roberts Text Matching 27 April 2021 5 / 28

- ► Text as pre-treatment confounder \leadsto a surprisingly frequent problem
- Applications
 - ▶ In International Relations, are women cited less frequently than men?
 - Does censorship change the behavior of social media users?
 - Naive approach: compare posts/posting rate after censorship of censored and uncensored users
 - ► Confounder: Text of what users wrote before censorship

- ► Text as pre-treatment confounder \leadsto a surprisingly frequent problem
- Applications
 - ▶ In International Relations, are women cited less frequently than men?
 - ▶ Does censorship change the behavior of social media users?
 - Naive approach: compare posts/posting rate after censorship of censored and uncensored users
 - ► Confounder: Text of what users wrote before censorship
 - ► Control for letters of recommendation, trade treaties, Congressional bills, etc

- ► Text as pre-treatment confounder \leadsto a surprisingly frequent problem
- Applications
 - ▶ In International Relations, are women cited less frequently than men?
 - Does censorship change the behavior of social media users?
 - Naive approach: compare posts/posting rate after censorship of censored and uncensored users
 - ► Confounder: Text of what users wrote before censorship
 - Control for letters of recommendation, trade treaties, Congressional bills, etc
- BUT conditioning on high-dimensional confounders is hard

- ► Text as pre-treatment confounder \leadsto a surprisingly frequent problem
- Applications
 - ▶ In International Relations, are women cited less frequently than men?
 - Does censorship change the behavior of social media users?
 - Naive approach: compare posts/posting rate after censorship of censored and uncensored users
 - ► Confounder: Text of what users wrote before censorship
 - ► Control for letters of recommendation, trade treaties, Congressional bills, etc
- ▶ BUT conditioning on high-dimensional confounders is hard
 - ➤ You can't possibly condition on every word! (and you wouldn't want to)

- ► Text as pre-treatment confounder ~ a surprisingly frequent problem
- Applications
 - ▶ In International Relations, are women cited less frequently than men?
 - Does censorship change the behavior of social media users?
 - Naive approach: compare posts/posting rate after censorship of censored and uncensored users
 - ► Confounder: Text of what users wrote before censorship
 - Control for letters of recommendation, trade treaties, Congressional bills, etc
- ▶ BUT conditioning on high-dimensional confounders is hard
 - ➤ You can't possibly condition on every word! (and you wouldn't want to)
 - ▶ We care about controlling for covariates predictive of treatment

- ► Text as pre-treatment confounder \leadsto a surprisingly frequent problem
- Applications
 - ▶ In International Relations, are women cited less frequently than men?
 - Does censorship change the behavior of social media users?
 - Naive approach: compare posts/posting rate after censorship of censored and uncensored users
 - ► Confounder: Text of what users wrote before censorship
 - Control for letters of recommendation, trade treaties, Congressional bills, etc
- ▶ BUT conditioning on high-dimensional confounders is hard
 - ➤ You can't possibly condition on every word! (and you wouldn't want to)
 - ▶ We care about controlling for covariates predictive of treatment
 - But with text, we don't always know what predicts treatment

- ► Text as pre-treatment confounder ~ a surprisingly frequent problem
- Applications
 - ▶ In International Relations, are women cited less frequently than men?
 - Does censorship change the behavior of social media users?
 - Naive approach: compare posts/posting rate after censorship of censored and uncensored users
 - ► Confounder: Text of what users wrote before censorship
 - ► Control for letters of recommendation, trade treaties, Congressional bills, etc
- ▶ BUT conditioning on high-dimensional confounders is hard
 - You can't possibly condition on every word! (and you wouldn't want to)
 - ▶ We care about controlling for covariates predictive of treatment
 - ▶ But with text, we don't always know what predicts treatment

Was very little work on matching on high-dimensional confounders, now some great work (Mozer et al 2018, Veitch et al 2019, Keith et al 2020)

Our approach:

- 1. Construct analogs to current methods
 - ► Propensity score matching → Multinomial Inverse Regression
 - ► Coarsened exact matching → Topically Coarsened Exact Matching
- 2. Identify benefits and drawbacks of each
- 3. Create a new method Topical Inverse Regression Matching (TIRM), by combining the two

Outline of the talk

- A quick review of matching for causal inference
- ► Text analogs to current matching methods
- ► Topical Inverse Regression Matching
- Applications

▶ Goal: estimate effect given conditional ignorability $t_i \perp y_i(1), y_i(0) | \vec{x_i}$

- ▶ Goal: estimate effect given conditional ignorability $t_i \perp y_i(1), y_i(0) | \vec{x_i}$
- ► Many approaches: propensity score matching, coarsened exact matching, genetic matching, synthetic matching, covariate-balanced propensity scores, entropy balancing, mahalanobis matching, optimal matching, full matching, matching frontier, . . .

- ▶ Goal: estimate effect given conditional ignorability $t_i \perp y_i(1), y_i(0) | \vec{x_i}$
- Many approaches: propensity score matching, coarsened exact matching, genetic matching, synthetic matching, covariate-balanced propensity scores, entropy balancing, mahalanobis matching, optimal matching, full matching, matching frontier, . . .
- ► Today two of these strategies:

- ► Goal: estimate effect given conditional ignorability $t_i \perp y_i(1), y_i(0) | \vec{x_i}$
- ► Many approaches: propensity score matching, coarsened exact matching, genetic matching, synthetic matching, covariate-balanced propensity scores, entropy balancing, mahalanobis matching, optimal matching, full matching, matching frontier, . . .
- ► Today two of these strategies:
 - 1. model $p(t_i|\vec{x_i}) \rightsquigarrow$ propensity score matching (PSM)

- ▶ Goal: estimate effect given conditional ignorability $t_i \perp y_i(1), y_i(0) | \vec{x_i}$
- ► Many approaches: propensity score matching, coarsened exact matching, genetic matching, synthetic matching, covariate-balanced propensity scores, entropy balancing, mahalanobis matching, optimal matching, full matching, matching frontier, . . .
- Today two of these strategies:
 - 1. model $p(t_i|\vec{x_i}) \rightsquigarrow \text{ propensity score matching (PSM)}$
 - 2. match on all $\vec{x_i} \rightsquigarrow$ coarsened exact matching (CEM)

- Goal: estimate effect given conditional ignorability $t_i \perp v_i(1), v_i(0)|\vec{x_i}$
- Many approaches: propensity score matching, coarsened exact matching, genetic matching, synthetic matching, covariate-balanced propensity scores, entropy balancing, mahalanobis matching, optimal matching, full matching, matching frontier, ...
- Today two of these strategies:
 - 1. model $p(t_i|\vec{x_i}) \rightsquigarrow \text{ propensity score matching (PSM)}$
 - 2. match on all $\vec{x_i} \rightsquigarrow$ coarsened exact matching (CEM)
- Both strategies scale poorly with high-dimensional covariates.

Roberts Text Matching 27 April 2021

- Classical PSM approach:
 - fit logistic regression $\hat{\pi}_i = p(t_i | \vec{x}_i)$
 - match units with similar probability of treatment
 - pros: units matched by scalar $(\hat{\pi}_i)$ instead of long vector (\vec{x}_i)
 - cons: approximates full randomization rather than more efficient block randomization (King and Nielsen 2019)

Roberts Text Matching 27 April 2021 9 / 28

- Classical PSM approach:
 - fit logistic regression $\hat{\pi}_i = p(t_i | \vec{x}_i)$
 - match units with similar probability of treatment
 - pros: units matched by scalar $(\hat{\pi}_i)$ instead of long vector (\vec{x}_i)
 - cons: approximates full randomization rather than more efficient block randomization (King and Nielsen 2019)
- Problem: high-dimensional confounders
 - **X** is $N \times V$ (# of documents by # of words in vocab)
 - can only estimate $\hat{\pi}_i$ well when $N \gg V$, which isn't the case!

Roberts Text Matching 27 April 2021

- ► Solution: Multinomial Inverse Regression (Cook 2007, Taddy 2013)
 - ▶ assume $x_i \sim Multinomial(\vec{q}_i, m_i = \sum_v x_{i,v})$
 - where $q_{i,v} \propto \exp(\alpha_v + t_i \phi_v)$
 - lacktriangledown $\phi_{m{v}}$ measures relationship between treatment and word
 - ▶ projection $z_i = \Phi'(\vec{x_i}/m_i)$ is a sufficient reduction $\boldsymbol{X} \perp T|Z$ \rightsquigarrow estimate $\hat{\pi}_i$ with projection
 - ▶ Match on z_i or $\hat{\pi}_i$

Problem:

Texts equally likely to be treated are not always semantically similar. Wouldn't be a problem in expectation, but...

Roberts Text Matching 27 April 2021 11 / 28

Problem:

Texts equally likely to be treated are not always semantically similar. Wouldn't be a problem in expectation, but...

- hard to assess balance in the text case
- could be more efficient if matches were more similar.

Matching text with Coarsened Exact Matching analogs

- Classical CEM approach
 - ▶ coarsen each variable into natural categories i.e. years of education → {high school, elementary school, college}
 - exactly match on coarsened variable
 - pros: bounds imbalance on each variable

Matching text with Coarsened Exact Matching analogs

- Classical CEM approach
 - ▶ coarsen each variable into natural categories i.e. years of education ~> {high school, elementary school, college}
 - exactly match on coarsened variable
 - pros: bounds imbalance on each variable
- ▶ Problem: high-dimensional confounder set
 - ▶ thousands of variables, so no exact matches even if we coarsen

Matching text with Coarsened Exact Matching analogs

- ► Solution: topically coarsened matching

 - ▶ topics must be equivalent across documents instead of words
 - bounds imbalance across groups of stochastically equivalent words
- ► Estimate a topic model such as LDA (Blei, Ng and Jordan 2003)
- Match on the topic density rather than raw word counts
- ▶ Problem: topics aren't always import predictors of treatment.

Topical Inverse Regression Matching (TIRM)

We need something that:

- 1. Bounds imbalance between documents
- 2. Doesn't leave out important words

Topical Inverse Regression Matching (TIRM)

We need something that:

- 1. Bounds imbalance between documents
- 2. Doesn't leave out important words

Topical Inverse Regression Matching (TIRM)

- Jointly estimate probability of treatment and topic density
- Match on topic proportions & topic-specific probability of treatment
 - topical bounding properties
 - estimates which words associated with treatment
- Ingredients:
 - Structural Topic Model
 - with treatment as content covariate

Two matrices estimated:

1) Topical Prevalence Matrix (DxK)

Two matrices estimated:

1) Topical Prevalence Matrix $(D \times K)$

$$\theta = egin{bmatrix} Doc1 & Topic1 & Topic2 & \dots & TopicK \\ \hline Doc1 & .2 & .1 & \dots & 0.05 \\ Doc2 & .2 & .1 & \dots & .3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ DocD & 0 & 0 & \dots & .5 \\ \hline \end{bmatrix}$$

Two matrices estimated:

1) Topical Prevalence Matrix $(D \times K)$

$$\theta = egin{bmatrix} Doc1 & Topic1 & Topic2 & \dots & TopicK \\ \hline Doc1 & .2 & .1 & \dots & 0.05 \\ Doc2 & .2 & .1 & \dots & .3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ DocD & 0 & 0 & \dots & .5 \\ \end{bmatrix}$$

$$eta^{T} = egin{bmatrix} & Topic1 & Topic2 & \dots & TopicK \\ & "text" & .02 & .001 & \dots & 0.001 \\ & "data" & .001 & .02 & \dots & 0.001 \\ & \vdots & \vdots & \vdots & \ddots & \vdots \\ & "analysis" & .01 & .01 & \dots & 0.0005 \end{bmatrix}$$

Two matrices estimated:

 $X \approx \theta \beta$

1) Topical Prevalence Matrix $(D \times K)$

$$\theta = egin{bmatrix} Doc1 & Topic1 & Topic2 & \dots & TopicK \\ \hline Doc1 & .2 & .1 & \dots & 0.05 \\ Doc2 & .2 & .1 & \dots & .3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ DocD & 0 & 0 & \dots & .5 \\ \end{bmatrix}$$

For Latent Dirichlet Allocation...

- Consider document i, (i = 1, 2, ..., D).

For Latent Dirichlet Allocation...

- Consider document i, (i = 1, 2, ..., D).
- Suppose there are M_i total words and \mathbf{w}_i is an $M_i \times 1$ vector, where w_{im} describes the m^{th} word used in the document.

Text Matching 27 April 2021 16 / 28

For Latent Dirichlet Allocation...

- Consider document i, (i = 1, 2, ..., D).
- Suppose there are M_i total words and \mathbf{w}_i is an $M_i \times 1$ vector, where w_{im} describes the m^{th} word used in the document.

$$\theta_i | \alpha \sim \mathsf{Dirichlet}(\alpha)$$

Roberts Text Matching 27 April 2021 16 / 28

- Consider document i, (i = 1, 2, ..., D).
- Suppose there are M_i total words and \mathbf{w}_i is an $M_i \times 1$ vector, where w_{im} describes the m^{th} word used in the document.

$$egin{array}{ll} m{ heta}_i | m{lpha} & \sim & \mathsf{Dirichlet}(m{lpha}) \ m{z}_{im} | m{ heta}_i & \sim & \mathsf{Multinomial}(1, m{ heta}_i) \end{array}$$

- Consider document i, (i = 1, 2, ..., D).
- Suppose there are M_i total words and \mathbf{w}_i is an $M_i \times 1$ vector, where w_{im} describes the m^{th} word used in the document.

$$egin{array}{ll} m{ heta}_i | m{lpha} & \sim & \mathsf{Dirichlet}(m{lpha}) \ m{z}_{im} | m{ heta}_i & \sim & \mathsf{Multinomial}(1, m{ heta}_i) \ m{w}_{im} | m{eta}_k, m{z}_{imk} = 1 & \sim & \mathsf{Multinomial}(1, m{eta}_k) \end{array}$$

- Consider document i, (i = 1, 2, ..., D).
- Suppose there are M_i total words and \mathbf{w}_i is an $M_i \times 1$ vector, where w_{im} describes the m^{th} word used in the document.

$$eta_k \sim \mathsf{Dirichlet}(\mathbf{1})$$
 $eta_i | lpha \sim \mathsf{Dirichlet}(lpha)$ $oldsymbol{z}_{im} | oldsymbol{ heta}_i \sim \mathsf{Multinomial}(1, oldsymbol{ heta}_i)$ $w_{im} | oldsymbol{eta}_k, oldsymbol{z}_{imk} = 1 \sim \mathsf{Multinomial}(1, oldsymbol{eta}_k)$

- Consider document i, (i = 1, 2, ..., D).
- Suppose there are M_i total words and \mathbf{w}_i is an $M_i \times 1$ vector, where w_{im} describes the m^{th} word used in the document.

$$eta_k \sim ext{Dirichlet}(\mathbf{1})$$
 $lpha_k \sim ext{Gamma}(lpha,eta)$
 $eta_i | lpha \sim ext{Dirichlet}(lpha)$
 $oldsymbol{z_{im}} | oldsymbol{ heta_i} \sim ext{Multinomial}(1,oldsymbol{ heta_i})$
 $w_{im} | eta_k, z_{imk} = 1 \sim ext{Multinomial}(1,eta_k)$

For Latent Dirichlet Allocation...

- Consider document i, (i = 1, 2, ..., D).
- Suppose there are M_i total words and \mathbf{w}_i is an $M_i \times 1$ vector, where w_{im} describes the m^{th} word used in the document.

$$eta_k \sim ext{Dirichlet}(\mathbf{1})$$
 $lpha_k \sim ext{Gamma}(lpha,eta)$
 $oldsymbol{ heta}_i | oldsymbol{lpha} \sim ext{Dirichlet}(oldsymbol{lpha})$
 $oldsymbol{z}_{im} | oldsymbol{ heta}_i \sim ext{Multinomial}(1,oldsymbol{ heta}_i)$
 $w_{im} | eta_k, z_{imk} = 1 \sim ext{Multinomial}(1,eta_k)$

Optimize with Variational Inference or Gibbs Sampling.

Structural Topic Model

- Adds "structure" to LDA via a prior
 (Blei and Lafferty 2006, Mimno and McCallum 2008)
- Documents have different expected topic proportions based on observed covariates.
- ▶ Topics are now deviations from a baseline distribution.

Structural Topic Model

- Adds "structure" to LDA via a prior (Blei and Lafferty 2006, Mimno and McCallum 2008)
- Documents have different expected topic proportions based on observed covariates.
- Topics are now deviations from a baseline distribution.

$$P(word|topic, doc) \propto$$

$$\exp(\kappa^{(m)} + \operatorname{topic} * \kappa^{(k)} + \operatorname{covariate}_{doc} * \kappa^{(c)} + \operatorname{topic}^* \operatorname{covariate}_{doc} * \kappa^{(int)})$$

Roberts Text Matching 27 April 2021 17 / 28

Structural Topic Model

- Adds "structure" to LDA via a prior (Blei and Lafferty 2006, Mimno and McCallum 2008)
- Documents have different expected topic proportions based on observed covariates.
- ▶ Topics are now deviations from a baseline distribution.

$$P(word|topic, doc) \propto$$

 $\exp(\kappa^{(m)} + topic * \kappa^{(k)} + covariate_{doc} * \kappa^{(c)} + topic * covariate_{doc} * \kappa^{(int)})$

 $\kappa^{(c)}$ and $\kappa^{(int)} \leadsto$ how words are related to treatment.

Topical Inverse Regression Matching (TIRM)

First: Re-estimate θ as though document was treated.

Match on:

- 1. θ : Estimated topic proportion (K covariates)
- 2. projection:
 - ▶ let (x_i/m_i) % of document i that is word x
 - $(\kappa^{(c)})'(x_i/m_i)$ covariate-only projection
 - $(\kappa^{(c)})'(x_i/m_i) + \frac{1}{m_i} \sum_{v} x_{i,v} \left(\left(\kappa_v^{(int)} \right)' \theta_i \right)$ topic-covariate projection
- 3. Any other covariates you think are important

We generally use CEM to match but other methods could be used.

Roberts Text Matching 27 April 2021 18 / 28

Topical Inverse Regression Matching (TIRM)

First: Re-estimate θ as though document was treated.

Match on:

- 1. θ : Estimated topic proportion (K covariates)
- 2. projection:
 - ▶ let (x_i/m_i) % of document i that is word x
 - $(\kappa^{(c)})'(x_i/m_i)$ covariate-only projection
 - \blacktriangleright $(\kappa^{(c)})'(x_i/m_i) + \frac{1}{m_i} \sum_{\nu} x_{i,\nu} \left(\left(\kappa_{\nu}^{(int)} \right)' \theta_i \right)$ topic-covariate projection
- 3. Any other covariates you think are important

We generally use CEM to match but other methods could be used.

Limitations of TIRM

- ► The regular... requires SUTVA, relevant covariates
- plus... relies on a parametric method to reduce dimensions

Roberts Text Matching 27 April 2021 18 / 28

No single unified balance metric, so we have to use a few:

▶ Balance on words associated with treatment

- ▶ Balance on words associated with treatment
 - use mutual information, MNIR, STM to estimate words close to treatment

- ▶ Balance on words associated with treatment
 - use mutual information, MNIR, STM to estimate words close to treatment
 - try to achieve balance on words associated with treatment post matching

- Balance on words associated with treatment
 - use mutual information, MNIR, STM to estimate words close to treatment
 - try to achieve balance on words associated with treatment post matching
- ▶ Balance on estimated topics

- Balance on words associated with treatment
 - use mutual information, MNIR, STM to estimate words close to treatment
 - try to achieve balance on words associated with treatment post matching
- Balance on estimated topics
- ► String kernel similarity (Lohdi et al 2002, Spirling 2012)

- Balance on words associated with treatment
 - use mutual information, MNIR, STM to estimate words close to treatment
 - try to achieve balance on words associated with treatment post matching
- Balance on estimated topics
- String kernel similarity (Lohdi et al 2002, Spirling 2012)
 - measures similarity in sequences of words

- Balance on words associated with treatment
 - use mutual information, MNIR, STM to estimate words close to treatment
 - try to achieve balance on words associated with treatment post matching
- Balance on estimated topics
- String kernel similarity (Lohdi et al 2002, Spirling 2012)
 - measures similarity in sequences of words
 - allows us to ensure bag of words is representing text

- Balance on words associated with treatment
 - use mutual information, MNIR, STM to estimate words close to treatment
 - try to achieve balance on words associated with treatment post matching
- Balance on estimated topics
- String kernel similarity (Lohdi et al 2002, Spirling 2012)
 - measures similarity in sequences of words
 - allows us to ensure bag of words is representing text
- Human comparisons

- Balance on words associated with treatment
 - use mutual information, MNIR, STM to estimate words close to treatment
 - try to achieve balance on words associated with treatment post matching
- Balance on estimated topics
- String kernel similarity (Lohdi et al 2002, Spirling 2012)
 - measures similarity in sequences of words
 - allows us to ensure bag of words is representing text
- ► Human comparisons (easier for Tweets hard for novels)

- Balance on words associated with treatment
 - use mutual information, MNIR, STM to estimate words close to treatment
 - try to achieve balance on words associated with treatment post matching
- Balance on estimated topics
- String kernel similarity (Lohdi et al 2002, Spirling 2012)
 - measures similarity in sequences of words
 - allows us to ensure bag of words is representing text
- Human comparisons (easier for Tweets hard for novels)
 - Human coded categories

- Balance on words associated with treatment
 - use mutual information, MNIR, STM to estimate words close to treatment
 - try to achieve balance on words associated with treatment post matching
- Balance on estimated topics
- String kernel similarity (Lohdi et al 2002, Spirling 2012)
 - measures similarity in sequences of words
 - allows us to ensure bag of words is representing text
- ► Human comparisons (easier for Tweets hard for novels)
 - Human coded categories
 - ▶ User reads sample of paired matches, assesses similarity

Setting

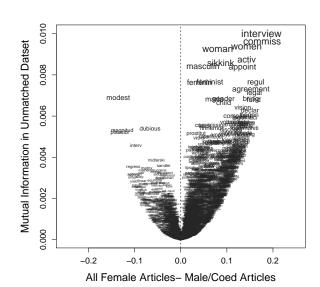
- Maliniak, Powers, Walter (2013): women get cited less than men in political science
- ...but women write about different topics than men
- Maliniak et al solution: Code articles into (many) categories
- Our solution: Text matching

Data: 3,201 journal articles from top 12 IR journals, 1980-2006.

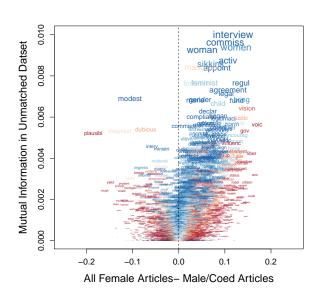
- Lots of variables, including gender, article age, tenure, etc.
- ► Treatment: all-female vs. control: co-ed/all-male
- ► Goal: Find similar articles, see how they are cited differently.

 Roberts
 Text Matching
 27 April 2021
 20 / 28

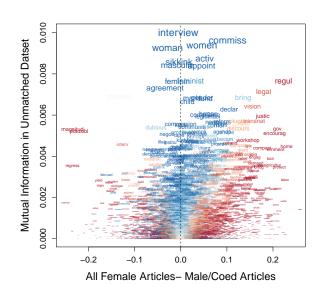
Original data: No matching



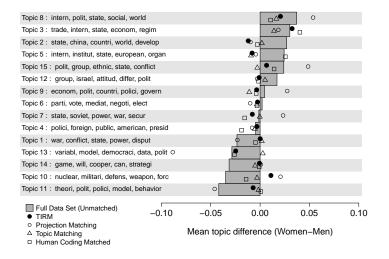
Matched data: Topical CEM



Matched data: TIRM

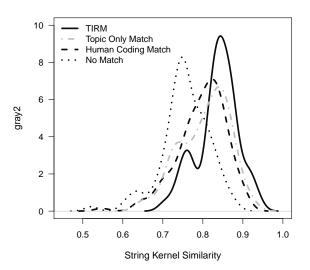


TIRM Reduces Topical Differences



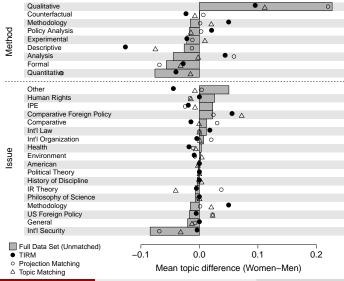
Roberts Text Matching 27 April 2021 24 / 28

TIRM improves string kernel similarity



Roberts Text Matching 27 April 2021 25 / 28

TIRM Reduces Human Coded Differences



Results

- ▶ Maliniak et al: Women receive 80% of the citations of men
- We find: women receive fewer citations (robust across specifications)
- ▶ Our estimate: Women receive 65% of the citations of men
- ▶ The difference is in very high expected citation counts:
 - ▶ Low range: 14 cites vs. 12 cites, not statistically detectable diff.
 - ▶ High range: 90 cites vs. 20 cites, very easy to detect.

 Roberts
 Text Matching
 27 April 2021
 27 / 28

▶ Lots of applications measure pre-treatment confounders with text

 Roberts
 Text Matching
 27 April 2021
 28 / 28

- ▶ Lots of applications measure pre-treatment confounders with text
- ▶ We propose a new framework and show that:

- Lots of applications measure pre-treatment confounders with text
- ▶ We propose a new framework and show that:
 - Matching on topical density estimate

- ▶ Lots of applications measure pre-treatment confounders with text
- ▶ We propose a new framework and show that:
 - ► Matching on topical density estimate → bounds differences between topics

- ▶ Lots of applications measure pre-treatment confounders with text
- We propose a new framework and show that:
 - ► Matching on topical density estimate → bounds differences between topics
 - Matching on probability of treatment

- Lots of applications measure pre-treatment confounders with text
- We propose a new framework and show that:
 - ► Matching on topical density estimate → bounds differences between topics
 - ▶ Matching on probability of treatment → balances on words related to treatment

Text Matching 27 April 2021 28 / 28

- ▶ Lots of applications measure pre-treatment confounders with text
- ▶ We propose a new framework and show that:
 - ► Matching on topical density estimate ~> bounds differences between topics
 - ► Matching on probability of treatment ~ balances on words related to treatment
- ▶ is best for overall balance.

- ▶ Lots of applications measure pre-treatment confounders with text
- ▶ We propose a new framework and show that:
 - ► Matching on topical density estimate → bounds differences between topics
 - ► Matching on probability of treatment ~ balances on words related to treatment
- is best for overall balance.
- Future work:

- Lots of applications measure pre-treatment confounders with text
- ▶ We propose a new framework and show that:
 - ► Matching on topical density estimate → bounds differences between topics
 - ► Matching on probability of treatment ~ balances on words related to treatment
- is best for overall balance.
- Future work:
 - Extend to high-dimensional cases other than text